ext-cryptopp/gcm_simd.cpp
Jeffrey Walton 39418a8512
Use PowerPC unaligned loads and stores with Power8 (GH #825, PR #826)
Use PowerPC unaligned loads and stores with Power8. Formerly we were using Power7 as the floor because the IBM POWER Architecture manuals said unaligned loads and stores were available. However, some compilers generate bad code for unaligned loads and stores using `-march=power7`, so bump to a known good.
2019-04-27 20:35:01 -04:00

745 lines
26 KiB
C++

// gcm_simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
// Original x86 CLMUL by Wei Dai. ARM and POWER8
// PMULL and VMULL by JW, UB and MR.
//
// This source file uses intrinsics to gain access to SSE4.2 and
// ARMv8a CRC-32 and CRC-32C instructions. A separate source file
// is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "misc.h"
#if defined(CRYPTOPP_DISABLE_GCM_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <emmintrin.h>
# include <xmmintrin.h>
#endif
#if (CRYPTOPP_CLMUL_AVAILABLE)
# include <tmmintrin.h>
# include <wmmintrin.h>
#endif
// C1189: error: This header is specific to ARM targets
#if (CRYPTOPP_ARM_NEON_AVAILABLE) && !defined(_M_ARM64)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if defined(CRYPTOPP_ARM_PMULL_AVAILABLE)
# include "arm_simd.h"
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc_simd.h"
#endif
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif
#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
// GCC cast warning
#define UINT64X2_CAST(x) ((uint64x2_t *)(void *)(x))
#define CONST_UINT64X2_CAST(x) ((const uint64x2_t *)(const void *)(x))
// Squash MS LNK4221 and libtool warnings
extern const char GCM_SIMD_FNAME[] = __FILE__;
NAMESPACE_BEGIN(CryptoPP)
// ************************* Feature Probes ************************* //
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
}
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARMV8)
bool CPU_ProbePMULL()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_PMULL_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
// Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233.
const uint64_t wa1[]={0,0x9090909090909090}, wb1[]={0,0xb0b0b0b0b0b0b0b0};
const uint64x2_t a1=vld1q_u64(wa1), b1=vld1q_u64(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint8x16_t a2=vld1q_u8(wa2), b2=vld1q_u8(wb2);
const uint64x2_t r1 = PMULL_00(a1, b1);
const uint64x2_t r2 = PMULL_11(vreinterpretq_u64_u8(a2),
vreinterpretq_u64_u8(b2));
result = !!(vgetq_lane_u64(r1,0) == 0x5300530053005300 &&
vgetq_lane_u64(r1,1) == 0x5300530053005300 &&
vgetq_lane_u64(r2,0) == 0x6c006c006c006c00 &&
vgetq_lane_u64(r2,1) == 0x6c006c006c006c00);
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
// Linaro is missing a lot of pmull gear. Also see http://github.com/weidai11/cryptopp/issues/233.
const uint64_t wa1[]={0,0x9090909090909090}, wb1[]={0,0xb0b0b0b0b0b0b0b0};
const uint64x2_t a1=vld1q_u64(wa1), b1=vld1q_u64(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint8x16_t a2=vld1q_u8(wa2), b2=vld1q_u8(wb2);
const uint64x2_t r1 = PMULL_00(a1, b1);
const uint64x2_t r2 = PMULL_11(vreinterpretq_u64_u8(a2),
vreinterpretq_u64_u8(b2));
result = !!(vgetq_lane_u64(r1,0) == 0x5300530053005300 &&
vgetq_lane_u64(r1,1) == 0x5300530053005300 &&
vgetq_lane_u64(r2,0) == 0x6c006c006c006c00 &&
vgetq_lane_u64(r2,1) == 0x6c006c006c006c00);
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE
}
#endif // ARM32 or ARM64
#if (CRYPTOPP_BOOL_PPC32 || CRYPTOPP_BOOL_PPC64)
bool CPU_ProbePMULL()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_POWER8_VMULL_AVAILABLE)
// longjmp and clobber warnings. Volatile is required.
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
const uint64_t wa1[]={0,W64LIT(0x9090909090909090)},
wb1[]={0,W64LIT(0xb0b0b0b0b0b0b0b0)};
const uint64x2_p a1=VecLoad(wa1), b1=VecLoad(wb1);
const uint8_t wa2[]={0x80,0x80,0x80,0x80,0x80,0x80,0x80,0x80,
0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0,0xa0},
wb2[]={0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,0xc0,
0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0,0xe0};
const uint32x4_p a2=VecLoad(wa2), b2=VecLoad(wb2);
const uint64x2_p r1 = VecPolyMultiply00LE(a1, b1);
const uint64x2_p r2 = VecPolyMultiply11LE((uint64x2_p)a2, (uint64x2_p)b2);
const uint64_t wc1[]={W64LIT(0x5300530053005300), W64LIT(0x5300530053005300)},
wc2[]={W64LIT(0x6c006c006c006c00), W64LIT(0x6c006c006c006c00)};
const uint64x2_p c1=VecLoad(wc1), c2=VecLoad(wc2);
result = !!(VecEqual(r1, c1) && VecEqual(r2, c2));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
#else
return false;
#endif // CRYPTOPP_POWER8_VMULL_AVAILABLE
}
#endif // PPC32 or PPC64
// *************************** ARM NEON *************************** //
#if CRYPTOPP_ARM_NEON_AVAILABLE
void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c)
{
CRYPTOPP_ASSERT(IsAlignedOn(a,GetAlignmentOf<uint64x2_t>()));
CRYPTOPP_ASSERT(IsAlignedOn(b,GetAlignmentOf<uint64x2_t>()));
CRYPTOPP_ASSERT(IsAlignedOn(c,GetAlignmentOf<uint64x2_t>()));
*UINT64X2_CAST(a) = veorq_u64(*CONST_UINT64X2_CAST(b), *CONST_UINT64X2_CAST(c));
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if CRYPTOPP_ARM_PMULL_AVAILABLE
// Swaps high and low 64-bit words
inline uint64x2_t SwapWords(const uint64x2_t& data)
{
return (uint64x2_t)vcombine_u64(
vget_high_u64(data), vget_low_u64(data));
}
uint64x2_t GCM_Reduce_PMULL(uint64x2_t c0, uint64x2_t c1, uint64x2_t c2, const uint64x2_t &r)
{
c1 = veorq_u64(c1, VEXT_U8<8>(vdupq_n_u64(0), c0));
c1 = veorq_u64(c1, PMULL_01(c0, r));
c0 = VEXT_U8<8>(c0, vdupq_n_u64(0));
c0 = vshlq_n_u64(veorq_u64(c0, c1), 1);
c0 = PMULL_00(c0, r);
c2 = veorq_u64(c2, c0);
c2 = veorq_u64(c2, VEXT_U8<8>(c1, vdupq_n_u64(0)));
c1 = vshrq_n_u64(vcombine_u64(vget_low_u64(c1), vget_low_u64(c2)), 63);
c2 = vshlq_n_u64(c2, 1);
return veorq_u64(c2, c1);
}
uint64x2_t GCM_Multiply_PMULL(const uint64x2_t &x, const uint64x2_t &h, const uint64x2_t &r)
{
const uint64x2_t c0 = PMULL_00(x, h);
const uint64x2_t c1 = veorq_u64(PMULL_10(x, h), PMULL_01(x, h));
const uint64x2_t c2 = PMULL_11(x, h);
return GCM_Reduce_PMULL(c0, c1, c2, r);
}
void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const uint64x2_t r = {0xe100000000000000ull, 0xc200000000000000ull};
const uint64x2_t t = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(hashKey)));
const uint64x2_t h0 = vextq_u64(t, t, 1);
uint64x2_t h = h0;
unsigned int i;
for (i=0; i<tableSize-32; i+=32)
{
const uint64x2_t h1 = GCM_Multiply_PMULL(h, h0, r);
vst1_u64((uint64_t *)(mulTable+i), vget_low_u64(h));
vst1q_u64((uint64_t *)(mulTable+i+16), h1);
vst1q_u64((uint64_t *)(mulTable+i+8), h);
vst1_u64((uint64_t *)(mulTable+i+8), vget_low_u64(h1));
h = GCM_Multiply_PMULL(h1, h0, r);
}
const uint64x2_t h1 = GCM_Multiply_PMULL(h, h0, r);
vst1_u64((uint64_t *)(mulTable+i), vget_low_u64(h));
vst1q_u64((uint64_t *)(mulTable+i+16), h1);
vst1q_u64((uint64_t *)(mulTable+i+8), h);
vst1_u64((uint64_t *)(mulTable+i+8), vget_low_u64(h1));
}
size_t GCM_AuthenticateBlocks_PMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const uint64x2_t r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_t x = vreinterpretq_u64_u8(vld1q_u8(hbuffer));
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16U, 8U);
uint64x2_t d1, d2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-1)*16U)));
uint64x2_t c0 = vdupq_n_u64(0);
uint64x2_t c1 = vdupq_n_u64(0);
uint64x2_t c2 = vdupq_n_u64(0);
while (true)
{
const uint64x2_t h0 = vld1q_u64((const uint64_t*)(mtable+(i+0)*16));
const uint64x2_t h1 = vld1q_u64((const uint64_t*)(mtable+(i+1)*16));
const uint64x2_t h2 = veorq_u64(h0, h1);
if (++i == s)
{
const uint64x2_t t1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data)));
d1 = veorq_u64(vextq_u64(t1, t1, 1), x);
c0 = veorq_u64(c0, PMULL_00(d1, h0));
c2 = veorq_u64(c2, PMULL_10(d1, h1));
d1 = veorq_u64(d1, SwapWords(d1));
c1 = veorq_u64(c1, PMULL_00(d1, h2));
break;
}
d1 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8)));
c0 = veorq_u64(c0, PMULL_10(d2, h0));
c2 = veorq_u64(c2, PMULL_10(d1, h1));
d2 = veorq_u64(d2, d1);
c1 = veorq_u64(c1, PMULL_10(d2, h2));
if (++i == s)
{
const uint64x2_t t2 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data)));
d1 = veorq_u64(vextq_u64(t2, t2, 1), x);
c0 = veorq_u64(c0, PMULL_01(d1, h0));
c2 = veorq_u64(c2, PMULL_11(d1, h1));
d1 = veorq_u64(d1, SwapWords(d1));
c1 = veorq_u64(c1, PMULL_01(d1, h2));
break;
}
const uint64x2_t t3 = vreinterpretq_u64_u8(vrev64q_u8(vld1q_u8(data+(s-i)*16-8)));
d2 = vextq_u64(t3, t3, 1);
c0 = veorq_u64(c0, PMULL_01(d1, h0));
c2 = veorq_u64(c2, PMULL_01(d2, h1));
d1 = veorq_u64(d1, d2);
c1 = veorq_u64(c1, PMULL_01(d1, h2));
}
data += s*16;
len -= s*16;
c1 = veorq_u64(veorq_u64(c1, c0), c2);
x = GCM_Reduce_PMULL(c0, c1, c2, r);
}
vst1q_u64(reinterpret_cast<uint64_t *>(hbuffer), x);
return len;
}
void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer)
{
if (GetNativeByteOrder() != BIG_ENDIAN_ORDER)
{
const uint8x16_t x = vrev64q_u8(vld1q_u8(hashBuffer));
vst1q_u8(hashBuffer, vextq_u8(x, x, 8));
}
}
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE
// ***************************** SSE ***************************** //
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
// SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in
// a source file with a SSE architecture switch. Also see GH #226 and GH #284.
void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c)
{
# if CRYPTOPP_SSE2_ASM_AVAILABLE && defined(__GNUC__)
asm ("movdqa %1, %%xmm0; pxor %2, %%xmm0; movdqa %%xmm0, %0;"
: "=m" (a[0]) : "m"(b[0]), "m"(c[0]));
# else // CRYPTOPP_SSE2_INTRIN_AVAILABLE
_mm_store_si128(M128_CAST(a), _mm_xor_si128(
_mm_load_si128(CONST_M128_CAST(b)),
_mm_load_si128(CONST_M128_CAST(c))));
# endif
}
#endif // CRYPTOPP_SSE2_ASM_AVAILABLE
#if CRYPTOPP_CLMUL_AVAILABLE
#if 0
// preserved for testing
void gcm_gf_mult(const unsigned char *a, const unsigned char *b, unsigned char *c)
{
word64 Z0=0, Z1=0, V0, V1;
typedef BlockGetAndPut<word64, BigEndian> Block;
Block::Get(a)(V0)(V1);
for (int i=0; i<16; i++)
{
for (int j=0x80; j!=0; j>>=1)
{
int x = b[i] & j;
Z0 ^= x ? V0 : 0;
Z1 ^= x ? V1 : 0;
x = (int)V1 & 1;
V1 = (V1>>1) | (V0<<63);
V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
}
}
Block::Put(NULLPTR, c)(Z0)(Z1);
}
__m128i _mm_clmulepi64_si128(const __m128i &a, const __m128i &b, int i)
{
word64 A[1] = {ByteReverse(((word64*)&a)[i&1])};
word64 B[1] = {ByteReverse(((word64*)&b)[i>>4])};
PolynomialMod2 pa((byte *)A, 8);
PolynomialMod2 pb((byte *)B, 8);
PolynomialMod2 c = pa*pb;
__m128i output;
for (int i=0; i<16; i++)
((byte *)&output)[i] = c.GetByte(i);
return output;
}
#endif // Testing
// Swaps high and low 64-bit words
inline __m128i SwapWords(const __m128i& val)
{
return _mm_shuffle_epi32(val, _MM_SHUFFLE(1, 0, 3, 2));
}
// SunCC 5.11-5.15 compiler crash. Make the function inline
// and parameters non-const. Also see GH #188 and GH #224.
inline __m128i GCM_Reduce_CLMUL(__m128i c0, __m128i c1, __m128i c2, const __m128i& r)
{
/*
The polynomial to be reduced is c0 * x^128 + c1 * x^64 + c2. c0t below refers to the most
significant half of c0 as a polynomial, which, due to GCM's bit reflection, are in the
rightmost bit positions, and the lowest byte addresses.
c1 ^= c0t * 0xc200000000000000
c2t ^= c0t
t = shift (c1t ^ c0b) left 1 bit
c2 ^= t * 0xe100000000000000
c2t ^= c1b
shift c2 left 1 bit and xor in lowest bit of c1t
*/
c1 = _mm_xor_si128(c1, _mm_slli_si128(c0, 8));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(c0, r, 0x10));
c0 = _mm_xor_si128(c1, _mm_srli_si128(c0, 8));
c0 = _mm_slli_epi64(c0, 1);
c0 = _mm_clmulepi64_si128(c0, r, 0);
c2 = _mm_xor_si128(c2, c0);
c2 = _mm_xor_si128(c2, _mm_srli_si128(c1, 8));
c1 = _mm_unpacklo_epi64(c1, c2);
c1 = _mm_srli_epi64(c1, 63);
c2 = _mm_slli_epi64(c2, 1);
return _mm_xor_si128(c2, c1);
}
// SunCC 5.13-5.14 compiler crash. Don't make the function inline.
// This is in contrast to GCM_Reduce_CLMUL, which must be inline.
__m128i GCM_Multiply_CLMUL(const __m128i &x, const __m128i &h, const __m128i &r)
{
const __m128i c0 = _mm_clmulepi64_si128(x,h,0);
const __m128i c1 = _mm_xor_si128(_mm_clmulepi64_si128(x,h,1), _mm_clmulepi64_si128(x,h,0x10));
const __m128i c2 = _mm_clmulepi64_si128(x,h,0x11);
return GCM_Reduce_CLMUL(c0, c1, c2, r);
}
void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const __m128i r = _mm_set_epi32(0xc2000000, 0x00000000, 0xe1000000, 0x00000000);
const __m128i m = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
__m128i h0 = _mm_shuffle_epi8(_mm_load_si128(CONST_M128_CAST(hashKey)), m), h = h0;
unsigned int i;
for (i=0; i<tableSize-32; i+=32)
{
const __m128i h1 = GCM_Multiply_CLMUL(h, h0, r);
_mm_storel_epi64(M128_CAST(mulTable+i), h);
_mm_storeu_si128(M128_CAST(mulTable+i+16), h1);
_mm_storeu_si128(M128_CAST(mulTable+i+8), h);
_mm_storel_epi64(M128_CAST(mulTable+i+8), h1);
h = GCM_Multiply_CLMUL(h1, h0, r);
}
const __m128i h1 = GCM_Multiply_CLMUL(h, h0, r);
_mm_storel_epi64(M128_CAST(mulTable+i), h);
_mm_storeu_si128(M128_CAST(mulTable+i+16), h1);
_mm_storeu_si128(M128_CAST(mulTable+i+8), h);
_mm_storel_epi64(M128_CAST(mulTable+i+8), h1);
}
size_t GCM_AuthenticateBlocks_CLMUL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const __m128i r = _mm_set_epi32(0xc2000000, 0x00000000, 0xe1000000, 0x00000000);
const __m128i m1 = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
const __m128i m2 = _mm_set_epi32(0x08090a0b, 0x0c0d0e0f, 0x00010203, 0x04050607);
__m128i x = _mm_load_si128(M128_CAST(hbuffer));
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16, 8U);
__m128i d1 = _mm_loadu_si128(CONST_M128_CAST(data+(s-1)*16));
__m128i d2 = _mm_shuffle_epi8(d1, m2);
__m128i c0 = _mm_setzero_si128();
__m128i c1 = _mm_setzero_si128();
__m128i c2 = _mm_setzero_si128();
while (true)
{
const __m128i h0 = _mm_load_si128(CONST_M128_CAST(mtable+(i+0)*16));
const __m128i h1 = _mm_load_si128(CONST_M128_CAST(mtable+(i+1)*16));
const __m128i h2 = _mm_xor_si128(h0, h1);
if (++i == s)
{
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1);
d1 = _mm_xor_si128(d1, x);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1));
d1 = _mm_xor_si128(d1, SwapWords(d1));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0));
break;
}
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m2);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d2, h0, 1));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 1));
d2 = _mm_xor_si128(d2, d1);
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d2, h2, 1));
if (++i == s)
{
d1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data)), m1);
d1 = _mm_xor_si128(d1, x);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d1, h1, 0x11));
d1 = _mm_xor_si128(d1, SwapWords(d1));
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10));
break;
}
d2 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(data+(s-i)*16-8)), m1);
c0 = _mm_xor_si128(c0, _mm_clmulepi64_si128(d1, h0, 0x10));
c2 = _mm_xor_si128(c2, _mm_clmulepi64_si128(d2, h1, 0x10));
d1 = _mm_xor_si128(d1, d2);
c1 = _mm_xor_si128(c1, _mm_clmulepi64_si128(d1, h2, 0x10));
}
data += s*16;
len -= s*16;
c1 = _mm_xor_si128(_mm_xor_si128(c1, c0), c2);
x = GCM_Reduce_CLMUL(c0, c1, c2, r);
}
_mm_store_si128(M128_CAST(hbuffer), x);
return len;
}
void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer)
{
// SSSE3 instruction, but only used with CLMUL
const __m128i mask = _mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
_mm_storeu_si128(M128_CAST(hashBuffer), _mm_shuffle_epi8(
_mm_loadu_si128(CONST_M128_CAST(hashBuffer)), mask));
}
#endif // CRYPTOPP_CLMUL_AVAILABLE
// ***************************** POWER8 ***************************** //
#if CRYPTOPP_POWER8_AVAILABLE
void GCM_Xor16_POWER8(byte *a, const byte *b, const byte *c)
{
VecStore(VecXor(VecLoad(b), VecLoad(c)), a);
}
#endif // CRYPTOPP_POWER8_AVAILABLE
#if CRYPTOPP_POWER8_VMULL_AVAILABLE
uint64x2_p GCM_Reduce_VMULL(uint64x2_p c0, uint64x2_p c1, uint64x2_p c2, uint64x2_p r)
{
const uint64x2_p m1 = {1,1}, m63 = {63,63};
c1 = VecXor(c1, VecShiftRightOctet<8>(c0));
c1 = VecXor(c1, VecPolyMultiply10LE(c0, r));
c0 = VecXor(c1, VecShiftLeftOctet<8>(c0));
c0 = VecPolyMultiply00LE(vec_sl(c0, m1), r);
c2 = VecXor(c2, c0);
c2 = VecXor(c2, VecShiftLeftOctet<8>(c1));
c1 = vec_sr(vec_mergeh(c1, c2), m63);
c2 = vec_sl(c2, m1);
return VecXor(c2, c1);
}
inline uint64x2_p GCM_Multiply_VMULL(uint64x2_p x, uint64x2_p h, uint64x2_p r)
{
const uint64x2_p c0 = VecPolyMultiply00LE(x, h);
const uint64x2_p c1 = VecXor(VecPolyMultiply01LE(x, h), VecPolyMultiply10LE(x, h));
const uint64x2_p c2 = VecPolyMultiply11LE(x, h);
return GCM_Reduce_VMULL(c0, c1, c2, r);
}
inline uint64x2_p LoadHashKey(const byte *hashKey)
{
#if (CRYPTOPP_BIG_ENDIAN)
const uint64x2_p key = (uint64x2_p)VecLoad(hashKey);
const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7};
return VecPermute(key, key, mask);
#else
const uint64x2_p key = (uint64x2_p)VecLoad(hashKey);
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
return VecPermute(key, key, mask);
#endif
}
void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize)
{
const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_p h = LoadHashKey(hashKey), h0 = h;
unsigned int i;
uint64_t temp[2];
for (i=0; i<tableSize-32; i+=32)
{
const uint64x2_p h1 = GCM_Multiply_VMULL(h, h0, r);
VecStore(h, (byte*)temp);
std::memcpy(mulTable+i, temp+0, 8);
VecStore(h1, mulTable+i+16);
VecStore(h, mulTable+i+8);
VecStore(h1, (byte*)temp);
std::memcpy(mulTable+i+8, temp+0, 8);
h = GCM_Multiply_VMULL(h1, h0, r);
}
const uint64x2_p h1 = GCM_Multiply_VMULL(h, h0, r);
VecStore(h, (byte*)temp);
std::memcpy(mulTable+i, temp+0, 8);
VecStore(h1, mulTable+i+16);
VecStore(h, mulTable+i+8);
VecStore(h1, (byte*)temp);
std::memcpy(mulTable+i+8, temp+0, 8);
}
// Swaps high and low 64-bit words
template <class T>
inline T SwapWords(const T& data)
{
return (T)VecRotateLeftOctet<8>(data);
}
inline uint64x2_p LoadBuffer1(const byte *dataBuffer)
{
#if (CRYPTOPP_BIG_ENDIAN)
return (uint64x2_p)VecLoad(dataBuffer);
#else
const uint64x2_p data = (uint64x2_p)VecLoad(dataBuffer);
const uint8x16_p mask = {7,6,5,4, 3,2,1,0, 15,14,13,12, 11,10,9,8};
return VecPermute(data, data, mask);
#endif
}
inline uint64x2_p LoadBuffer2(const byte *dataBuffer)
{
#if (CRYPTOPP_BIG_ENDIAN)
return (uint64x2_p)SwapWords(VecLoadBE(dataBuffer));
#else
return (uint64x2_p)VecLoadBE(dataBuffer);
#endif
}
size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer)
{
const uint64x2_p r = {0xe100000000000000ull, 0xc200000000000000ull};
uint64x2_p x = (uint64x2_p)VecLoad(hbuffer);
while (len >= 16)
{
size_t i=0, s = UnsignedMin(len/16, 8U);
uint64x2_p d1, d2 = LoadBuffer1(data+(s-1)*16);
uint64x2_p c0 = {0}, c1 = {0}, c2 = {0};
while (true)
{
const uint64x2_p h0 = (uint64x2_p)VecLoad(mtable+(i+0)*16);
const uint64x2_p h1 = (uint64x2_p)VecLoad(mtable+(i+1)*16);
const uint64x2_p h2 = (uint64x2_p)VecXor(h0, h1);
if (++i == s)
{
d1 = LoadBuffer2(data);
d1 = VecXor(d1, x);
c0 = VecXor(c0, VecPolyMultiply00LE(d1, h0));
c2 = VecXor(c2, VecPolyMultiply01LE(d1, h1));
d1 = VecXor(d1, SwapWords(d1));
c1 = VecXor(c1, VecPolyMultiply00LE(d1, h2));
break;
}
d1 = LoadBuffer1(data+(s-i)*16-8);
c0 = VecXor(c0, VecPolyMultiply01LE(d2, h0));
c2 = VecXor(c2, VecPolyMultiply01LE(d1, h1));
d2 = VecXor(d2, d1);
c1 = VecXor(c1, VecPolyMultiply01LE(d2, h2));
if (++i == s)
{
d1 = LoadBuffer2(data);
d1 = VecXor(d1, x);
c0 = VecXor(c0, VecPolyMultiply10LE(d1, h0));
c2 = VecXor(c2, VecPolyMultiply11LE(d1, h1));
d1 = VecXor(d1, SwapWords(d1));
c1 = VecXor(c1, VecPolyMultiply10LE(d1, h2));
break;
}
d2 = LoadBuffer2(data+(s-i)*16-8);
c0 = VecXor(c0, VecPolyMultiply10LE(d1, h0));
c2 = VecXor(c2, VecPolyMultiply10LE(d2, h1));
d1 = VecXor(d1, d2);
c1 = VecXor(c1, VecPolyMultiply10LE(d1, h2));
}
data += s*16;
len -= s*16;
c1 = VecXor(VecXor(c1, c0), c2);
x = GCM_Reduce_VMULL(c0, c1, c2, r);
}
VecStore(x, hbuffer);
return len;
}
void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer)
{
const uint64x2_p mask = {0x08090a0b0c0d0e0full, 0x0001020304050607ull};
VecStore(VecPermute(VecLoad(hashBuffer), mask), hashBuffer);
}
#endif // CRYPTOPP_POWER8_VMULL_AVAILABLE
NAMESPACE_END