mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-26 19:30:21 +00:00
649 lines
19 KiB
C++
649 lines
19 KiB
C++
// lsh.cpp - written and placed in the public domain by Jeffrey Walton
|
|
// Based on the specification and source code provided by
|
|
// Korea Internet & Security Agency (KISA) website. Also
|
|
// see https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do
|
|
// and https://seed.kisa.or.kr/kisa/Board/22/detailView.do.
|
|
|
|
// We are hitting some sort of GCC bug in the LSH AVX2 code path.
|
|
// Clang is OK on the AVX2 code path. We believe it is GCC Issue
|
|
// 82735, https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735. It
|
|
// makes using zeroupper a little tricky.
|
|
|
|
#include "pch.h"
|
|
#include "config.h"
|
|
|
|
#include "lsh.h"
|
|
#include "misc.h"
|
|
|
|
#if defined(CRYPTOPP_AVX2_AVAILABLE) && defined(CRYPTOPP_ENABLE_64BIT_SSE)
|
|
|
|
#if defined(CRYPTOPP_AVX2_AVAILABLE)
|
|
# include <emmintrin.h>
|
|
# include <immintrin.h>
|
|
#endif
|
|
|
|
// GCC at 4.5. Clang is unknown. Also see https://stackoverflow.com/a/42493893.
|
|
#if (CRYPTOPP_GCC_VERSION >= 40500)
|
|
# include <x86intrin.h>
|
|
#endif
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
/* LSH Constants */
|
|
|
|
const unsigned int LSH256_MSG_BLK_BYTE_LEN = 128;
|
|
// const unsigned int LSH256_MSG_BLK_BIT_LEN = 1024;
|
|
// const unsigned int LSH256_CV_BYTE_LEN = 64;
|
|
const unsigned int LSH256_HASH_VAL_MAX_BYTE_LEN = 32;
|
|
|
|
// const unsigned int MSG_BLK_WORD_LEN = 32;
|
|
const unsigned int CV_WORD_LEN = 16;
|
|
const unsigned int CONST_WORD_LEN = 8;
|
|
// const unsigned int HASH_VAL_MAX_WORD_LEN = 8;
|
|
// const unsigned int WORD_BIT_LEN = 32;
|
|
const unsigned int NUM_STEPS = 26;
|
|
|
|
const unsigned int ROT_EVEN_ALPHA = 29;
|
|
const unsigned int ROT_EVEN_BETA = 1;
|
|
const unsigned int ROT_ODD_ALPHA = 5;
|
|
const unsigned int ROT_ODD_BETA = 17;
|
|
|
|
const unsigned int LSH_TYPE_256_256 = 0x0000020;
|
|
const unsigned int LSH_TYPE_256_224 = 0x000001C;
|
|
|
|
// const unsigned int LSH_TYPE_224 = LSH_TYPE_256_224;
|
|
// const unsigned int LSH_TYPE_256 = LSH_TYPE_256_256;
|
|
|
|
/* Error Code */
|
|
|
|
const unsigned int LSH_SUCCESS = 0x0;
|
|
// const unsigned int LSH_ERR_NULL_PTR = 0x2401;
|
|
// const unsigned int LSH_ERR_INVALID_ALGTYPE = 0x2402;
|
|
const unsigned int LSH_ERR_INVALID_DATABITLEN = 0x2403;
|
|
const unsigned int LSH_ERR_INVALID_STATE = 0x2404;
|
|
|
|
/* Index into our state array */
|
|
|
|
const unsigned int AlgorithmType = 80;
|
|
const unsigned int RemainingBits = 81;
|
|
|
|
NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
NAMESPACE_BEGIN(LSH)
|
|
|
|
// lsh256.cpp
|
|
extern const word32 LSH256_IV224[CV_WORD_LEN];
|
|
extern const word32 LSH256_IV256[CV_WORD_LEN];
|
|
extern const word32 LSH256_StepConstants[CONST_WORD_LEN * NUM_STEPS];
|
|
|
|
NAMESPACE_END // LSH
|
|
NAMESPACE_END // Crypto++
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::byte;
|
|
using CryptoPP::word32;
|
|
using CryptoPP::rotlFixed;
|
|
using CryptoPP::rotlConstant;
|
|
|
|
using CryptoPP::GetBlock;
|
|
using CryptoPP::LittleEndian;
|
|
using CryptoPP::ConditionalByteReverse;
|
|
using CryptoPP::LITTLE_ENDIAN_ORDER;
|
|
|
|
typedef byte lsh_u8;
|
|
typedef word32 lsh_u32;
|
|
typedef word32 lsh_uint;
|
|
typedef word32 lsh_err;
|
|
typedef word32 lsh_type;
|
|
|
|
using CryptoPP::LSH::LSH256_IV224;
|
|
using CryptoPP::LSH::LSH256_IV256;
|
|
using CryptoPP::LSH::LSH256_StepConstants;
|
|
|
|
struct LSH256_AVX2_Context
|
|
{
|
|
LSH256_AVX2_Context(word32* state, word32 algType, word32& remainingBitLength) :
|
|
cv_l(state+0), cv_r(state+8), sub_msgs(state+16),
|
|
last_block(reinterpret_cast<byte*>(state+48)),
|
|
remain_databitlen(remainingBitLength),
|
|
alg_type(static_cast<lsh_type>(algType)) {}
|
|
|
|
lsh_u32* cv_l; // start of our state block
|
|
lsh_u32* cv_r;
|
|
lsh_u32* sub_msgs;
|
|
lsh_u8* last_block;
|
|
lsh_u32& remain_databitlen;
|
|
lsh_type alg_type;
|
|
};
|
|
|
|
struct LSH256_AVX2_Internal
|
|
{
|
|
LSH256_AVX2_Internal(word32* state) :
|
|
submsg_e_l(state+16), submsg_e_r(state+24),
|
|
submsg_o_l(state+32), submsg_o_r(state+40) { }
|
|
|
|
lsh_u32* submsg_e_l; /* even left sub-message */
|
|
lsh_u32* submsg_e_r; /* even right sub-message */
|
|
lsh_u32* submsg_o_l; /* odd left sub-message */
|
|
lsh_u32* submsg_o_r; /* odd right sub-message */
|
|
};
|
|
|
|
// Zero the upper 128 bits of all YMM registers on exit.
|
|
// It avoids AVX state transition penalties when saving state.
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735
|
|
// makes using zeroupper a little tricky.
|
|
|
|
struct AVX_Cleanup
|
|
{
|
|
~AVX_Cleanup() {
|
|
_mm256_zeroupper();
|
|
}
|
|
};
|
|
|
|
// const word32 g_gamma256[8] = { 0, 8, 16, 24, 24, 16, 8, 0 };
|
|
|
|
/* LSH AlgType Macro */
|
|
|
|
inline bool LSH_IS_LSH512(lsh_uint val) {
|
|
return (val & 0xf0000) == 0;
|
|
}
|
|
|
|
inline lsh_uint LSH_GET_SMALL_HASHBIT(lsh_uint val) {
|
|
return val >> 24;
|
|
}
|
|
|
|
inline lsh_uint LSH_GET_HASHBYTE(lsh_uint val) {
|
|
return val & 0xffff;
|
|
}
|
|
|
|
inline lsh_uint LSH_GET_HASHBIT(lsh_uint val) {
|
|
return (LSH_GET_HASHBYTE(val) << 3) - LSH_GET_SMALL_HASHBIT(val);
|
|
}
|
|
|
|
inline lsh_u32 loadLE32(lsh_u32 v) {
|
|
return ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v);
|
|
}
|
|
|
|
lsh_u32 ROTL(lsh_u32 x, lsh_u32 r) {
|
|
return rotlFixed(x, r);
|
|
}
|
|
|
|
// Original code relied upon unaligned lsh_u32 buffer
|
|
inline void load_msg_blk(LSH256_AVX2_Internal* i_state, const lsh_u8 msgblk[LSH256_MSG_BLK_BYTE_LEN])
|
|
{
|
|
CRYPTOPP_ASSERT(i_state != NULLPTR);
|
|
|
|
lsh_u32* submsg_e_l = i_state->submsg_e_l;
|
|
lsh_u32* submsg_e_r = i_state->submsg_e_r;
|
|
lsh_u32* submsg_o_l = i_state->submsg_o_l;
|
|
lsh_u32* submsg_o_r = i_state->submsg_o_r;
|
|
|
|
_mm256_storeu_si256(M256_CAST(submsg_e_l+0),
|
|
_mm256_loadu_si256(CONST_M256_CAST(msgblk+0)));
|
|
_mm256_storeu_si256(M256_CAST(submsg_e_r+0),
|
|
_mm256_loadu_si256(CONST_M256_CAST(msgblk+32)));
|
|
_mm256_storeu_si256(M256_CAST(submsg_o_l+0),
|
|
_mm256_loadu_si256(CONST_M256_CAST(msgblk+64)));
|
|
_mm256_storeu_si256(M256_CAST(submsg_o_r+0),
|
|
_mm256_loadu_si256(CONST_M256_CAST(msgblk+96)));
|
|
}
|
|
|
|
inline void msg_exp_even(LSH256_AVX2_Internal* i_state)
|
|
{
|
|
CRYPTOPP_ASSERT(i_state != NULLPTR);
|
|
|
|
lsh_u32* submsg_e_l = i_state->submsg_e_l;
|
|
lsh_u32* submsg_e_r = i_state->submsg_e_r;
|
|
lsh_u32* submsg_o_l = i_state->submsg_o_l;
|
|
lsh_u32* submsg_o_r = i_state->submsg_o_r;
|
|
|
|
const __m256i mask = _mm256_set_epi32(0x1b1a1918, 0x17161514,
|
|
0x13121110, 0x1f1e1d1c, 0x07060504, 0x03020100, 0x0b0a0908, 0x0f0e0d0c);
|
|
|
|
_mm256_storeu_si256(M256_CAST(submsg_e_l+0), _mm256_add_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_l+0)),
|
|
_mm256_shuffle_epi8(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_l+0)), mask)));
|
|
_mm256_storeu_si256(M256_CAST(submsg_e_r+0), _mm256_add_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_r+0)),
|
|
_mm256_shuffle_epi8(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_r+0)), mask)));
|
|
}
|
|
|
|
inline void msg_exp_odd(LSH256_AVX2_Internal* i_state)
|
|
{
|
|
CRYPTOPP_ASSERT(i_state != NULLPTR);
|
|
|
|
lsh_u32* submsg_e_l = i_state->submsg_e_l;
|
|
lsh_u32* submsg_e_r = i_state->submsg_e_r;
|
|
lsh_u32* submsg_o_l = i_state->submsg_o_l;
|
|
lsh_u32* submsg_o_r = i_state->submsg_o_r;
|
|
|
|
const __m256i mask = _mm256_set_epi32(0x1b1a1918, 0x17161514,
|
|
0x13121110, 0x1f1e1d1c, 0x07060504, 0x03020100, 0x0b0a0908, 0x0f0e0d0c);
|
|
|
|
_mm256_storeu_si256(M256_CAST(submsg_o_l+0), _mm256_add_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_l+0)),
|
|
_mm256_shuffle_epi8(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_l+0)), mask)));
|
|
_mm256_storeu_si256(M256_CAST(submsg_o_r+0), _mm256_add_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_r+0)),
|
|
_mm256_shuffle_epi8(
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_r+0)), mask)));
|
|
}
|
|
|
|
inline void load_sc(const lsh_u32** p_const_v, size_t i)
|
|
{
|
|
CRYPTOPP_ASSERT(p_const_v != NULLPTR);
|
|
|
|
*p_const_v = &LSH256_StepConstants[i];
|
|
}
|
|
|
|
inline void msg_add_even(lsh_u32 cv_l[8], lsh_u32 cv_r[8], LSH256_AVX2_Internal* i_state)
|
|
{
|
|
CRYPTOPP_ASSERT(i_state != NULLPTR);
|
|
|
|
lsh_u32* submsg_e_l = i_state->submsg_e_l;
|
|
lsh_u32* submsg_e_r = i_state->submsg_e_r;
|
|
|
|
_mm256_storeu_si256(M256_CAST(cv_l+0), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_l+0)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_l+0))));
|
|
_mm256_storeu_si256(M256_CAST(cv_r+0), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r+0)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_e_r+0))));
|
|
}
|
|
|
|
inline void msg_add_odd(lsh_u32 cv_l[8], lsh_u32 cv_r[8], LSH256_AVX2_Internal* i_state)
|
|
{
|
|
CRYPTOPP_ASSERT(i_state != NULLPTR);
|
|
|
|
lsh_u32* submsg_o_l = i_state->submsg_o_l;
|
|
lsh_u32* submsg_o_r = i_state->submsg_o_r;
|
|
|
|
_mm256_storeu_si256(M256_CAST(cv_l), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_l)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_l))));
|
|
_mm256_storeu_si256(M256_CAST(cv_r), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(submsg_o_r))));
|
|
}
|
|
|
|
inline void add_blk(lsh_u32 cv_l[8], lsh_u32 cv_r[8])
|
|
{
|
|
_mm256_storeu_si256(M256_CAST(cv_l), _mm256_add_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_l)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r))));
|
|
}
|
|
|
|
template <unsigned int R>
|
|
inline void rotate_blk(lsh_u32 cv[8])
|
|
{
|
|
_mm256_storeu_si256(M256_CAST(cv), _mm256_or_si256(
|
|
_mm256_slli_epi32(_mm256_loadu_si256(CONST_M256_CAST(cv)), R),
|
|
_mm256_srli_epi32(_mm256_loadu_si256(CONST_M256_CAST(cv)), 32-R)));
|
|
}
|
|
|
|
inline void xor_with_const(lsh_u32 cv_l[8], const lsh_u32 const_v[8])
|
|
{
|
|
_mm256_storeu_si256(M256_CAST(cv_l), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_l)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(const_v))));
|
|
}
|
|
|
|
inline void rotate_msg_gamma(lsh_u32 cv_r[8])
|
|
{
|
|
// g_gamma256[8] = { 0, 8, 16, 24, 24, 16, 8, 0 };
|
|
_mm256_storeu_si256(M256_CAST(cv_r+0),
|
|
_mm256_shuffle_epi8(_mm256_loadu_si256(CONST_M256_CAST(cv_r+0)),
|
|
_mm256_set_epi8(
|
|
/* hi lane */ 15,14,13,12, 10,9,8,11, 5,4,7,6, 0,3,2,1,
|
|
/* lo lane */ 12,15,14,13, 9,8,11,10, 6,5,4,7, 3,2,1,0)));
|
|
}
|
|
|
|
inline void word_perm(lsh_u32 cv_l[8], lsh_u32 cv_r[8])
|
|
{
|
|
__m256i temp = _mm256_shuffle_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_l)), _MM_SHUFFLE(3,1,0,2));
|
|
_mm256_storeu_si256(M256_CAST(cv_r),
|
|
_mm256_shuffle_epi32(
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r)), _MM_SHUFFLE(1,2,3,0)));
|
|
_mm256_storeu_si256(M256_CAST(cv_l),
|
|
_mm256_permute2x128_si256(temp,
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r)), _MM_SHUFFLE(0,3,0,1)));
|
|
_mm256_storeu_si256(M256_CAST(cv_r),
|
|
_mm256_permute2x128_si256(temp,
|
|
_mm256_loadu_si256(CONST_M256_CAST(cv_r)), _MM_SHUFFLE(0,2,0,0)));
|
|
};
|
|
|
|
/* -------------------------------------------------------- *
|
|
* step function
|
|
* -------------------------------------------------------- */
|
|
|
|
template <unsigned int Alpha, unsigned int Beta>
|
|
inline void mix(lsh_u32 cv_l[8], lsh_u32 cv_r[8], const lsh_u32 const_v[8])
|
|
{
|
|
add_blk(cv_l, cv_r);
|
|
rotate_blk<Alpha>(cv_l);
|
|
xor_with_const(cv_l, const_v);
|
|
add_blk(cv_r, cv_l);
|
|
rotate_blk<Beta>(cv_r);
|
|
add_blk(cv_l, cv_r);
|
|
rotate_msg_gamma(cv_r);
|
|
}
|
|
|
|
/* -------------------------------------------------------- *
|
|
* compression function
|
|
* -------------------------------------------------------- */
|
|
|
|
inline void compress(LSH256_AVX2_Context* ctx, const lsh_u8 pdMsgBlk[LSH256_MSG_BLK_BYTE_LEN])
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
|
|
LSH256_AVX2_Internal s_state(ctx->cv_l);
|
|
LSH256_AVX2_Internal* i_state = &s_state;
|
|
|
|
const lsh_u32* const_v = NULL;
|
|
lsh_u32* cv_l = ctx->cv_l;
|
|
lsh_u32* cv_r = ctx->cv_r;
|
|
|
|
load_msg_blk(i_state, pdMsgBlk);
|
|
|
|
msg_add_even(cv_l, cv_r, i_state);
|
|
load_sc(&const_v, 0);
|
|
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
|
|
msg_add_odd(cv_l, cv_r, i_state);
|
|
load_sc(&const_v, 8);
|
|
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
|
|
for (size_t i = 1; i < NUM_STEPS / 2; i++)
|
|
{
|
|
msg_exp_even(i_state);
|
|
msg_add_even(cv_l, cv_r, i_state);
|
|
load_sc(&const_v, 16 * i);
|
|
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
|
|
msg_exp_odd(i_state);
|
|
msg_add_odd(cv_l, cv_r, i_state);
|
|
load_sc(&const_v, 16 * i + 8);
|
|
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
}
|
|
|
|
msg_exp_even(i_state);
|
|
msg_add_even(cv_l, cv_r, i_state);
|
|
}
|
|
|
|
/* -------------------------------------------------------- */
|
|
|
|
inline void load_iv(word32 cv_l[8], word32 cv_r[8], const word32 iv[16])
|
|
{
|
|
// The IV's are 32-byte aligned so we can use aligned loads.
|
|
_mm256_storeu_si256(M256_CAST(cv_l+0),
|
|
_mm256_load_si256(CONST_M256_CAST(iv+0)));
|
|
_mm256_storeu_si256(M256_CAST(cv_r+0),
|
|
_mm256_load_si256(CONST_M256_CAST(iv+8)));
|
|
}
|
|
|
|
inline void zero_iv(lsh_u32 cv_l[8], lsh_u32 cv_r[8])
|
|
{
|
|
_mm256_storeu_si256(M256_CAST(cv_l+0), _mm256_setzero_si256());
|
|
_mm256_storeu_si256(M256_CAST(cv_r+0), _mm256_setzero_si256());
|
|
}
|
|
|
|
inline void zero_submsgs(LSH256_AVX2_Context* ctx)
|
|
{
|
|
lsh_u32* sub_msgs = ctx->sub_msgs;
|
|
|
|
_mm256_storeu_si256(M256_CAST(sub_msgs+ 0), _mm256_setzero_si256());
|
|
_mm256_storeu_si256(M256_CAST(sub_msgs+ 8), _mm256_setzero_si256());
|
|
_mm256_storeu_si256(M256_CAST(sub_msgs+16), _mm256_setzero_si256());
|
|
_mm256_storeu_si256(M256_CAST(sub_msgs+24), _mm256_setzero_si256());
|
|
}
|
|
|
|
inline void init224(LSH256_AVX2_Context* ctx)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
|
|
zero_submsgs(ctx);
|
|
load_iv(ctx->cv_l, ctx->cv_r, LSH256_IV224);
|
|
}
|
|
|
|
inline void init256(LSH256_AVX2_Context* ctx)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
|
|
zero_submsgs(ctx);
|
|
load_iv(ctx->cv_l, ctx->cv_r, LSH256_IV256);
|
|
}
|
|
|
|
/* -------------------------------------------------------- */
|
|
|
|
inline void fin(LSH256_AVX2_Context* ctx)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
|
|
_mm256_storeu_si256(M256_CAST(ctx->cv_l+0), _mm256_xor_si256(
|
|
_mm256_loadu_si256(CONST_M256_CAST(ctx->cv_l+0)),
|
|
_mm256_loadu_si256(CONST_M256_CAST(ctx->cv_r+0))));
|
|
}
|
|
|
|
/* -------------------------------------------------------- */
|
|
|
|
inline void get_hash(LSH256_AVX2_Context* ctx, lsh_u8* pbHashVal)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
CRYPTOPP_ASSERT(ctx->alg_type != 0);
|
|
CRYPTOPP_ASSERT(pbHashVal != NULLPTR);
|
|
|
|
lsh_uint alg_type = ctx->alg_type;
|
|
lsh_uint hash_val_byte_len = LSH_GET_HASHBYTE(alg_type);
|
|
lsh_uint hash_val_bit_len = LSH_GET_SMALL_HASHBIT(alg_type);
|
|
|
|
// Multiplying by looks odd...
|
|
memcpy(pbHashVal, ctx->cv_l, hash_val_byte_len);
|
|
if (hash_val_bit_len){
|
|
pbHashVal[hash_val_byte_len-1] &= (((lsh_u8)0xff) << hash_val_bit_len);
|
|
}
|
|
}
|
|
|
|
/* -------------------------------------------------------- */
|
|
|
|
lsh_err lsh256_init_avx2(LSH256_AVX2_Context* ctx)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
CRYPTOPP_ASSERT(ctx->alg_type != 0);
|
|
|
|
lsh_u32 alg_type = ctx->alg_type;
|
|
const lsh_u32* const_v = NULL;
|
|
ctx->remain_databitlen = 0;
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735.
|
|
AVX_Cleanup cleanup;
|
|
|
|
switch (alg_type)
|
|
{
|
|
case LSH_TYPE_256_256:
|
|
init256(ctx);
|
|
return LSH_SUCCESS;
|
|
case LSH_TYPE_256_224:
|
|
init224(ctx);
|
|
return LSH_SUCCESS;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
lsh_u32* cv_l = ctx->cv_l;
|
|
lsh_u32* cv_r = ctx->cv_r;
|
|
|
|
zero_iv(cv_l, cv_r);
|
|
cv_l[0] = LSH256_HASH_VAL_MAX_BYTE_LEN;
|
|
cv_l[1] = LSH_GET_HASHBIT(alg_type);
|
|
|
|
for (size_t i = 0; i < NUM_STEPS / 2; i++)
|
|
{
|
|
//Mix
|
|
load_sc(&const_v, i * 16);
|
|
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
|
|
load_sc(&const_v, i * 16 + 8);
|
|
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
|
|
word_perm(cv_l, cv_r);
|
|
}
|
|
|
|
return LSH_SUCCESS;
|
|
}
|
|
|
|
lsh_err lsh256_update_avx2(LSH256_AVX2_Context* ctx, const lsh_u8* data, size_t databitlen)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
CRYPTOPP_ASSERT(data != NULLPTR);
|
|
CRYPTOPP_ASSERT(databitlen % 8 == 0);
|
|
CRYPTOPP_ASSERT(ctx->alg_type != 0);
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735.
|
|
AVX_Cleanup cleanup;
|
|
|
|
if (databitlen == 0){
|
|
return LSH_SUCCESS;
|
|
}
|
|
|
|
// We are byte oriented. tail bits will always be 0.
|
|
size_t databytelen = databitlen >> 3;
|
|
// lsh_uint pos2 = databitlen & 0x7;
|
|
const size_t pos2 = 0;
|
|
|
|
size_t remain_msg_byte = ctx->remain_databitlen >> 3;
|
|
// lsh_uint remain_msg_bit = ctx->remain_databitlen & 7;
|
|
const size_t remain_msg_bit = 0;
|
|
|
|
if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){
|
|
return LSH_ERR_INVALID_STATE;
|
|
}
|
|
if (remain_msg_bit > 0){
|
|
return LSH_ERR_INVALID_DATABITLEN;
|
|
}
|
|
|
|
if (databytelen + remain_msg_byte < LSH256_MSG_BLK_BYTE_LEN)
|
|
{
|
|
memcpy(ctx->last_block + remain_msg_byte, data, databytelen);
|
|
ctx->remain_databitlen += (lsh_uint)databitlen;
|
|
remain_msg_byte += (lsh_uint)databytelen;
|
|
if (pos2){
|
|
ctx->last_block[remain_msg_byte] = data[databytelen] & ((0xff >> pos2) ^ 0xff);
|
|
}
|
|
return LSH_SUCCESS;
|
|
}
|
|
|
|
if (remain_msg_byte > 0){
|
|
size_t more_byte = LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte;
|
|
memcpy(ctx->last_block + remain_msg_byte, data, more_byte);
|
|
compress(ctx, ctx->last_block);
|
|
data += more_byte;
|
|
databytelen -= more_byte;
|
|
remain_msg_byte = 0;
|
|
ctx->remain_databitlen = 0;
|
|
}
|
|
|
|
while (databytelen >= LSH256_MSG_BLK_BYTE_LEN)
|
|
{
|
|
// This call to compress caused some trouble.
|
|
// The data pointer can become unaligned in the
|
|
// previous block.
|
|
compress(ctx, data);
|
|
data += LSH256_MSG_BLK_BYTE_LEN;
|
|
databytelen -= LSH256_MSG_BLK_BYTE_LEN;
|
|
}
|
|
|
|
if (databytelen > 0){
|
|
memcpy(ctx->last_block, data, databytelen);
|
|
ctx->remain_databitlen = (lsh_uint)(databytelen << 3);
|
|
}
|
|
|
|
if (pos2){
|
|
ctx->last_block[databytelen] = data[databytelen] & ((0xff >> pos2) ^ 0xff);
|
|
ctx->remain_databitlen += pos2;
|
|
}
|
|
|
|
return LSH_SUCCESS;
|
|
}
|
|
|
|
lsh_err lsh256_final_avx2(LSH256_AVX2_Context* ctx, lsh_u8* hashval)
|
|
{
|
|
CRYPTOPP_ASSERT(ctx != NULLPTR);
|
|
CRYPTOPP_ASSERT(hashval != NULLPTR);
|
|
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82735.
|
|
AVX_Cleanup cleanup;
|
|
|
|
// We are byte oriented. tail bits will always be 0.
|
|
size_t remain_msg_byte = ctx->remain_databitlen >> 3;
|
|
// lsh_uint remain_msg_bit = ctx->remain_databitlen & 7;
|
|
const size_t remain_msg_bit = 0;
|
|
|
|
if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){
|
|
return LSH_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if (remain_msg_bit){
|
|
ctx->last_block[remain_msg_byte] |= (0x1 << (7 - remain_msg_bit));
|
|
}
|
|
else{
|
|
ctx->last_block[remain_msg_byte] = 0x80;
|
|
}
|
|
memset(ctx->last_block + remain_msg_byte + 1, 0, LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte - 1);
|
|
|
|
compress(ctx, ctx->last_block);
|
|
|
|
fin(ctx);
|
|
get_hash(ctx, hashval);
|
|
|
|
return LSH_SUCCESS;
|
|
}
|
|
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
extern
|
|
void LSH256_Base_Restart_AVX2(word32* state)
|
|
{
|
|
state[RemainingBits] = 0;
|
|
LSH256_AVX2_Context ctx(state, state[AlgorithmType], state[RemainingBits]);
|
|
lsh_err err = lsh256_init_avx2(&ctx);
|
|
|
|
if (err != LSH_SUCCESS)
|
|
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_init_avx2 failed");
|
|
}
|
|
|
|
extern
|
|
void LSH256_Base_Update_AVX2(word32* state, const byte *input, size_t size)
|
|
{
|
|
LSH256_AVX2_Context ctx(state, state[AlgorithmType], state[RemainingBits]);
|
|
lsh_err err = lsh256_update_avx2(&ctx, input, 8*size);
|
|
|
|
if (err != LSH_SUCCESS)
|
|
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_update_avx2 failed");
|
|
}
|
|
|
|
extern
|
|
void LSH256_Base_TruncatedFinal_AVX2(word32* state, byte *hash, size_t)
|
|
{
|
|
LSH256_AVX2_Context ctx(state, state[AlgorithmType], state[RemainingBits]);
|
|
lsh_err err = lsh256_final_avx2(&ctx, hash);
|
|
|
|
if (err != LSH_SUCCESS)
|
|
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_final_avx2 failed");
|
|
}
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif // CRYPTOPP_AVX2_AVAILABLE
|