mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 01:49:41 +00:00
409 lines
18 KiB
C++
409 lines
18 KiB
C++
// fhmqv.h - written and placed in the public domain by Jeffrey Walton, Ray Clayton and Uri Blumenthal
|
||
// Shamelessly based upon Wei Dai's MQV source files
|
||
|
||
#ifndef CRYPTOPP_FHMQV_H
|
||
#define CRYPTOPP_FHMQV_H
|
||
|
||
/// \file fhmqv.h
|
||
/// \brief Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
|
||
/// \since Crypto++ 5.6.4
|
||
|
||
#include "gfpcrypt.h"
|
||
#include "algebra.h"
|
||
#include "sha.h"
|
||
|
||
NAMESPACE_BEGIN(CryptoPP)
|
||
|
||
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
|
||
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
|
||
/// \since Crypto++ 5.6.4
|
||
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption, class HASH = SHA512>
|
||
class FHMQV_Domain : public AuthenticatedKeyAgreementDomain
|
||
{
|
||
public:
|
||
typedef GROUP_PARAMETERS GroupParameters;
|
||
typedef typename GroupParameters::Element Element;
|
||
typedef FHMQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION, HASH> Domain;
|
||
|
||
virtual ~FHMQV_Domain() {}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
FHMQV_Domain(bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer) {}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \param params group parameters and options
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
FHMQV_Domain(const GroupParameters ¶ms, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer), m_groupParameters(params) {}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \param bt BufferedTransformation with group parameters and options
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
FHMQV_Domain(BufferedTransformation &bt, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.BERDecode(bt);}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \tparam T1 template parameter used as a constructor parameter
|
||
/// \param v1 first parameter
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details v1 is passed directly to the GROUP_PARAMETERS object.
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
template <class T1>
|
||
FHMQV_Domain(T1 v1, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1);}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \tparam T1 template parameter used as a constructor parameter
|
||
/// \tparam T2 template parameter used as a constructor parameter
|
||
/// \param v1 first parameter
|
||
/// \param v2 second parameter
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details v1 and v2 are passed directly to the GROUP_PARAMETERS object.
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
template <class T1, class T2>
|
||
FHMQV_Domain(T1 v1, T2 v2, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2);}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \tparam T1 template parameter used as a constructor parameter
|
||
/// \tparam T2 template parameter used as a constructor parameter
|
||
/// \tparam T3 template parameter used as a constructor parameter
|
||
/// \param v1 first parameter
|
||
/// \param v2 second parameter
|
||
/// \param v3 third parameter
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details v1, v2 and v3 are passed directly to the GROUP_PARAMETERS object.
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
template <class T1, class T2, class T3>
|
||
FHMQV_Domain(T1 v1, T2 v2, T3 v3, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2, v3);}
|
||
|
||
/// \brief Construct a FHMQV domain
|
||
/// \tparam T1 template parameter used as a constructor parameter
|
||
/// \tparam T2 template parameter used as a constructor parameter
|
||
/// \tparam T3 template parameter used as a constructor parameter
|
||
/// \tparam T4 template parameter used as a constructor parameter
|
||
/// \param v1 first parameter
|
||
/// \param v2 second parameter
|
||
/// \param v3 third parameter
|
||
/// \param v4 third parameter
|
||
/// \param clientRole flag indicating initiator or recipient
|
||
/// \details v1, v2, v3 and v4 are passed directly to the GROUP_PARAMETERS object.
|
||
/// \details <tt>clientRole = true</tt> indicates initiator, and
|
||
/// <tt>clientRole = false</tt> indicates recipient or server.
|
||
template <class T1, class T2, class T3, class T4>
|
||
FHMQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2, v3, v4);}
|
||
|
||
public:
|
||
|
||
/// \brief Retrieves the group parameters for this domain
|
||
/// \return the group parameters for this domain as a const reference
|
||
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
|
||
|
||
/// \brief Retrieves the group parameters for this domain
|
||
/// \return the group parameters for this domain as a non-const reference
|
||
GroupParameters & AccessGroupParameters() {return m_groupParameters;}
|
||
|
||
/// \brief Retrieves the crypto parameters for this domain
|
||
/// \return the crypto parameters for this domain as a non-const reference
|
||
CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
|
||
|
||
/// \brief Provides the size of the agreed value
|
||
/// \return size of agreed value produced in this domain
|
||
/// \details The length is calculated using <tt>GetEncodedElementSize(false)</tt>,
|
||
/// which means the element is encoded in a non-reversible format. A
|
||
/// non-reversible format means its a raw byte array, and it lacks presentation
|
||
/// format like an ASN.1 BIT_STRING or OCTET_STRING.
|
||
unsigned int AgreedValueLength() const
|
||
{return GetAbstractGroupParameters().GetEncodedElementSize(false);}
|
||
|
||
/// \brief Provides the size of the static private key
|
||
/// \return size of static private keys in this domain
|
||
/// \details The length is calculated using the byte count of the subgroup order.
|
||
unsigned int StaticPrivateKeyLength() const
|
||
{return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
|
||
|
||
/// \brief Provides the size of the static public key
|
||
/// \return size of static public keys in this domain
|
||
/// \details The length is calculated using <tt>GetEncodedElementSize(true)</tt>,
|
||
/// which means the element is encoded in a reversible format. A reversible
|
||
/// format means it has a presentation format, and its an ANS.1 encoded element
|
||
/// or point.
|
||
unsigned int StaticPublicKeyLength() const
|
||
{return GetAbstractGroupParameters().GetEncodedElementSize(true);}
|
||
|
||
/// \brief Generate static private key in this domain
|
||
/// \param rng a RandomNumberGenerator derived class
|
||
/// \param privateKey a byte buffer for the generated private key in this domain
|
||
/// \details The private key is a random scalar used as an exponent in the range
|
||
/// <tt>[1,MaxExponent()]</tt>.
|
||
/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
|
||
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
|
||
{
|
||
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
|
||
x.Encode(privateKey, StaticPrivateKeyLength());
|
||
}
|
||
|
||
/// \brief Generate a static public key from a private key in this domain
|
||
/// \param rng a RandomNumberGenerator derived class
|
||
/// \param privateKey a byte buffer with the previously generated private key
|
||
/// \param publicKey a byte buffer for the generated public key in this domain
|
||
/// \details The public key is an element or point on the curve, and its stored
|
||
/// in a revrsible format. A reversible format means it has a presentation
|
||
/// format, and its an ANS.1 encoded element or point.
|
||
/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
|
||
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
|
||
{
|
||
CRYPTOPP_UNUSED(rng);
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
Integer x(privateKey, StaticPrivateKeyLength());
|
||
Element y = params.ExponentiateBase(x);
|
||
params.EncodeElement(true, y, publicKey);
|
||
}
|
||
|
||
/// \brief Provides the size of the ephemeral private key
|
||
/// \return size of ephemeral private keys in this domain
|
||
/// \details An ephemeral private key is a private key and public key.
|
||
/// The serialized size is different than a static private key.
|
||
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
|
||
|
||
/// \brief Provides the size of the ephemeral public key
|
||
/// \return size of ephemeral public keys in this domain
|
||
/// \details An ephemeral public key is a public key.
|
||
/// The serialized size is the same as a static public key.
|
||
unsigned int EphemeralPublicKeyLength() const{return StaticPublicKeyLength();}
|
||
|
||
/// \brief Generate ephemeral private key in this domain
|
||
/// \param rng a RandomNumberGenerator derived class
|
||
/// \param privateKey a byte buffer for the generated private key in this domain
|
||
/// \pre <tt>COUNTOF(privateKey) == EphemeralPrivateKeyLength()</tt>
|
||
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
|
||
{
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
Integer x(rng, Integer::One(), params.GetMaxExponent());
|
||
x.Encode(privateKey, StaticPrivateKeyLength());
|
||
Element y = params.ExponentiateBase(x);
|
||
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
|
||
}
|
||
|
||
/// \brief Generate ephemeral public key from a private key in this domain
|
||
/// \param rng a RandomNumberGenerator derived class
|
||
/// \param privateKey a byte buffer with the previously generated private key
|
||
/// \param publicKey a byte buffer for the generated public key in this domain
|
||
/// \pre <tt>COUNTOF(publicKey) == EphemeralPublicKeyLength()</tt>
|
||
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
|
||
{
|
||
CRYPTOPP_UNUSED(rng);
|
||
std::memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
|
||
}
|
||
|
||
/// \brief Derive agreed value or shared secret
|
||
/// \param agreedValue the shared secret
|
||
/// \param staticPrivateKey your long term private key
|
||
/// \param ephemeralPrivateKey your ephemeral private key
|
||
/// \param staticOtherPublicKey couterparty's long term public key
|
||
/// \param ephemeralOtherPublicKey couterparty's ephemeral public key
|
||
/// \param validateStaticOtherPublicKey flag indicating validation
|
||
/// \return true upon success, false in case of failure
|
||
/// \details Agree() performs the authenticated key agreement. Agree()
|
||
/// derives a shared secret from your private keys and couterparty's
|
||
/// public keys. Each instance or run of the protocol should use a new
|
||
/// ephemeral key pair.
|
||
/// \details The other's ephemeral public key will always be validated at
|
||
/// Level 1 to ensure it is a point on the curve.
|
||
/// <tt>validateStaticOtherPublicKey</tt> determines how thoroughly other's
|
||
/// static public key is validated. If you have previously validated the
|
||
/// couterparty's static public key, then use
|
||
/// <tt>validateStaticOtherPublicKey=false</tt> to save time.
|
||
/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
|
||
/// \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
|
||
/// \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
|
||
/// \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
|
||
/// \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
|
||
bool Agree(byte *agreedValue,
|
||
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
|
||
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
|
||
bool validateStaticOtherPublicKey=true) const
|
||
{
|
||
const byte *XX = NULLPTR, *YY = NULLPTR, *AA = NULLPTR, *BB = NULLPTR;
|
||
size_t xxs = 0, yys = 0, aas = 0, bbs = 0;
|
||
|
||
// Depending on the role, this will hold either A's or B's static
|
||
// (long term) public key. AA or BB will then point into tt.
|
||
SecByteBlock tt(StaticPublicKeyLength());
|
||
|
||
try
|
||
{
|
||
this->GetMaterial().DoQuickSanityCheck();
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
|
||
if(m_role == RoleServer)
|
||
{
|
||
Integer b(staticPrivateKey, StaticPrivateKeyLength());
|
||
Element B = params.ExponentiateBase(b);
|
||
params.EncodeElement(true, B, tt);
|
||
|
||
XX = ephemeralOtherPublicKey;
|
||
xxs = EphemeralPublicKeyLength();
|
||
YY = ephemeralPrivateKey + StaticPrivateKeyLength();
|
||
yys = EphemeralPublicKeyLength();
|
||
AA = staticOtherPublicKey;
|
||
aas = StaticPublicKeyLength();
|
||
BB = tt.BytePtr();
|
||
bbs = tt.SizeInBytes();
|
||
}
|
||
else
|
||
{
|
||
Integer a(staticPrivateKey, StaticPrivateKeyLength());
|
||
Element A = params.ExponentiateBase(a);
|
||
params.EncodeElement(true, A, tt);
|
||
|
||
XX = ephemeralPrivateKey + StaticPrivateKeyLength();
|
||
xxs = EphemeralPublicKeyLength();
|
||
YY = ephemeralOtherPublicKey;
|
||
yys = EphemeralPublicKeyLength();
|
||
AA = tt.BytePtr();
|
||
aas = tt.SizeInBytes();
|
||
BB = staticOtherPublicKey;
|
||
bbs = StaticPublicKeyLength();
|
||
}
|
||
|
||
Element VV1 = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
|
||
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, true);
|
||
|
||
const Integer& q = params.GetSubgroupOrder();
|
||
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
|
||
SecByteBlock dd(len), ee(len);
|
||
|
||
Hash(NULLPTR, XX, xxs, YY, yys, AA, aas, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
|
||
Integer d(dd.BytePtr(), dd.SizeInBytes());
|
||
|
||
Hash(NULLPTR, YY, yys, XX, xxs, AA, aas, BB, bbs, ee.BytePtr(), ee.SizeInBytes());
|
||
Integer e(ee.BytePtr(), ee.SizeInBytes());
|
||
|
||
Element sigma;
|
||
if(m_role == RoleServer)
|
||
{
|
||
Integer y(ephemeralPrivateKey, StaticPrivateKeyLength());
|
||
Integer b(staticPrivateKey, StaticPrivateKeyLength());
|
||
Integer s_B = (y + e * b) % q;
|
||
|
||
Element A = params.DecodeElement(AA, false);
|
||
Element X = params.DecodeElement(XX, false);
|
||
|
||
Element t1 = params.ExponentiateElement(A, d);
|
||
Element t2 = m_groupParameters.MultiplyElements(X, t1);
|
||
|
||
sigma = params.ExponentiateElement(t2, s_B);
|
||
}
|
||
else
|
||
{
|
||
Integer x(ephemeralPrivateKey, StaticPrivateKeyLength());
|
||
Integer a(staticPrivateKey, StaticPrivateKeyLength());
|
||
Integer s_A = (x + d * a) % q;
|
||
|
||
Element B = params.DecodeElement(BB, false);
|
||
Element Y = params.DecodeElement(YY, false);
|
||
|
||
Element t1 = params.ExponentiateElement(B, e);
|
||
Element t2 = m_groupParameters.MultiplyElements(Y, t1);
|
||
|
||
sigma = params.ExponentiateElement(t2, s_A);
|
||
}
|
||
|
||
Hash(&sigma, XX, xxs, YY, yys, AA, aas, BB, bbs, agreedValue, AgreedValueLength());
|
||
}
|
||
catch (DL_BadElement &)
|
||
{
|
||
CRYPTOPP_ASSERT(0);
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
protected:
|
||
|
||
inline void Hash(const Element* sigma,
|
||
const byte* e1, size_t e1len, const byte* e2, size_t e2len,
|
||
const byte* s1, size_t s1len, const byte* s2, size_t s2len,
|
||
byte* digest, size_t dlen) const
|
||
{
|
||
HASH hash;
|
||
size_t idx = 0, req = dlen;
|
||
size_t blk = STDMIN(dlen, (size_t)HASH::DIGESTSIZE);
|
||
|
||
if(sigma)
|
||
{
|
||
//Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
|
||
//SecByteBlock sbb(x.MinEncodedSize());
|
||
//x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
|
||
SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
|
||
GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
|
||
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
|
||
}
|
||
|
||
hash.Update(e1, e1len);
|
||
hash.Update(e2, e2len);
|
||
hash.Update(s1, s1len);
|
||
hash.Update(s2, s2len);
|
||
|
||
hash.TruncatedFinal(digest, blk);
|
||
req -= blk;
|
||
|
||
// All this to catch tail bytes for large curves and small hashes
|
||
while(req != 0)
|
||
{
|
||
hash.Update(&digest[idx], (size_t)HASH::DIGESTSIZE);
|
||
|
||
idx += (size_t)HASH::DIGESTSIZE;
|
||
blk = STDMIN(req, (size_t)HASH::DIGESTSIZE);
|
||
hash.TruncatedFinal(&digest[idx], blk);
|
||
|
||
req -= blk;
|
||
}
|
||
}
|
||
|
||
private:
|
||
|
||
// The paper uses Initiator and Recipient - make it classical.
|
||
enum KeyAgreementRole { RoleServer = 1, RoleClient };
|
||
|
||
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
|
||
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}
|
||
|
||
GroupParameters m_groupParameters;
|
||
KeyAgreementRole m_role;
|
||
};
|
||
|
||
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
|
||
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
/// \sa FHMQV, MQV_Domain, FHMQV_Domain, AuthenticatedKeyAgreementDomain
|
||
/// \since Crypto++ 5.6.4
|
||
typedef FHMQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> FHMQV;
|
||
|
||
NAMESPACE_END
|
||
|
||
#endif
|