ext-cryptopp/cryptlib.h
2016-08-27 23:52:43 -04:00

3004 lines
156 KiB
C++

// cryptlib.h - written and placed in the public domain by Wei Dai
//! \file cryptlib.h
//! \brief Abstract base classes that provide a uniform interface to this library.
/*! \mainpage Crypto++ Library 5.6.3 API Reference
<dl>
<dt>Abstract Base Classes<dd>
cryptlib.h
<dt>Authenticated Encryption Modes<dd>
CCM, EAX, \ref GCM "GCM (2K tables)", \ref GCM "GCM (64K tables)"
<dt>Block Ciphers<dd>
\ref Rijndael "AES", Weak::ARC4, Blowfish, BTEA, Camellia, CAST128, CAST256, DES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES",
\ref DES_XEX3 "DESX", GOST, IDEA, \ref LR "Luby-Rackoff", MARS, RC2, RC5, RC6, \ref SAFER_K "SAFER-K", \ref SAFER_SK "SAFER-SK", SEED, Serpent,
\ref SHACAL2 "SHACAL-2", SHARK, SKIPJACK,
Square, TEA, \ref ThreeWay "3-Way", Twofish, XTEA
<dt>Stream Ciphers<dd>
ChaCha8, ChaCha12, ChaCha20, \ref Panama "Panama-LE", \ref Panama "Panama-BE", Salsa20, \ref SEAL "SEAL-LE", \ref SEAL "SEAL-BE", WAKE, XSalsa20
<dt>Hash Functions<dd>
BLAKE2s, BLAKE2b, SHA1, SHA224, SHA256, SHA384, SHA512, \ref SHA3 "SHA-3", Tiger, Whirlpool, RIPEMD160, RIPEMD320, RIPEMD128, RIPEMD256, Weak::MD2, Weak::MD4, Weak::MD5
<dt>Non-Cryptographic Checksums<dd>
CRC32, Adler32
<dt>Message Authentication Codes<dd>
VMAC, HMAC, CBC_MAC, CMAC, DMAC, TTMAC, \ref GCM "GCM (GMAC)", BLAKE2
<dt>Random Number Generators<dd>
NullRNG(), LC_RNG, RandomPool, BlockingRng, NonblockingRng, AutoSeededRandomPool, AutoSeededX917RNG,
\ref MersenneTwister "MersenneTwister (MT19937 and MT19937-AR)", RDRAND, RDSEED
<dt>Key Derivation and Password-based Cryptography<dd>
HKDF, \ref PKCS12_PBKDF "PBKDF (PKCS #12)", \ref PKCS5_PBKDF1 "PBKDF-1 (PKCS #5)", \ref PKCS5_PBKDF2_HMAC "PBKDF-2/HMAC (PKCS #5)"
<dt>Public Key Cryptosystems<dd>
DLIES, ECIES, LUCES, RSAES, RabinES, LUC_IES
<dt>Public Key Signature Schemes<dd>
DSA2, GDSA, ECDSA, NR, ECNR, LUCSS, RSASS, RSASS_ISO, RabinSS, RWSS, ESIGN
<dt>Key Agreement<dd>
DH, DH2, MQV, ECDH, ECMQV, XTR_DH
<dt>Algebraic Structures<dd>
Integer, PolynomialMod2, PolynomialOver, RingOfPolynomialsOver,
ModularArithmetic, MontgomeryRepresentation, GFP2_ONB, GF2NP, GF256, GF2_32, EC2N, ECP
<dt>Secret Sharing and Information Dispersal<dd>
SecretSharing, SecretRecovery, InformationDispersal, InformationRecovery
<dt>Compression<dd>
Deflator, Inflator, Gzip, Gunzip, ZlibCompressor, ZlibDecompressor
<dt>Input Source Classes<dd>
StringSource, ArraySource, FileSource, SocketSource, WindowsPipeSource, RandomNumberSource
<dt>Output Sink Classes<dd>
StringSinkTemplate, StringSink, ArraySink, FileSink, SocketSink, WindowsPipeSink, RandomNumberSink
<dt>Filter Wrappers<dd>
StreamTransformationFilter, HashFilter, HashVerificationFilter, SignerFilter, SignatureVerificationFilter
<dt>Binary to Text Encoders and Decoders<dd>
HexEncoder, HexDecoder, Base64Encoder, Base64Decoder, Base64URLEncoder, Base64URLDecoder, Base32Encoder, Base32Decoder
<dt>Wrappers for OS features<dd>
Timer, Socket, WindowsHandle, ThreadLocalStorage, ThreadUserTimer
<dt>FIPS 140 validated cryptography<dd>
fips140.h
</dl>
In the DLL version of Crypto++, only the following implementation class are available.
<dl>
<dt>Block Ciphers<dd>
AES, \ref DES_EDE2 "2-key Triple-DES", \ref DES_EDE3 "3-key Triple-DES", SKIPJACK
<dt>Cipher Modes (replace template parameter BC with one of the block ciphers above)<dd>
\ref ECB_Mode "ECB_Mode<BC>", \ref CTR_Mode "CTR_Mode<BC>", \ref CBC_Mode "CBC_Mode<BC>", \ref CFB_FIPS_Mode "CFB_FIPS_Mode<BC>", \ref OFB_Mode "OFB_Mode<BC>", \ref GCM "GCM<AES>"
<dt>Hash Functions<dd>
SHA1, SHA224, SHA256, SHA384, SHA512
<dt>Public Key Signature Schemes (replace template parameter H with one of the hash functions above)<dd>
RSASS\<PKCS1v15, H\>, RSASS\<PSS, H\>, RSASS_ISO\<H\>, RWSS\<P1363_EMSA2, H\>, DSA, ECDSA\<ECP, H\>, ECDSA\<EC2N, H\>
<dt>Message Authentication Codes (replace template parameter H with one of the hash functions above)<dd>
HMAC\<H\>, CBC_MAC\<DES_EDE2\>, CBC_MAC\<DES_EDE3\>, GCM\<AES\>
<dt>Random Number Generators<dd>
DefaultAutoSeededRNG (AutoSeededX917RNG\<AES\>)
<dt>Key Agreement<dd>
DH, DH2
<dt>Public Key Cryptosystems<dd>
RSAES\<OAEP\<SHA1\> \>
</dl>
<p>This reference manual is a work in progress. Some classes are lack detailed descriptions.
<p>Click <a href="CryptoPPRef.zip">here</a> to download a zip archive containing this manual.
<p>Thanks to Ryan Phillips for providing the Doxygen configuration file
and getting us started on the manual.
*/
#ifndef CRYPTOPP_CRYPTLIB_H
#define CRYPTOPP_CRYPTLIB_H
#include "config.h"
#include "stdcpp.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189 4702)
#endif
NAMESPACE_BEGIN(CryptoPP)
// forward declarations
class Integer;
class RandomNumberGenerator;
class BufferedTransformation;
//! \brief Specifies a direction for a cipher to operate
//! \sa BlockTransformation::IsForwardTransformation(), BlockTransformation::IsPermutation(), BlockTransformation::GetCipherDirection()
enum CipherDir {
//! \brief the cipher is performing encryption
ENCRYPTION,
//! \brief the cipher is performing decryption
DECRYPTION};
//! \brief Represents infinite time
const unsigned long INFINITE_TIME = ULONG_MAX;
// VC60 workaround: using enums as template parameters causes problems
//! \brief Converts a typename to an enumerated value
template <typename ENUM_TYPE, int VALUE>
struct EnumToType
{
static ENUM_TYPE ToEnum() {return (ENUM_TYPE)VALUE;}
};
//! \brief Provides the byte ordering
//! \details Big-endian and little-endian modes are supported. Bi-endian and PDP-endian modes
//! are not supported.
enum ByteOrder {
//! \brief byte order is little-endian
LITTLE_ENDIAN_ORDER = 0,
//! \brief byte order is big-endian
BIG_ENDIAN_ORDER = 1};
//! \brief Provides a constant for LittleEndian
typedef EnumToType<ByteOrder, LITTLE_ENDIAN_ORDER> LittleEndian;
//! \brief Provides a constant for BigEndian
typedef EnumToType<ByteOrder, BIG_ENDIAN_ORDER> BigEndian;
//! \class Exception
//! \brief Base class for all exceptions thrown by the library
//! \details All library exceptions directly or indirectly inherit from the Exception class.
//! The Exception class itself inherits from std::exception. The library does not use
//! std::runtime_error derived classes.
class CRYPTOPP_DLL Exception : public std::exception
{
public:
//! \enum ErrorType
//! \brief Error types or categories
enum ErrorType {
//! \brief A method was called which was not implemented
NOT_IMPLEMENTED,
//! \brief An invalid argument was detected
INVALID_ARGUMENT,
//! \brief BufferedTransformation received a Flush(true) signal but can't flush buffers
CANNOT_FLUSH,
//! \brief Data integerity check, such as CRC or MAC, failed
DATA_INTEGRITY_CHECK_FAILED,
//! \brief Input data was received that did not conform to expected format
INVALID_DATA_FORMAT,
//! \brief Error reading from input device or writing to output device
IO_ERROR,
//! \brief Some other error occurred not belonging to other categories
OTHER_ERROR
};
//! \brief Construct a new Exception
explicit Exception(ErrorType errorType, const std::string &s) : m_errorType(errorType), m_what(s) {}
virtual ~Exception() throw() {}
//! \brief Retrieves a C-string describing the exception
const char *what() const throw() {return (m_what.c_str());}
//! \brief Retrieves a string describing the exception
const std::string &GetWhat() const {return m_what;}
//! \brief Sets the error string for the exception
void SetWhat(const std::string &s) {m_what = s;}
//! \brief Retrieves the error type for the exception
ErrorType GetErrorType() const {return m_errorType;}
//! \brief Sets the error type for the exceptions
void SetErrorType(ErrorType errorType) {m_errorType = errorType;}
private:
ErrorType m_errorType;
std::string m_what;
};
//! \brief An invalid argument was detected
class CRYPTOPP_DLL InvalidArgument : public Exception
{
public:
explicit InvalidArgument(const std::string &s) : Exception(INVALID_ARGUMENT, s) {}
};
//! \brief Input data was received that did not conform to expected format
class CRYPTOPP_DLL InvalidDataFormat : public Exception
{
public:
explicit InvalidDataFormat(const std::string &s) : Exception(INVALID_DATA_FORMAT, s) {}
};
//! \brief A decryption filter encountered invalid ciphertext
class CRYPTOPP_DLL InvalidCiphertext : public InvalidDataFormat
{
public:
explicit InvalidCiphertext(const std::string &s) : InvalidDataFormat(s) {}
};
//! \brief A method was called which was not implemented
class CRYPTOPP_DLL NotImplemented : public Exception
{
public:
explicit NotImplemented(const std::string &s) : Exception(NOT_IMPLEMENTED, s) {}
};
//! \brief Flush(true) was called but it can't completely flush its buffers
class CRYPTOPP_DLL CannotFlush : public Exception
{
public:
explicit CannotFlush(const std::string &s) : Exception(CANNOT_FLUSH, s) {}
};
//! \brief The operating system reported an error
class CRYPTOPP_DLL OS_Error : public Exception
{
public:
OS_Error(ErrorType errorType, const std::string &s, const std::string& operation, int errorCode)
: Exception(errorType, s), m_operation(operation), m_errorCode(errorCode) {}
~OS_Error() throw() {}
//! \brief Retrieve the operating system API that reported the error
const std::string & GetOperation() const {return m_operation;}
//! \brief Retrieve the error code returned by the operating system
int GetErrorCode() const {return m_errorCode;}
protected:
std::string m_operation;
int m_errorCode;
};
//! \class DecodingResult
//! \brief Returns a decoding results
struct CRYPTOPP_DLL DecodingResult
{
//! \brief Constructs a DecodingResult
//! \details isValidCoding is initialized to false and messageLength is initialized to 0.
explicit DecodingResult() : isValidCoding(false), messageLength(0) {}
//! \brief Constructs a DecodingResult
//! \param len the message length
//! \details isValidCoding is initialized to true.
explicit DecodingResult(size_t len) : isValidCoding(true), messageLength(len) {}
//! \brief Compare two DecodingResult
//! \param rhs the other DecodingResult
//! \return true if both isValidCoding and messageLength are equal, false otherwise
bool operator==(const DecodingResult &rhs) const {return isValidCoding == rhs.isValidCoding && messageLength == rhs.messageLength;}
//! \brief Compare two DecodingResult
//! \param rhs the other DecodingResult
//! \return true if either isValidCoding or messageLength is \a not equal, false otherwise
//! \details Returns <tt>!operator==(rhs)</tt>.
bool operator!=(const DecodingResult &rhs) const {return !operator==(rhs);}
//! \brief Flag to indicate the decoding is valid
bool isValidCoding;
//! \brief Recovered message length if isValidCoding is true, undefined otherwise
size_t messageLength;
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
operator size_t() const {return isValidCoding ? messageLength : 0;}
#endif
};
//! \class NameValuePairs
//! \brief Interface for retrieving values given their names
//! \details This class is used to safely pass a variable number of arbitrarily typed arguments to functions
//! and to read values from keys and crypto parameters.
//! \details To obtain an object that implements NameValuePairs for the purpose of parameter
//! passing, use the MakeParameters() function.
//! \details To get a value from NameValuePairs, you need to know the name and the type of the value.
//! Call GetValueNames() on a NameValuePairs object to obtain a list of value names that it supports.
//! then look at the Name namespace documentation to see what the type of each value is, or
//! alternatively, call GetIntValue() with the value name, and if the type is not int, a
//! ValueTypeMismatch exception will be thrown and you can get the actual type from the exception object.
class CRYPTOPP_NO_VTABLE NameValuePairs
{
public:
virtual ~NameValuePairs() {}
//! \class ValueTypeMismatch
//! \brief Thrown when an unexpected type is encountered
//! \details Exception thrown when trying to retrieve a value using a different type than expected
class CRYPTOPP_DLL ValueTypeMismatch : public InvalidArgument
{
public:
//! \brief Construct a ValueTypeMismatch
//! \param name the name of the value
//! \param stored the \a actual type of the value stored
//! \param retrieving the \a presumed type of the value retrieved
ValueTypeMismatch(const std::string &name, const std::type_info &stored, const std::type_info &retrieving)
: InvalidArgument("NameValuePairs: type mismatch for '" + name + "', stored '" + stored.name() + "', trying to retrieve '" + retrieving.name() + "'")
, m_stored(stored), m_retrieving(retrieving) {}
//! \brief Provides the stored type
//! \return the C++ mangled name of the type
const std::type_info & GetStoredTypeInfo() const {return m_stored;}
//! \brief Provides the retrieveing type
//! \return the C++ mangled name of the type
const std::type_info & GetRetrievingTypeInfo() const {return m_retrieving;}
private:
const std::type_info &m_stored;
const std::type_info &m_retrieving;
};
//! \brief Get a copy of this object or subobject
//! \tparam T class or type
//! \param object reference to a variable that receives the value
template <class T>
bool GetThisObject(T &object) const
{
return GetValue((std::string("ThisObject:")+typeid(T).name()).c_str(), object);
}
//! \brief Get a pointer to this object
//! \tparam T class or type
//! \param ptr reference to a pointer to a variable that receives the value
template <class T>
bool GetThisPointer(T *&ptr) const
{
return GetValue((std::string("ThisPointer:")+typeid(T).name()).c_str(), ptr);
}
//! \brief Get a named value
//! \tparam T class or type
//! \param name the name of the object or value to retrieve
//! \param value reference to a variable that receives the value
//! \returns true if the value was retrieved, false otherwise
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
bool GetValue(const char *name, T &value) const
{
return GetVoidValue(name, typeid(T), &value);
}
//! \brief Get a named value
//! \tparam T class or type
//! \param name the name of the object or value to retrieve
//! \param defaultValue the default value of the class or type if it does not exist
//! \return the object or value
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
T GetValueWithDefault(const char *name, T defaultValue) const
{
T value;
bool result = GetValue(name, value);
// No assert... this recovers from failure
if (result) {return value;}
return defaultValue;
}
//! \brief Get a list of value names that can be retrieved
//! \return a list of names available to retrieve
//! \details the items in the list are delimited with a colon.
CRYPTOPP_DLL std::string GetValueNames() const
{std::string result; GetValue("ValueNames", result); return result;}
//! \brief Get a named value with type int
//! \param name the name of the value to retrieve
//! \param value the value retrieved upon success
//! \return true if an int value was retrieved, false otherwise
//! \details GetIntValue() is used to ensure we don't accidentally try to get an
//! unsigned int or some other type when we mean int (which is the most common case)
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL bool GetIntValue(const char *name, int &value) const
{return GetValue(name, value);}
//! \brief Get a named value with type int, with default
//! \param name the name of the value to retrieve
//! \param defaultValue the default value if the name does not exist
//! \return the value retrieved on success or the default value
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL int GetIntValueWithDefault(const char *name, int defaultValue) const
{return GetValueWithDefault(name, defaultValue);}
//! \brief Ensures an expected name and type is present
//! \param name the name of the value
//! \param stored the type that was stored for the name
//! \param retrieving the type that is being retrieved for the name
//! \throws ValueTypeMismatch
//! \details ThrowIfTypeMismatch() effectively performs a type safety check.
//! stored and retrieving are C++ mangled names for the type.
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL static void CRYPTOPP_API ThrowIfTypeMismatch(const char *name, const std::type_info &stored, const std::type_info &retrieving)
{if (stored != retrieving) throw ValueTypeMismatch(name, stored, retrieving);}
//! \brief Retrieves a required name/value pair
//! \tparam T class or type
//! \param className the name of the class
//! \param name the name of the value
//! \param value reference to a variable to receive the value
//! \throws InvalidArgument
//! \details GetRequiredParameter() throws InvalidArgument if the name
//! is not present or not of the expected type T.
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
template <class T>
void GetRequiredParameter(const char *className, const char *name, T &value) const
{
if (!GetValue(name, value))
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
}
//! \brief Retrieves a required name/value pair
//! \param className the name of the class
//! \param name the name of the value
//! \param value reference to a variable to receive the value
//! \throws InvalidArgument
//! \details GetRequiredParameter() throws InvalidArgument if the name
//! is not present or not of the expected type T.
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL void GetRequiredIntParameter(const char *className, const char *name, int &value) const
{
if (!GetIntValue(name, value))
throw InvalidArgument(std::string(className) + ": missing required parameter '" + name + "'");
}
//! \brief Get a named value
//! \param name the name of the object or value to retrieve
//! \param valueType reference to a variable that receives the value
//! \param pValue void pointer to a variable that receives the value
//! \returns true if the value was retrieved, false otherwise
//! \details GetVoidValue() retrives the value of name if it exists.
//! \note GetVoidValue() is an internal function and should be implemented
//! by derived classes. Users should use one of the other functions instead.
//! \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(),
//! GetRequiredParameter() and GetRequiredIntParameter()
CRYPTOPP_DLL virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const =0;
};
#if CRYPTOPP_DOXYGEN_PROCESSING
//! \brief Namespace containing value name definitions.
//! \details Name is part of the CryptoPP namespace.
//! \details The semantics of value names, types are:
//! <pre>
//! ThisObject:ClassName (ClassName, copy of this object or a subobject)
//! ThisPointer:ClassName (const ClassName *, pointer to this object or a subobject)
//! </pre>
DOCUMENTED_NAMESPACE_BEGIN(Name)
// more names defined in argnames.h
DOCUMENTED_NAMESPACE_END
//! \brief Namespace containing weak and wounded algorithms.
//! \details Weak is part of the CryptoPP namespace. Schemes and algorithms are moved into Weak
//! when their security level is reduced to an unacceptable level by contemporary standards.
//! \details To use an algorithm in the Weak namespace, you must <tt>\c \#define
//! CRYPTOPP_ENABLE_NAMESPACE_WEAK 1</tt> before including a header for a weak or wounded
//! algorithm. For example:
//! <pre>
//! \c \#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
//! \c \#include <md5.h>
//! ...
//! CryptoPP::Weak::MD5 md5;
//! </pre>
DOCUMENTED_NAMESPACE_BEGIN(Weak)
// weak and wounded algorithms
DOCUMENTED_NAMESPACE_END
#endif
//! \brief An empty set of name-value pairs
extern CRYPTOPP_DLL const NameValuePairs &g_nullNameValuePairs;
// ********************************************************
//! \class Clonable
//! \brief Interface for cloning objects
//! \note this is \a not implemented by most classes
//! \sa ClonableImpl, NotCopyable
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Clonable
{
public:
virtual ~Clonable() {}
//! \brief Copies this object
//! \return a copy of this object
//! \throws NotImplemented
//! \note this is \a not implemented by most classes
//! \sa NotCopyable
virtual Clonable* Clone() const {throw NotImplemented("Clone() is not implemented yet.");} // TODO: make this =0
};
//! \class Algorithm
//! \brief Interface for all crypto algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Algorithm : public Clonable
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~Algorithm() {}
#endif
//! \brief Interface for all crypto algorithms
//! \param checkSelfTestStatus determines whether the object can proceed if the self
//! tests have not been run or failed.
//! \details When FIPS 140-2 compliance is enabled and checkSelfTestStatus == true,
//! this constructor throws SelfTestFailure if the self test hasn't been run or fails.
//! \details FIPS 140-2 compliance is disabled by default. It is only used by certain
//! versions of the library when the library is built as a DLL on Windows. Also see
//! CRYPTOPP_ENABLE_COMPLIANCE_WITH_FIPS_140_2 in config.h.
Algorithm(bool checkSelfTestStatus = true);
//! \brief Provides the name of this algorithm
//! \return the standard algorithm name
//! \details The standard algorithm name can be a name like \a AES or \a AES/GCM. Some algorithms
//! do not have standard names yet. For example, there is no standard algorithm name for
//! Shoup's ECIES.
//! \note AlgorithmName is not universally implemented yet
virtual std::string AlgorithmName() const {return "unknown";}
};
//! \class SimpleKeyingInterface
//! \brief Interface for algorithms that take byte strings as keys
//! \sa FixedKeyLength(), VariableKeyLength(), SameKeyLengthAs(), SimpleKeyingInterfaceImpl()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyingInterface
{
public:
virtual ~SimpleKeyingInterface() {}
//! \brief Returns smallest valid key length in bytes
virtual size_t MinKeyLength() const =0;
//! \brief Returns largest valid key length in bytes
virtual size_t MaxKeyLength() const =0;
//! \brief Returns default (recommended) key length in bytes
virtual size_t DefaultKeyLength() const =0;
//! \brief
//! \param n the desired keylength
//! \return the smallest valid key length in bytes that is greater than or equal to <tt>min(n, GetMaxKeyLength())</tt>
virtual size_t GetValidKeyLength(size_t n) const =0;
//! \brief Returns whether keylength is a valid key length
//! \param keylength the requested keylength
//! \return true if keylength is valid, false otherwise
//! \details Internally the function calls GetValidKeyLength()
virtual bool IsValidKeyLength(size_t keylength) const
{return keylength == GetValidKeyLength(keylength);}
//! \brief Sets or reset the key of this object
//! \param key the key to use when keying the object
//! \param length the size of the key, in bytes
//! \param params additional initialization parameters that cannot be passed
//! directly through the constructor
virtual void SetKey(const byte *key, size_t length, const NameValuePairs &params = g_nullNameValuePairs);
//! \brief Sets or reset the key of this object
//! \param key the key to use when keying the object
//! \param length the size of the key, in bytes
//! \param rounds the number of rounds to apply the transformation function,
//! if applicable
//! \details SetKeyWithRounds() calls SetKey() with a NameValuePairs
//! object that only specifies rounds. rounds is an integer parameter,
//! and <tt>-1</tt> means use the default number of rounds.
void SetKeyWithRounds(const byte *key, size_t length, int rounds);
//! \brief Sets or reset the key of this object
//! \param key the key to use when keying the object
//! \param length the size of the key, in bytes
//! \param iv the intiialization vector to use when keying the object
//! \param ivLength the size of the iv, in bytes
//! \details SetKeyWithIV() calls SetKey() with a NameValuePairs
//! that only specifies IV. The IV is a byte buffer with size ivLength.
//! ivLength is an integer parameter, and <tt>-1</tt> means use IVSize().
void SetKeyWithIV(const byte *key, size_t length, const byte *iv, size_t ivLength);
//! \brief Sets or reset the key of this object
//! \param key the key to use when keying the object
//! \param length the size of the key, in bytes
//! \param iv the intiialization vector to use when keying the object
//! \details SetKeyWithIV() calls SetKey() with a NameValuePairs() object
//! that only specifies iv. iv is a byte buffer, and it must have
//! a size IVSize().
void SetKeyWithIV(const byte *key, size_t length, const byte *iv)
{SetKeyWithIV(key, length, iv, IVSize());}
//! \brief Secure IVs requirements as enumerated values.
//! \details Provides secure IV requirements as a monotomically increasing enumerated values. Requirements can be
//! compared using less than (&lt;) and greater than (&gt;). For example, <tt>UNIQUE_IV &lt; RANDOM_IV</tt>
//! and <tt>UNPREDICTABLE_RANDOM_IV &gt; RANDOM_IV</tt>.
//! \sa IsResynchronizable(), CanUseRandomIVs(), CanUsePredictableIVs(), CanUseStructuredIVs()
enum IV_Requirement {
//! \brief The IV must be unique
UNIQUE_IV = 0,
//! \brief The IV must be random and possibly predictable
RANDOM_IV,
//! \brief The IV must be random and unpredictable
UNPREDICTABLE_RANDOM_IV,
//! \brief The IV is set by the object
INTERNALLY_GENERATED_IV,
//! \brief The object does not use an IV
NOT_RESYNCHRONIZABLE
};
//! \brief Minimal requirement for secure IVs
//! \return the secure IV requirement of the algorithm
virtual IV_Requirement IVRequirement() const =0;
//! \brief Determines if the object can be resynchronized
//! \return true if the object can be resynchronized (i.e. supports initialization vectors), false otherwise
//! \note If this function returns true, and no IV is passed to SetKey() and <tt>CanUseStructuredIVs()==true</tt>,
//! an IV of all 0's will be assumed.
bool IsResynchronizable() const {return IVRequirement() < NOT_RESYNCHRONIZABLE;}
//! \brief Determines if the object can use random IVs
//! \return true if the object can use random IVs (in addition to ones returned by GetNextIV), false otherwise
bool CanUseRandomIVs() const {return IVRequirement() <= UNPREDICTABLE_RANDOM_IV;}
//! \brief Determines if the object can use random but possibly predictable IVs
//! \return true if the object can use random but possibly predictable IVs (in addition to ones returned by
//! GetNextIV), false otherwise
bool CanUsePredictableIVs() const {return IVRequirement() <= RANDOM_IV;}
//! \brief Determines if the object can use structured IVs
//! returns whether the object can use structured IVs, for example a counter (in addition to ones returned by
//! GetNextIV), false otherwise
bool CanUseStructuredIVs() const {return IVRequirement() <= UNIQUE_IV;}
//! \brief Returns length of the IV accepted by this object
//! \return the size of an IV, in bytes
//! \throws NotImplemented() if the object does not support resynchronization
//! \details The default implementation throws NotImplemented
virtual unsigned int IVSize() const
{throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");}
//! \brief Provides the default size of an IV
//! \return default length of IVs accepted by this object, in bytes
unsigned int DefaultIVLength() const {return IVSize();}
//! \brief Provides the minimum size of an IV
//! \return minimal length of IVs accepted by this object, in bytes
//! \throws NotImplemented() if the object does not support resynchronization
virtual unsigned int MinIVLength() const {return IVSize();}
//! \brief Provides the maximum size of an IV
//! \return maximal length of IVs accepted by this object, in bytes
//! \throws NotImplemented() if the object does not support resynchronization
virtual unsigned int MaxIVLength() const {return IVSize();}
//! \brief Resynchronize with an IV
//! \param iv the initialization vector
//! \param ivLength the size of the initialization vector, in bytes
//! \details Resynchronize() resynchronizes with an IV provided by the caller. <tt>ivLength=-1</tt> means use IVSize().
//! \throws NotImplemented() if the object does not support resynchronization
virtual void Resynchronize(const byte *iv, int ivLength=-1) {
CRYPTOPP_UNUSED(iv); CRYPTOPP_UNUSED(ivLength);
throw NotImplemented(GetAlgorithm().AlgorithmName() + ": this object doesn't support resynchronization");
}
//! \brief Retrieves a secure IV for the next message
//! \param rng a RandomNumberGenerator to produce keying material
//! \param iv a block of bytes to receive the IV
//! \details The IV must be at least IVSize() in length.
//! \details This method should be called after you finish encrypting one message and are ready
//! to start the next one. After calling it, you must call SetKey() or Resynchronize().
//! before using this object again.
//! \details Internally, the base class implementation calls RandomNumberGenerator's GenerateBlock()
//! \note This method is not implemented on decryption objects.
virtual void GetNextIV(RandomNumberGenerator &rng, byte *iv);
protected:
//! \brief Returns the base class Algorithm
//! \return the base class Algorithm
virtual const Algorithm & GetAlgorithm() const =0;
//! \brief Sets the key for this object without performing parameter validation
//! \param key a byte buffer used to key the cipher
//! \param length the length of the byte buffer
//! \param params additional parameters passed as NameValuePairs
//! \details key must be at least DEFAULT_KEYLENGTH in length.
virtual void UncheckedSetKey(const byte *key, unsigned int length, const NameValuePairs &params) =0;
//! \brief Validates the key length
//! \param length the size of the keying material, in bytes
//! \throws InvalidKeyLength if the key length is invalid
void ThrowIfInvalidKeyLength(size_t length);
//! \brief Validates the object
//! \throws InvalidArgument if the IV is present
//! \details Internally, the default implementation calls IsResynchronizable() and throws
//! InvalidArgument if the function returns true.
//! \note called when no IV is passed
void ThrowIfResynchronizable();
//! \brief Validates the IV
//! \param iv the IV with a length of IVSize, in bytes
//! \throws InvalidArgument on failure
//! \details Internally, the default implementation checks the iv. If iv is not NULL,
//! then the function succeeds. If iv is NULL, then IVRequirement is checked against
//! UNPREDICTABLE_RANDOM_IV. If IVRequirement is UNPREDICTABLE_RANDOM_IV, then
//! then the function succeeds. Otherwise, an exception is thrown.
void ThrowIfInvalidIV(const byte *iv);
//! \brief Validates the IV length
//! \param length the size of an IV, in bytes
//! \throws InvalidArgument if the number of rounds are invalid
size_t ThrowIfInvalidIVLength(int length);
//! \brief Retrieves and validates the IV
//! \param params NameValuePairs with the IV supplied as a ConstByteArrayParameter
//! \param size the length of the IV, in bytes
//! \return a pointer to the first byte of the IV
//! \throws InvalidArgument if the number of rounds are invalid
const byte * GetIVAndThrowIfInvalid(const NameValuePairs &params, size_t &size);
//! \brief Validates the key length
//! \param length the size of the keying material, in bytes
inline void AssertValidKeyLength(size_t length) const
{CRYPTOPP_UNUSED(length); assert(IsValidKeyLength(length));}
};
//! \brief Interface for the data processing part of block ciphers
//! \details Classes derived from BlockTransformation are block ciphers
//! in ECB mode (for example the DES::Encryption class), which are stateless.
//! These classes should not be used directly, but only in combination with
//! a mode class (see CipherModeDocumentation in modes.h).
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockTransformation : public Algorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~BlockTransformation() {}
#endif
//! \brief Encrypt or decrypt a block
//! \param inBlock the input message before processing
//! \param outBlock the output message after processing
//! \param xorBlock an optional XOR mask
//! \details ProcessAndXorBlock encrypts or decrypts inBlock, xor with xorBlock, and write to outBlock.
//! \details The size of the block is determined by the block cipher and its documentation. Use
//! BLOCKSIZE at compile time, or BlockSize() at runtime.
//! \note The message can be transformed in-place, or the buffers must \a not overlap
//! \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
virtual void ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const =0;
//! \brief Encrypt or decrypt a block
//! \param inBlock the input message before processing
//! \param outBlock the output message after processing
//! \details ProcessBlock encrypts or decrypts inBlock and write to outBlock.
//! \details The size of the block is determined by the block cipher and its documentation.
//! Use BLOCKSIZE at compile time, or BlockSize() at runtime.
//! \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
//! \note The message can be transformed in-place, or the buffers must \a not overlap
void ProcessBlock(const byte *inBlock, byte *outBlock) const
{ProcessAndXorBlock(inBlock, NULL, outBlock);}
//! \brief Encrypt or decrypt a block in place
//! \param inoutBlock the input message before processing
//! \details ProcessBlock encrypts or decrypts inoutBlock in-place.
//! \details The size of the block is determined by the block cipher and its documentation.
//! Use BLOCKSIZE at compile time, or BlockSize() at runtime.
//! \sa FixedBlockSize, BlockCipherFinal from seckey.h and BlockSize()
void ProcessBlock(byte *inoutBlock) const
{ProcessAndXorBlock(inoutBlock, NULL, inoutBlock);}
//! Provides the block size of the cipher
//! \return the block size of the cipher, in bytes
virtual unsigned int BlockSize() const =0;
//! \brief Provides input and output data alignment for optimal performance.
//! \return the input data alignment that provides optimal performance
virtual unsigned int OptimalDataAlignment() const;
//! returns true if this is a permutation (i.e. there is an inverse transformation)
virtual bool IsPermutation() const {return true;}
//! \brief Determines if the cipher is being operated in its forward direction
//! \returns true if DIR is ENCRYPTION, false otherwise
//! \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
virtual bool IsForwardTransformation() const =0;
//! \brief Determines the number of blocks that can be processed in parallel
//! \return the number of blocks that can be processed in parallel, for bit-slicing implementations
//! \details Bit-slicing is often used to improve throughput and minimize timing attacks.
virtual unsigned int OptimalNumberOfParallelBlocks() const {return 1;}
//! \brief Bit flags that control AdvancedProcessBlocks() behavior
enum FlagsForAdvancedProcessBlocks {
//! \brief inBlock is a counter
BT_InBlockIsCounter=1,
//! \brief should not modify block pointers
BT_DontIncrementInOutPointers=2,
//! \brief
BT_XorInput=4,
//! \brief perform the transformation in reverse
BT_ReverseDirection=8,
//! \brief
BT_AllowParallel=16};
//! \brief Encrypt and xor multiple blocks using additional flags
//! \param inBlocks the input message before processing
//! \param xorBlocks an optional XOR mask
//! \param outBlocks the output message after processing
//! \param length the size of the blocks, in bytes
//! \param flags additional flags to control processing
//! \details Encrypt and xor multiple blocks according to FlagsForAdvancedProcessBlocks flags.
//! \note If BT_InBlockIsCounter is set, then the last byte of inBlocks may be modified.
virtual size_t AdvancedProcessBlocks(const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) const;
//! \brief Provides the direction of the cipher
//! \return ENCRYPTION if IsForwardTransformation() is true, DECRYPTION otherwise
//! \sa IsForwardTransformation(), IsPermutation()
inline CipherDir GetCipherDirection() const {return IsForwardTransformation() ? ENCRYPTION : DECRYPTION;}
};
//! \class StreamTransformation
//! \brief Interface for the data processing portion of stream ciphers
//! \sa StreamTransformationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE StreamTransformation : public Algorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~StreamTransformation() {}
#endif
//! \brief Provides a reference to this object
//! \return A reference to this object
//! \details Useful for passing a temporary object to a function that takes a non-const reference
StreamTransformation& Ref() {return *this;}
//! \brief Provides the mandatory block size of the cipher
//! \return The block size of the cipher if input must be processed in blocks, 1 otherwise
virtual unsigned int MandatoryBlockSize() const {return 1;}
//! \brief Provides the input block size most efficient for this cipher.
//! \return The input block size that is most efficient for the cipher
//! \details The base class implementation returns MandatoryBlockSize().
//! \note Optimal input length is
//! <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
virtual unsigned int OptimalBlockSize() const {return MandatoryBlockSize();}
//! \brief Provides the number of bytes used in the current block when processing at optimal block size.
//! \return the number of bytes used in the current block when processing at the optimal block size
virtual unsigned int GetOptimalBlockSizeUsed() const {return 0;}
//! \brief Provides input and output data alignment for optimal performance.
//! \return the input data alignment that provides optimal performance
virtual unsigned int OptimalDataAlignment() const;
//! \brief Encrypt or decrypt an array of bytes
//! \param outString the output byte buffer
//! \param inString the input byte buffer
//! \param length the size of the input and output byte buffers, in bytes
//! \details Either <tt>inString == outString</tt>, or they must not overlap.
virtual void ProcessData(byte *outString, const byte *inString, size_t length) =0;
//! \brief Encrypt or decrypt the last block of data
//! \param outString the output byte buffer
//! \param inString the input byte buffer
//! \param length the size of the input and output byte buffers, in bytes
//! ProcessLastBlock is used when the last block of data is special.
//! Currently the only use of this function is CBC-CTS mode.
virtual void ProcessLastBlock(byte *outString, const byte *inString, size_t length);
//! returns the minimum size of the last block, 0 indicating the last block is not special
virtual unsigned int MinLastBlockSize() const {return 0;}
//! \brief Encrypt or decrypt a string of bytes
//! \param inoutString the string to process
//! \param length the size of the inoutString, in bytes
//! \details Internally, the base class implementation calls ProcessData().
inline void ProcessString(byte *inoutString, size_t length)
{ProcessData(inoutString, inoutString, length);}
//! \brief Encrypt or decrypt a string of bytes
//! \param outString the output string to process
//! \param inString the input string to process
//! \param length the size of the input and output strings, in bytes
//! \details Internally, the base class implementation calls ProcessData().
inline void ProcessString(byte *outString, const byte *inString, size_t length)
{ProcessData(outString, inString, length);}
//! \brief Encrypt or decrypt a byte
//! \param input the input byte to process
//! \details Internally, the base class implementation calls ProcessData() with a size of 1.
inline byte ProcessByte(byte input)
{ProcessData(&input, &input, 1); return input;}
//! \brief Determines whether the cipher supports random access
//! \returns true if the cipher supports random access, false otherwise
virtual bool IsRandomAccess() const =0;
//! \brief Seek to an absolute position
//! \param pos position to seek
//! \throws NotImplemented
//! \details The base class implementation throws NotImplemented. The function
//! asserts IsRandomAccess() in debug builds.
virtual void Seek(lword pos)
{
CRYPTOPP_UNUSED(pos);
assert(!IsRandomAccess());
throw NotImplemented("StreamTransformation: this object doesn't support random access");
}
//! \brief Determines whether the cipher is self-inverting
//! \returns true if the cipher is self-inverting, false otherwise
//! \details IsSelfInverting determines whether this transformation is
//! self-inverting (e.g. xor with a keystream).
virtual bool IsSelfInverting() const =0;
//! \brief Determines if the cipher is being operated in its forward direction
//! \returns true if DIR is ENCRYPTION, false otherwise
//! \sa IsForwardTransformation(), IsPermutation(), GetCipherDirection()
virtual bool IsForwardTransformation() const =0;
};
//! \class HashTransformation
//! \brief Interface for hash functions and data processing part of MACs
//! \details HashTransformation objects are stateful. They are created in an initial state,
//! change state as Update() is called, and return to the initial
//! state when Final() is called. This interface allows a large message to
//! be hashed in pieces by calling Update() on each piece followed by
//! calling Final().
//! \sa HashFilter(), HashVerificationFilter()
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE HashTransformation : public Algorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~HashTransformation() {}
#endif
//! \brief Provides a reference to this object
//! \return A reference to this object
//! \details Useful for passing a temporary object to a function that takes a non-const reference
HashTransformation& Ref() {return *this;}
//! \brief Updates a hash with additional input
//! \param input the additional input as a buffer
//! \param length the size of the buffer, in bytes
virtual void Update(const byte *input, size_t length) =0;
//! \brief Request space which can be written into by the caller
//! \param size the requested size of the buffer
//! \details The purpose of this method is to help avoid extra memory allocations.
//! \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
//! size is the requested size of the buffer. When the call returns, size is the size of
//! the array returned to the caller.
//! \details The base class implementation sets size to 0 and returns NULL.
//! \note Some objects, like ArraySink, cannot create a space because its fixed.
virtual byte * CreateUpdateSpace(size_t &size) {size=0; return NULL;}
//! \brief Computes the hash of the current message
//! \param digest a pointer to the buffer to receive the hash
//! \details Final() restarts the hash for a new message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual void Final(byte *digest)
{TruncatedFinal(digest, DigestSize());}
//! \brief Restart the hash
//! \details Discards the current state, and restart for a new message
virtual void Restart()
{TruncatedFinal(NULL, 0);}
//! Provides the digest size of the hash
//! \return the digest size of the hash.
virtual unsigned int DigestSize() const =0;
//! Provides the tag size of the hash
//! \return the tag size of the hash.
//! \details Same as DigestSize().
unsigned int TagSize() const {return DigestSize();}
//! \brief Provides the block size of the compression function
//! \return the block size of the compression function, in bytes
//! \details BlockSize() will return 0 if the hash is not block based. For example,
//! SHA3 is a recursive hash (not an iterative hash), and it does not have a block size.
virtual unsigned int BlockSize() const {return 0;}
//! \brief Provides the input block size most efficient for this hash.
//! \return The input block size that is most efficient for the cipher
//! \details The base class implementation returns MandatoryBlockSize().
//! \details Optimal input length is
//! <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
virtual unsigned int OptimalBlockSize() const {return 1;}
//! \brief Provides input and output data alignment for optimal performance
//! \return the input data alignment that provides optimal performance
virtual unsigned int OptimalDataAlignment() const;
//! \brief Updates the hash with additional input and computes the hash of the current message
//! \param digest a pointer to the buffer to receive the hash
//! \param input the additional input as a buffer
//! \param length the size of the buffer, in bytes
//! \details Use this if your input is in one piece and you don't want to call Update()
//! and Final() separately
//! \details CalculateDigest() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual void CalculateDigest(byte *digest, const byte *input, size_t length)
{Update(input, length); Final(digest);}
//! \brief Verifies the hash of the current message
//! \param digest a pointer to the buffer of an \a existing hash
//! \return \p true if the existing hash matches the computed hash, \p false otherwise
//! \throws ThrowIfInvalidTruncatedSize() if the existing hash's size exceeds DigestSize()
//! \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
//! a constant time comparison function. digestLength cannot exceed DigestSize().
//! \details Verify() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual bool Verify(const byte *digest)
{return TruncatedVerify(digest, DigestSize());}
//! \brief Updates the hash with additional input and verifies the hash of the current message
//! \param digest a pointer to the buffer of an \a existing hash
//! \param input the additional input as a buffer
//! \param length the size of the buffer, in bytes
//! \return \p true if the existing hash matches the computed hash, \p false otherwise
//! \throws ThrowIfInvalidTruncatedSize() if the existing hash's size exceeds DigestSize()
//! \details Use this if your input is in one piece and you don't want to call Update()
//! and Verify() separately
//! \details VerifyDigest() performs a bitwise compare on the buffers using VerifyBufsEqual(),
//! which is a constant time comparison function. digestLength cannot exceed DigestSize().
//! \details VerifyDigest() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual bool VerifyDigest(const byte *digest, const byte *input, size_t length)
{Update(input, length); return Verify(digest);}
//! \brief Computes the hash of the current message
//! \param digest a pointer to the buffer to receive the hash
//! \param digestSize the size of the truncated digest, in bytes
//! \details TruncatedFinal() call Final() and then copies digestSize bytes to digest
//! \details TruncatedFinal() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual void TruncatedFinal(byte *digest, size_t digestSize) =0;
//! \brief Updates the hash with additional input and computes the hash of the current message
//! \param digest a pointer to the buffer to receive the hash
//! \param digestSize the length of the truncated hash, in bytes
//! \param input the additional input as a buffer
//! \param length the size of the buffer, in bytes
//! \details Use this if your input is in one piece and you don't want to call Update()
//! and CalculateDigest() separately.
//! \details CalculateTruncatedDigest() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual void CalculateTruncatedDigest(byte *digest, size_t digestSize, const byte *input, size_t length)
{Update(input, length); TruncatedFinal(digest, digestSize);}
//! \brief Verifies the hash of the current message
//! \param digest a pointer to the buffer of an \a existing hash
//! \param digestLength the size of the truncated hash, in bytes
//! \return \p true if the existing hash matches the computed hash, \p false otherwise
//! \throws ThrowIfInvalidTruncatedSize() if digestLength exceeds DigestSize()
//! \details TruncatedVerify() is a truncated version of Verify(). It can operate on a
//! buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
//! \details Verify() performs a bitwise compare on the buffers using VerifyBufsEqual(), which is
//! a constant time comparison function. digestLength cannot exceed DigestSize().
//! \details TruncatedVerify() restarts the hash for the next message.
virtual bool TruncatedVerify(const byte *digest, size_t digestLength);
//! \brief Updates the hash with additional input and verifies the hash of the current message
//! \param digest a pointer to the buffer of an \a existing hash
//! \param digestLength the size of the truncated hash, in bytes
//! \param input the additional input as a buffer
//! \param length the size of the buffer, in bytes
//! \return \p true if the existing hash matches the computed hash, \p false otherwise
//! \throws ThrowIfInvalidTruncatedSize() if digestLength exceeds DigestSize()
//! \details Use this if your input is in one piece and you don't want to call Update()
//! and TruncatedVerify() separately.
//! \details VerifyTruncatedDigest() is a truncated version of VerifyDigest(). It can operate
//! on a buffer smaller than DigestSize(). However, digestLength cannot exceed DigestSize().
//! \details VerifyTruncatedDigest() restarts the hash for the next message.
//! \pre <tt>COUNTOF(digest) == DigestSize()</tt> or <tt>COUNTOF(digest) == HASH::DIGESTSIZE</tt> ensures
//! the output byte buffer is large enough for the digest.
virtual bool VerifyTruncatedDigest(const byte *digest, size_t digestLength, const byte *input, size_t length)
{Update(input, length); return TruncatedVerify(digest, digestLength);}
protected:
//! \brief Validates a truncated digest size
//! \param size the requested digest size
//! \throws InvalidArgument if the algorithm's digest size cannot be truncated to the requested size
//! \details Throws an exception when the truncated digest size is greater than DigestSize()
void ThrowIfInvalidTruncatedSize(size_t size) const;
};
typedef HashTransformation HashFunction;
//! \brief Interface for one direction (encryption or decryption) of a block cipher
//! \details These objects usually should not be used directly. See BlockTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BlockCipher : public SimpleKeyingInterface, public BlockTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
//! \brief Interface for one direction (encryption or decryption) of a stream cipher or cipher mode
//! \details These objects usually should not be used directly. See StreamTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SymmetricCipher : public SimpleKeyingInterface, public StreamTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
//! \brief Interface for message authentication codes
//! \details These objects usually should not be used directly. See HashTransformation for more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE MessageAuthenticationCode : public SimpleKeyingInterface, public HashTransformation
{
protected:
const Algorithm & GetAlgorithm() const {return *this;}
};
//! \brief Interface for one direction (encryption or decryption) of a stream cipher or block cipher mode with authentication
//! \details The StreamTransformation part of this interface is used to encrypt/decrypt the data, and the
//! MessageAuthenticationCode part of this interface is used to input additional authenticated data (AAD,
//! which is MAC'ed but not encrypted), and to generate/verify the MAC.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedSymmetricCipher : public MessageAuthenticationCode, public StreamTransformation
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~AuthenticatedSymmetricCipher() {}
#endif
//! \brief Exception thrown when the object is in the wrong state for the operation
//! \details this indicates that a member function was called in the wrong state, for example trying to encrypt
//! a message before having set the key or IV
class BadState : public Exception
{
public:
explicit BadState(const std::string &name, const char *message) : Exception(OTHER_ERROR, name + ": " + message) {}
explicit BadState(const std::string &name, const char *function, const char *state) : Exception(OTHER_ERROR, name + ": " + function + " was called before " + state) {}
};
//! \brief Provides the maximum length of AAD that can be input
//! \return the maximum length of AAD that can be input before the encrypted data
virtual lword MaxHeaderLength() const =0;
//! \brief Provides the maximum length of encrypted data
//! \return the maximum length of encrypted data
virtual lword MaxMessageLength() const =0;
//! \brief Provides the the maximum length of AAD
//! \return the maximum length of AAD that can be input after the encrypted data
virtual lword MaxFooterLength() const {return 0;}
//! \brief Determines if data lengths must be specified prior to inputting data
//! \return true if the data lengths are required before inputting data, false otherwise
//! \details if this function returns true, SpecifyDataLengths() must be called before attempting to input data.
//! This is the case for some schemes, such as CCM.
//! \sa SpecifyDataLengths()
virtual bool NeedsPrespecifiedDataLengths() const {return false;}
//! \brief Prespecifies the data lengths
//! \details this function only needs to be called if NeedsPrespecifiedDataLengths() returns true
//! \sa NeedsPrespecifiedDataLengths()
void SpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength=0);
//! \brief Encrypts and calculates a MAC in one call
//! \return true if the authenticated encryption succeeded, false otherwise
//! \details EncryptAndAuthenticate() encrypts and generates the MAC in one call. The function will truncate MAC if
//! <tt>macSize < TagSize()</tt>.
virtual void EncryptAndAuthenticate(byte *ciphertext, byte *mac, size_t macSize, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *message, size_t messageLength);
//! \brief Decrypts and verifies a MAC in one call
//! \return true if the MAC is valid and the decoding succeeded, false otherwise
//! \details DecryptAndVerify() decrypts and verifies the MAC in one call. The function returns true iff MAC is valid.
//! DecryptAndVerify() will assume MAC is truncated if <tt>macLength < TagSize()</tt>.
virtual bool DecryptAndVerify(byte *message, const byte *mac, size_t macLength, const byte *iv, int ivLength, const byte *header, size_t headerLength, const byte *ciphertext, size_t ciphertextLength);
//! \brief Provides the name of this algorithm
//! \return the standard algorithm name
//! \details The standard algorithm name can be a name like \a AES or \a AES/GCM. Some algorithms
//! do not have standard names yet. For example, there is no standard algorithm name for
//! Shoup's ECIES.
virtual std::string AlgorithmName() const =0;
protected:
const Algorithm & GetAlgorithm() const
{return *static_cast<const MessageAuthenticationCode *>(this);}
virtual void UncheckedSpecifyDataLengths(lword headerLength, lword messageLength, lword footerLength)
{CRYPTOPP_UNUSED(headerLength); CRYPTOPP_UNUSED(messageLength); CRYPTOPP_UNUSED(footerLength);}
};
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
typedef SymmetricCipher StreamCipher;
#endif
//! \class RandomNumberGenerator
//! \brief Interface for random number generators
//! \details The library provides a number of random number generators, from software based to hardware based generators.
//! \details All generated values are uniformly distributed over the range specified.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE RandomNumberGenerator : public Algorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~RandomNumberGenerator() {}
#endif
//! \brief Update RNG state with additional unpredictable values
//! \param input the entropy to add to the generator
//! \param length the size of the input buffer
//! \throws NotImplemented
//! \details A generator may or may not accept additional entropy. Call CanIncorporateEntropy() to test for the
//! ability to use additional entropy.
//! \details If a derived class does not override IncorporateEntropy(), then the base class throws
//! NotImplemented.
virtual void IncorporateEntropy(const byte *input, size_t length)
{
CRYPTOPP_UNUSED(input); CRYPTOPP_UNUSED(length);
throw NotImplemented("RandomNumberGenerator: IncorporateEntropy not implemented");
}
//! \brief Determines if a generator can accept additional entropy
//! \return true if IncorporateEntropy() is implemented
virtual bool CanIncorporateEntropy() const {return false;}
//! \brief Generate new random byte and return it
//! \return a random 8-bit byte
//! \details Default implementation calls GenerateBlock() with one byte.
//! \details All generated values are uniformly distributed over the range specified within the
//! the contraints of a particular generator.
virtual byte GenerateByte();
//! \brief Generate new random bit and return it
//! \return a random bit
//! \details The default implementation calls GenerateByte() and return its lowest bit.
//! \details All generated values are uniformly distributed over the range specified within the
//! the contraints of a particular generator.
virtual unsigned int GenerateBit();
//! \brief Generate a random 32 bit word in the range min to max, inclusive
//! \param min the lower bound of the range
//! \param max the upper bound of the range
//! \return a random 32-bit word
//! \details The default implementation calls Crop() on the difference between max and
//! min, and then returns the result added to min.
//! \details All generated values are uniformly distributed over the range specified within the
//! the contraints of a particular generator.
virtual word32 GenerateWord32(word32 min=0, word32 max=0xffffffffUL);
//! \brief Generate random array of bytes
//! \param output the byte buffer
//! \param size the length of the buffer, in bytes
//! \details All generated values are uniformly distributed over the range specified within the
//! the contraints of a particular generator.
//! \note A derived generator \a must override either GenerateBlock() or
//! GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
virtual void GenerateBlock(byte *output, size_t size);
//! \brief Generate random bytes into a BufferedTransformation
//! \param target the BufferedTransformation object which receives the bytes
//! \param channel the channel on which the bytes should be pumped
//! \param length the number of bytes to generate
//! \details The default implementation calls GenerateBlock() and pumps the result into
//! the DEFAULT_CHANNEL of the target.
//! \details All generated values are uniformly distributed over the range specified within the
//! the contraints of a particular generator.
//! \note A derived generator \a must override either GenerateBlock() or
//! GenerateIntoBufferedTransformation(). They can override both, or have one call the other.
virtual void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length);
//! \brief Generate and discard n bytes
//! \param n the number of bytes to generate and discard
virtual void DiscardBytes(size_t n);
//! \brief Randomly shuffle the specified array
//! \param begin an iterator to the first element in the array
//! \param end an iterator beyond the last element in the array
//! \details The resulting permutation is uniformly distributed.
template <class IT> void Shuffle(IT begin, IT end)
{
// TODO: What happens if there are more than 2^32 elements?
for (; begin != end; ++begin)
std::iter_swap(begin, begin + GenerateWord32(0, end-begin-1));
}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
byte GetByte() {return GenerateByte();}
unsigned int GetBit() {return GenerateBit();}
word32 GetLong(word32 a=0, word32 b=0xffffffffL) {return GenerateWord32(a, b);}
word16 GetShort(word16 a=0, word16 b=0xffff) {return (word16)GenerateWord32(a, b);}
void GetBlock(byte *output, size_t size) {GenerateBlock(output, size);}
#endif
};
//! \brief Random Number Generator that does not produce random numbers
//! \return reference that can be passed to functions that require a RandomNumberGenerator
//! \details NullRNG() returns a reference that can be passed to functions that require a
//! RandomNumberGenerator but don't actually use it. The NullRNG() throws NotImplemented
//! when a generation function is called.
//! \sa ClassNullRNG, PK_SignatureScheme::IsProbabilistic()
CRYPTOPP_DLL RandomNumberGenerator & CRYPTOPP_API NullRNG();
//! \class WaitObjectContainer
class WaitObjectContainer;
//! \class CallStack
class CallStack;
//! \brief Interface for objects that can be waited on.
class CRYPTOPP_NO_VTABLE Waitable
{
public:
virtual ~Waitable() {}
//! \brief Maximum number of wait objects that this object can return
//! \return the maximum number of wait objects
virtual unsigned int GetMaxWaitObjectCount() const =0;
//! \brief Retrieves waitable objects
//! \param container the wait container to receive the references to the objects.
//! \param callStack CallStack object used to select waitable objects
//! \details GetWaitObjects is usually called in one of two ways. First, it can
//! be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
//! Second, if in an outer GetWaitObjects() method that itself takes a callStack
//! parameter, it can be called like
//! <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
virtual void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) =0;
//! \brief Wait on this object
//! \return true if the wait succeeded, false otherwise
//! \details Wait() is the same as creating an empty container, calling GetWaitObjects(), and then calling
//! Wait() on the container.
bool Wait(unsigned long milliseconds, CallStack const& callStack);
};
//! \brief Default channel for BufferedTransformation
//! \details DEFAULT_CHANNEL is equal to an empty string
extern CRYPTOPP_DLL const std::string DEFAULT_CHANNEL;
//! \brief Channel for additional authenticated data
//! \details AAD_CHANNEL is equal to "AAD"
extern CRYPTOPP_DLL const std::string AAD_CHANNEL;
//! \brief Interface for buffered transformations
//! \details BufferedTransformation is a generalization of BlockTransformation,
//! StreamTransformation and HashTransformation.
//! \details A buffered transformation is an object that takes a stream of bytes as input (this may
//! be done in stages), does some computation on them, and then places the result into an internal
//! buffer for later retrieval. Any partial result already in the output buffer is not modified
//! by further input.
//! \details If a method takes a "blocking" parameter, and you pass false for it, then the method
//! will return before all input has been processed if the input cannot be processed without waiting
//! (for network buffers to become available, for example). In this case the method will return true
//! or a non-zero integer value. When this happens you must continue to call the method with the same
//! parameters until it returns false or zero, before calling any other method on it or attached
//! /p BufferedTransformation. The integer return value in this case is approximately
//! the number of bytes left to be processed, and can be used to implement a progress bar.
//! \details For functions that take a "propagation" parameter, <tt>propagation != 0</tt> means pass on
//! the signal to attached BufferedTransformation objects, with propagation decremented at each
//! step until it reaches <tt>0</tt>. <tt>-1</tt> means unlimited propagation.
//! \details \a All of the retrieval functions, like Get() and GetWord32(), return the actual
//! number of bytes retrieved, which is the lesser of the request number and MaxRetrievable().
//! \details \a Most of the input functions, like Put() and PutWord32(), return the number of
//! bytes remaining to be processed. A 0 value means all bytes were processed, and a non-0 value
//! means bytes remain to be processed.
//! \nosubgrouping
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE BufferedTransformation : public Algorithm, public Waitable
{
public:
// placed up here for CW8
static const std::string &NULL_CHANNEL; // same as DEFAULT_CHANNEL, for backwards compatibility
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~BufferedTransformation() {}
#endif
//! \brief Construct a BufferedTransformation
BufferedTransformation() : Algorithm(false) {}
//! \brief Provides a reference to this object
//! \return A reference to this object
//! \details Useful for passing a temporary object to a function that takes a non-const reference
BufferedTransformation& Ref() {return *this;}
//! \name INPUT
//@{
//! \brief Input a byte for processing
//! \param inByte the 8-bit byte (octet) to be processed.
//! \param blocking specifies whether the object should block when processing input.
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
//! \details <tt>Put(byte)</tt> calls <tt>Put(byte*, size_t)</tt>.
size_t Put(byte inByte, bool blocking=true)
{return Put(&inByte, 1, blocking);}
//! \brief Input a byte buffer for processing
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
//! \details Internally, Put() calls Put2().
size_t Put(const byte *inString, size_t length, bool blocking=true)
{return Put2(inString, length, 0, blocking);}
//! Input a 16-bit word for processing.
//! \param value the 16-bit value to be processed
//! \param order the ByteOrder in which the word should be processed
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
size_t PutWord16(word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
//! Input a 32-bit word for processing.
//! \param value the 32-bit value to be processed.
//! \param order the ByteOrder in which the word should be processed.
//! \param blocking specifies whether the object should block when processing input.
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
size_t PutWord32(word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
//! \brief Request space which can be written into by the caller
//! \param size the requested size of the buffer
//! \details The purpose of this method is to help avoid extra memory allocations.
//! \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
//! size is the requested size of the buffer. When the call returns, size is the size of
//! the array returned to the caller.
//! \details The base class implementation sets size to 0 and returns NULL.
//! \note Some objects, like ArraySink, cannot create a space because its fixed. In the case of
//! an ArraySink, the pointer to the array is returned and the size is remaining size.
virtual byte * CreatePutSpace(size_t &size)
{size=0; return NULL;}
//! \brief Determines whether input can be modifed by the callee
//! \return true if input can be modified, false otherwise
//! \details The base class implementation returns false.
virtual bool CanModifyInput() const
{return false;}
//! \brief Input multiple bytes that may be modified by callee.
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param blocking specifies whether the object should block when processing input
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed
size_t PutModifiable(byte *inString, size_t length, bool blocking=true)
{return PutModifiable2(inString, length, 0, blocking);}
//! \brief Signals the end of messages to the object
//! \param propagation the number of attached transformations the MessageEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
bool MessageEnd(int propagation=-1, bool blocking=true)
{return !!Put2(NULL, 0, propagation < 0 ? -1 : propagation+1, blocking);}
//! \brief Input multiple bytes for processing and signal the end of a message
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param propagation the number of attached transformations the MessageEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
//! \details Internally, PutMessageEnd() calls Put2() with a modified propagation to
//! ensure all attached transformations finish processing the message.
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
size_t PutMessageEnd(const byte *inString, size_t length, int propagation=-1, bool blocking=true)
{return Put2(inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
//! \brief Input multiple bytes for processing
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param messageEnd means how many filters to signal MessageEnd() to, including this one
//! \param blocking specifies whether the object should block when processing input
//! \details Derived classes must implement Put2().
virtual size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) =0;
//! \brief Input multiple bytes that may be modified by callee.
//! \param inString the byte buffer to process.
//! \param length the size of the string, in bytes.
//! \param messageEnd means how many filters to signal MessageEnd() to, including this one.
//! \param blocking specifies whether the object should block when processing input.
//! \details Internally, PutModifiable2() calls Put2().
virtual size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
{return Put2(inString, length, messageEnd, blocking);}
//! \class BlockingInputOnly
//! \brief Exception thrown by objects that have \a not implemented nonblocking input processing
//! \details BlockingInputOnly inherits from NotImplemented
struct BlockingInputOnly : public NotImplemented
{BlockingInputOnly(const std::string &s) : NotImplemented(s + ": Nonblocking input is not implemented by this object.") {}};
//@}
//! \name WAITING
//@{
//! \brief Retrieves the maximum number of waitable objects
unsigned int GetMaxWaitObjectCount() const;
//! \brief Retrieves waitable objects
//! \param container the wait container to receive the references to the objects
//! \param callStack CallStack object used to select waitable objects
//! \details GetWaitObjects is usually called in one of two ways. First, it can
//! be called like <tt>something.GetWaitObjects(c, CallStack("my func after X", 0));</tt>.
//! Second, if in an outer GetWaitObjects() method that itself takes a callStack
//! parameter, it can be called like
//! <tt>innerThing.GetWaitObjects(c, CallStack("MyClass::GetWaitObjects at X", &callStack));</tt>.
void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack);
//@} // WAITING
//! \name SIGNALS
//@{
//! \brief Initialize or reinitialize this object, without signal propagation
//! \param parameters a set of NameValuePairs to initialize this object
//! \throws NotImplemented
//! \details IsolatedInitialize() is used to initialize or reinitialize an object using a variable
//! number of arbitrarily typed arguments. The function avoids the need for multiple constuctors providing
//! all possible combintations of configurable parameters.
//! \details IsolatedInitialize() does not call Initialize() on attached transformations. If initialization
//! should be propagated, then use the Initialize() function.
//! \details If a derived class does not override IsolatedInitialize(), then the base class throws
//! NotImplemented.
virtual void IsolatedInitialize(const NameValuePairs &parameters) {
CRYPTOPP_UNUSED(parameters);
throw NotImplemented("BufferedTransformation: this object can't be reinitialized");
}
//! \brief Flushes data buffered by this object, without signal propagation
//! \param hardFlush indicates whether all data should be flushed
//! \param blocking specifies whether the object should block when processing input
//! \note hardFlush must be used with care
virtual bool IsolatedFlush(bool hardFlush, bool blocking) =0;
//! \brief Marks the end of a series of messages, without signal propagation
//! \param blocking specifies whether the object should block when completing the processing on
//! the current series of messages
virtual bool IsolatedMessageSeriesEnd(bool blocking)
{CRYPTOPP_UNUSED(blocking); return false;}
//! \brief Initialize or reinitialize this object, with signal propagation
//! \param parameters a set of NameValuePairs to initialize or reinitialize this object
//! \param propagation the number of attached transformations the Initialize() signal should be passed
//! \details Initialize() is used to initialize or reinitialize an object using a variable number of
//! arbitrarily typed arguments. The function avoids the need for multiple constuctors providing
//! all possible combintations of configurable parameters.
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
virtual void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1);
//! \brief Flush buffered input and/or output, with signal propagation
//! \param hardFlush is used to indicate whether all data should be flushed
//! \param propagation the number of attached transformations the Flush() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
//! \note Hard flushes must be used with care. It means try to process and output everything, even if
//! there may not be enough data to complete the action. For example, hard flushing a HexDecoder
//! would cause an error if you do it after inputing an odd number of hex encoded characters.
//! \note For some types of filters, like ZlibDecompressor, hard flushes can only
//! be done at "synchronization points". These synchronization points are positions in the data
//! stream that are created by hard flushes on the corresponding reverse filters, in this
//! example ZlibCompressor. This is useful when zlib compressed data is moved across a
//! network in packets and compression state is preserved across packets, as in the SSH2 protocol.
virtual bool Flush(bool hardFlush, int propagation=-1, bool blocking=true);
//! \brief Marks the end of a series of messages, with signal propagation
//! \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \details Each object that receives the signal will perform its processing, decrement
//! propagation, and then pass the signal on to attached transformations if the value is not 0.
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
//! \note There should be a MessageEnd() immediately before MessageSeriesEnd().
virtual bool MessageSeriesEnd(int propagation=-1, bool blocking=true);
//! \brief Set propagation of automatically generated and transferred signals
//! \param propagation then new value
//! \details Setting propagation to <tt>0</tt> means do not automaticly generate signals. Setting
//! propagation to <tt>-1</tt> means unlimited propagation.
virtual void SetAutoSignalPropagation(int propagation)
{CRYPTOPP_UNUSED(propagation);}
//! \brief Retrieve automatic signal propagation value
//! \return the number of attached transformations the signal is propogated to. 0 indicates
//! the signal is only witnessed by this object
virtual int GetAutoSignalPropagation() const {return 0;}
public:
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
void Close() {MessageEnd();}
#endif
//@}
//! \name RETRIEVAL OF ONE MESSAGE
//@{
//! \brief Provides the number of bytes ready for retrieval
//! \return the number of bytes ready for retrieval
//! \details All retrieval functions return the actual number of bytes retrieved, which is
//! the lesser of the request number and MaxRetrievable()
virtual lword MaxRetrievable() const;
//! \brief Determines whether bytes are ready for retrieval
//! \returns true if bytes are available for retrieval, false otherwise
virtual bool AnyRetrievable() const;
//! \brief Retrieve a 8-bit byte
//! \param outByte the 8-bit value to be retrieved
//! \return the number of bytes consumed during the call.
//! \details Use the return value of Get to detect short reads.
virtual size_t Get(byte &outByte);
//! \brief Retrieve a block of bytes
//! \param outString a block of bytes
//! \param getMax the number of bytes to Get
//! \return the number of bytes consumed during the call.
//! \details Use the return value of Get to detect short reads.
virtual size_t Get(byte *outString, size_t getMax);
//! \brief Peek a 8-bit byte
//! \param outByte the 8-bit value to be retrieved
//! \return the number of bytes read during the call.
//! \details Peek does not remove bytes from the object. Use the return value of
//! Get to detect short reads.
virtual size_t Peek(byte &outByte) const;
//! \brief Peek a block of bytes
//! \param outString a block of bytes
//! \param peekMax the number of bytes to Peek
//! \return the number of bytes read during the call.
//! \details Peek does not remove bytes from the object. Use the return value of
//! Get to detect short reads.
virtual size_t Peek(byte *outString, size_t peekMax) const;
//! \brief Retrieve a 16-bit word
//! \param value the 16-bit value to be retrieved
//! \param order the ByteOrder in which the word should be retrieved
//! \return the number of bytes consumed during the call.
//! \details Use the return value of GetWord16 to detect short reads.
size_t GetWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER);
//! \brief Retrieve a 32-bit word
//! \param value the 32-bit value to be retrieved
//! \param order the ByteOrder in which the word should be retrieved
//! \return the number of bytes consumed during the call.
//! \details Use the return value of GetWord16 to detect short reads.
size_t GetWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER);
//! \brief Peek a 16-bit word
//! \param value the 16-bit value to be retrieved
//! \param order the ByteOrder in which the word should be retrieved
//! \return the number of bytes consumed during the call.
//! \details Peek does not consume bytes in the stream. Use the return value
//! of GetWord16 to detect short reads.
size_t PeekWord16(word16 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
//! \brief Peek a 32-bit word
//! \param value the 32-bit value to be retrieved
//! \param order the ByteOrder in which the word should be retrieved
//! \return the number of bytes consumed during the call.
//! \details Peek does not consume bytes in the stream. Use the return value
//! of GetWord16 to detect short reads.
size_t PeekWord32(word32 &value, ByteOrder order=BIG_ENDIAN_ORDER) const;
//! move transferMax bytes of the buffered output to target as input
//! \brief Transfer bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param transferMax the number of bytes to transfer
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes transferred during the call.
//! \details TransferTo removes bytes from this object and moves them to the destination.
//! \details The function always returns transferMax. If an accurate count is needed, then use TransferTo2.
lword TransferTo(BufferedTransformation &target, lword transferMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL)
{TransferTo2(target, transferMax, channel); return transferMax;}
//! \brief Discard skipMax bytes from the output buffer
//! \param skipMax the number of bytes to discard
//! \details Skip() discards bytes from the output buffer, which is the AttachedTransformation(), if present.
//! The function always returns skipMax.
//! \details If you want to skip bytes from a Source, then perform the following.
//! <pre>StringSource ss(str, false, new Redirector(TheBitBucket()));
//! ss.Pump(10); // Skip 10 bytes from Source
//! ss.Detach(new FilterChain(...));
//! ss.PumpAll();
//! </pre>
virtual lword Skip(lword skipMax=LWORD_MAX);
//! copy copyMax bytes of the buffered output to target as input
//! \brief Copy bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param copyMax the number of bytes to copy
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes copied during the call.
//! \details CopyTo copies bytes from this object to the destination. The bytes are not removed from this object.
//! \details The function always returns copyMax. If an accurate count is needed, then use CopyRangeTo2.
lword CopyTo(BufferedTransformation &target, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
{return CopyRangeTo(target, 0, copyMax, channel);}
//! \brief Copy bytes from this object using an index to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param position the 0-based index of the byte stream to begin the copying
//! \param copyMax the number of bytes to copy
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes copied during the call.
//! \details CopyTo copies bytes from this object to the destination. The bytes remain in this
//! object. Copying begins at the index position in the current stream, and not from an absolute
//! position in the stream.
//! \details The function returns the new position in the stream after transferring the bytes starting at the index.
lword CopyRangeTo(BufferedTransformation &target, lword position, lword copyMax=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL) const
{lword i = position; CopyRangeTo2(target, i, i+copyMax, channel); return i-position;}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
unsigned long MaxRetrieveable() const {return MaxRetrievable();}
#endif
//@}
//! \name RETRIEVAL OF MULTIPLE MESSAGES
//@{
//! \brief Provides the number of bytes ready for retrieval
//! \return the number of bytes ready for retrieval
virtual lword TotalBytesRetrievable() const;
//! \brief Provides the number of meesages processed by this object
//! \return the number of meesages processed by this object
//! \details NumberOfMessages returns number of times MessageEnd() has been
//! received minus messages retrieved or skipped
virtual unsigned int NumberOfMessages() const;
//! \brief Determines if any messages are available for retrieval
//! \returns true if <tt>NumberOfMessages() &gt; 0</tt>, false otherwise
//! \details AnyMessages returns true if <tt>NumberOfMessages() &gt; 0</tt>
virtual bool AnyMessages() const;
//! \brief Start retrieving the next message
//! \return true if a message is ready for retrieval
//! \details GetNextMessage() returns true if a message is ready for retrieval; false
//! if no more messages exist or this message is not completely retrieved.
virtual bool GetNextMessage();
//! \brief Skip a number of meessages
//! \return 0 if the requested number of messages was skipped, non-0 otherwise
//! \details SkipMessages() skips count number of messages. If there is an AttachedTransformation()
//! then SkipMessages() is called on the attached transformation. If there is no attached
//! transformation, then count number of messages are sent to TheBitBucket() using TransferMessagesTo().
virtual unsigned int SkipMessages(unsigned int count=UINT_MAX);
//! \brief Transfer messages from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param count the number of messages to transfer
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
//! \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
//! If all bytes are not transferred for a message, then processing stops and the number of remaining
//! bytes is returned. TransferMessagesTo() does not proceed to the next message.
//! \details A return value of 0 indicates all messages were successfully transferred.
unsigned int TransferMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL)
{TransferMessagesTo2(target, count, channel); return count;}
//! \brief Copy messages from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param count the number of messages to transfer
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
//! \details CopyMessagesTo copies messages from this object and copies them to the destination.
//! If all bytes are not transferred for a message, then processing stops and the number of remaining
//! bytes is returned. CopyMessagesTo() does not proceed to the next message.
//! \details A return value of 0 indicates all messages were successfully copied.
unsigned int CopyMessagesTo(BufferedTransformation &target, unsigned int count=UINT_MAX, const std::string &channel=DEFAULT_CHANNEL) const;
//! \brief Skip all messages in the series
virtual void SkipAll();
//! \brief Transfer all bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param channel the channel on which the transfer should occur
//! \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
//! \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
//! Internally TransferAllTo() calls TransferAllTo2().
void TransferAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL)
{TransferAllTo2(target, channel);}
//! \brief Copy messages from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param channel the channel on which the transfer should occur
//! \details CopyAllTo copies messages from this object and copies them to the destination.
void CopyAllTo(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL) const;
//! \brief Retrieve the next message in a series
//! \return true if a message was retreved, false otherwise
//! \details Internally, the base class implementation returns false.
virtual bool GetNextMessageSeries() {return false;}
//! \brief Provides the number of messages in a series
//! \return the number of messages in this series
virtual unsigned int NumberOfMessagesInThisSeries() const {return NumberOfMessages();}
//! \brief Provides the number of messages in a series
//! \return the number of messages in this series
virtual unsigned int NumberOfMessageSeries() const {return 0;}
//@}
//! \name NON-BLOCKING TRANSFER OF OUTPUT
//@{
// upon return, byteCount contains number of bytes that have finished being transfered,
// and returns the number of bytes left in the current transfer block
//! \brief Transfer bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param byteCount the number of bytes to transfer
//! \param channel the channel on which the transfer should occur
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the transfer block (i.e., bytes not transferred)
//! \details TransferTo() removes bytes from this object and moves them to the destination.
//! Transfer begins at the index position in the current stream, and not from an absolute
//! position in the stream.
//! \details byteCount is an \a IN and \a OUT parameter. When the call is made,
//! byteCount is the requested size of the transfer. When the call returns, byteCount is
//! the number of bytes that were transferred.
virtual size_t TransferTo2(BufferedTransformation &target, lword &byteCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) =0;
// upon return, begin contains the start position of data yet to be finished copying,
// and returns the number of bytes left in the current transfer block
//! \brief Copy bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param begin the 0-based index of the first byte to copy in the stream
//! \param end the 0-based index of the last byte to copy in the stream
//! \param channel the channel on which the transfer should occur
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the copy block (i.e., bytes not copied)
//! \details CopyRangeTo2 copies bytes from this object to the destination. The bytes are not
//! removed from this object. Copying begins at the index position in the current stream, and
//! not from an absolute position in the stream.
//! \details begin is an \a IN and \a OUT parameter. When the call is made, begin is the
//! starting position of the copy. When the call returns, begin is the position of the first
//! byte that was \a not copied (which may be different tahn end). begin can be used for
//! subsequent calls to CopyRangeTo2.
virtual size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const =0;
// upon return, messageCount contains number of messages that have finished being transfered,
// and returns the number of bytes left in the current transfer block
//! \brief Transfer messages from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param messageCount the number of messages to transfer
//! \param channel the channel on which the transfer should occur
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
//! \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
//! \details messageCount is an \a IN and \a OUT parameter. When the call is made, messageCount is the
//! the number of messages requested to be transferred. When the call returns, messageCount is the
//! number of messages actually transferred.
size_t TransferMessagesTo2(BufferedTransformation &target, unsigned int &messageCount, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
// returns the number of bytes left in the current transfer block
//! \brief Transfer all bytes from this object to another BufferedTransformation
//! \param target the destination BufferedTransformation
//! \param channel the channel on which the transfer should occur
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the current transfer block (i.e., bytes not transferred)
//! \details TransferMessagesTo2() removes messages from this object and moves them to the destination.
size_t TransferAllTo2(BufferedTransformation &target, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
//@}
//! \name CHANNELS
//@{
//! \brief Exception thrown when a filter does not support named channels
struct NoChannelSupport : public NotImplemented
{NoChannelSupport(const std::string &name) : NotImplemented(name + ": this object doesn't support multiple channels") {}};
//! \brief Exception thrown when a filter does not recognize a named channel
struct InvalidChannelName : public InvalidArgument
{InvalidChannelName(const std::string &name, const std::string &channel) : InvalidArgument(name + ": unexpected channel name \"" + channel + "\"") {}};
//! \brief Input a byte for processing on a channel
//! \param channel the channel to process the data.
//! \param inByte the 8-bit byte (octet) to be processed.
//! \param blocking specifies whether the object should block when processing input.
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
size_t ChannelPut(const std::string &channel, byte inByte, bool blocking=true)
{return ChannelPut(channel, &inByte, 1, blocking);}
//! \brief Input a byte buffer for processing on a channel
//! \param channel the channel to process the data
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param blocking specifies whether the object should block when processing input
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
size_t ChannelPut(const std::string &channel, const byte *inString, size_t length, bool blocking=true)
{return ChannelPut2(channel, inString, length, 0, blocking);}
//! \brief Input multiple bytes that may be modified by callee on a channel
//! \param channel the channel to process the data.
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param blocking specifies whether the object should block when processing input
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
size_t ChannelPutModifiable(const std::string &channel, byte *inString, size_t length, bool blocking=true)
{return ChannelPutModifiable2(channel, inString, length, 0, blocking);}
//! \brief Input a 16-bit word for processing on a channel.
//! \param channel the channel to process the data.
//! \param value the 16-bit value to be processed.
//! \param order the ByteOrder in which the word should be processed.
//! \param blocking specifies whether the object should block when processing input.
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
size_t ChannelPutWord16(const std::string &channel, word16 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
//! \brief Input a 32-bit word for processing on a channel.
//! \param channel the channel to process the data.
//! \param value the 32-bit value to be processed.
//! \param order the ByteOrder in which the word should be processed.
//! \param blocking specifies whether the object should block when processing input.
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
size_t ChannelPutWord32(const std::string &channel, word32 value, ByteOrder order=BIG_ENDIAN_ORDER, bool blocking=true);
//! \brief Signal the end of a message
//! \param channel the channel to process the data.
//! \param propagation the number of attached transformations the ChannelMessageEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \return 0 indicates all bytes were processed during the call. Non-0 indicates the
//! number of bytes that were \a not processed.
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
bool ChannelMessageEnd(const std::string &channel, int propagation=-1, bool blocking=true)
{return !!ChannelPut2(channel, NULL, 0, propagation < 0 ? -1 : propagation+1, blocking);}
//! \brief Input multiple bytes for processing and signal the end of a message
//! \param channel the channel to process the data.
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param propagation the number of attached transformations the ChannelPutMessageEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
size_t ChannelPutMessageEnd(const std::string &channel, const byte *inString, size_t length, int propagation=-1, bool blocking=true)
{return ChannelPut2(channel, inString, length, propagation < 0 ? -1 : propagation+1, blocking);}
//! \brief Request space which can be written into by the caller
//! \param channel the channel to process the data
//! \param size the requested size of the buffer
//! \return a pointer to a memroy block with length size
//! \details The purpose of this method is to help avoid extra memory allocations.
//! \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
//! size is the requested size of the buffer. When the call returns, size is the size of
//! the array returned to the caller.
//! \details The base class implementation sets size to 0 and returns NULL.
//! \note Some objects, like ArraySink(), cannot create a space because its fixed. In the case of
//! an ArraySink(), the pointer to the array is returned and the size is remaining size.
virtual byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);
//! \brief Input multiple bytes for processing on a channel.
//! \param channel the channel to process the data.
//! \param inString the byte buffer to process.
//! \param length the size of the string, in bytes.
//! \param messageEnd means how many filters to signal MessageEnd() to, including this one.
//! \param blocking specifies whether the object should block when processing input.
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
virtual size_t ChannelPut2(const std::string &channel, const byte *inString, size_t length, int messageEnd, bool blocking);
//! \brief Input multiple bytes that may be modified by callee on a channel
//! \param channel the channel to process the data
//! \param inString the byte buffer to process
//! \param length the size of the string, in bytes
//! \param messageEnd means how many filters to signal MessageEnd() to, including this one
//! \param blocking specifies whether the object should block when processing input
//! \return the number of bytes that remain in the block (i.e., bytes not processed)
virtual size_t ChannelPutModifiable2(const std::string &channel, byte *inString, size_t length, int messageEnd, bool blocking);
//! \brief Flush buffered input and/or output on a channel
//! \param channel the channel to flush the data
//! \param hardFlush is used to indicate whether all data should be flushed
//! \param propagation the number of attached transformations the ChannelFlush() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \return true of the Flush was successful
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
virtual bool ChannelFlush(const std::string &channel, bool hardFlush, int propagation=-1, bool blocking=true);
//! \brief Marks the end of a series of messages on a channel
//! \param channel the channel to signal the end of a series of messages
//! \param propagation the number of attached transformations the ChannelMessageSeriesEnd() signal should be passed
//! \param blocking specifies whether the object should block when processing input
//! \details Each object that receives the signal will perform its processing, decrement
//! propagation, and then pass the signal on to attached transformations if the value is not 0.
//! \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
//! object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
//! \note There should be a MessageEnd() immediately before MessageSeriesEnd().
virtual bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true);
//! \brief Sets the default retrieval channel
//! \param channel the channel to signal the end of a series of messages
//! \note this function may not be implemented in all objects that should support it.
virtual void SetRetrievalChannel(const std::string &channel);
//@}
//! \name ATTACHMENT
//! \details Some BufferedTransformation objects (e.g. Filter objects) allow other BufferedTransformation objects to be
//! attached. When this is done, the first object instead of buffering its output, sends that output to the attached
//! object as input. The entire attachment chain is deleted when the anchor object is destructed.
//@{
//! \brief Determines whether the object allows attachment
//! \return true if the object allows an attachment, false otherwise
//! \details Sources and Filters will returns true, while Sinks and other objects will return false.
virtual bool Attachable() {return false;}
//! \brief Returns the object immediately attached to this object
//! \return the attached transformation
//! \details AttachedTransformation() returns NULL if there is no attachment. The non-const
//! version of AttachedTransformation() always returns NULL.
virtual BufferedTransformation *AttachedTransformation() {assert(!Attachable()); return 0;}
//! \brief Returns the object immediately attached to this object
//! \return the attached transformation
//! \details AttachedTransformation() returns NULL if there is no attachment. The non-const
//! version of AttachedTransformation() always returns NULL.
virtual const BufferedTransformation *AttachedTransformation() const
{return const_cast<BufferedTransformation *>(this)->AttachedTransformation();}
//! \brief Delete the current attachment chain and attach a new one
//! \param newAttachment the new BufferedTransformation to attach
//! \throws NotImplemented
//! \details Detach delete the current attachment chain and replace it with an optional newAttachment
//! \details If a derived class does not override Detach, then the base class throws
//! NotImplemented.
virtual void Detach(BufferedTransformation *newAttachment = 0) {
CRYPTOPP_UNUSED(newAttachment); assert(!Attachable());
throw NotImplemented("BufferedTransformation: this object is not attachable");
}
//! \brief Add newAttachment to the end of attachment chain
//! \param newAttachment the attachment to add to the end of the chain
virtual void Attach(BufferedTransformation *newAttachment);
//@}
protected:
//! \brief Decrements the propagation count while clamping at 0
//! \return the decremented propagation or 0
static int DecrementPropagation(int propagation)
{return propagation != 0 ? propagation - 1 : 0;}
private:
byte m_buf[4]; // for ChannelPutWord16 and ChannelPutWord32, to ensure buffer isn't deallocated before non-blocking operation completes
};
//! \brief An input discarding BufferedTransformation
//! \return a reference to a BufferedTransformation object that discards all input
CRYPTOPP_DLL BufferedTransformation & TheBitBucket();
//! \class CryptoMaterial
//! \brief Interface for crypto material, such as public and private keys, and crypto parameters
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoMaterial : public NameValuePairs
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~CryptoMaterial() {}
#endif
//! Exception thrown when invalid crypto material is detected
class CRYPTOPP_DLL InvalidMaterial : public InvalidDataFormat
{
public:
explicit InvalidMaterial(const std::string &s) : InvalidDataFormat(s) {}
};
//! \brief Assign values to this object
//! \details This function can be used to create a public key from a private key.
virtual void AssignFrom(const NameValuePairs &source) =0;
//! \brief Check this object for errors
//! \param rng a RandomNumberGenerator for objects which use randomized testing
//! \param level the level of thoroughness
//! \returns true if the tests succeed, false otherwise
//! \details There are four levels of thoroughness:
//! <ul>
//! <li>0 - using this object won't cause a crash or exception
//! <li>1 - this object will probably function, and encrypt, sign, other operations correctly
//! <li>2 - ensure this object will function correctly, and perform reasonable security checks
//! <li>3 - perform reasonable security checks, and do checks that may take a long time
//! </ul>
//! \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0.
//! Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended.
//! \sa ThrowIfInvalid()
virtual bool Validate(RandomNumberGenerator &rng, unsigned int level) const =0;
//! \brief Check this object for errors
//! \param rng a RandomNumberGenerator for objects which use randomized testing
//! \param level the level of thoroughness
//! \throws InvalidMaterial
//! \details Internally, ThrowIfInvalid() calls Validate() and throws InvalidMaterial() if validation fails.
//! \sa Validate()
virtual void ThrowIfInvalid(RandomNumberGenerator &rng, unsigned int level) const
{if (!Validate(rng, level)) throw InvalidMaterial("CryptoMaterial: this object contains invalid values");}
//! \brief Saves a key to a BufferedTransformation
//! \param bt the destination BufferedTransformation
//! \throws NotImplemented
//! \details Save() writes the material to a BufferedTransformation.
//! \details If the material is a key, then the key is written with ASN.1 DER encoding. The key
//! includes an object identifier with an algorthm id, like a subjectPublicKeyInfo.
//! \details A "raw" key without the "key info" can be saved using a key's DEREncode() method.
//! \details If a derived class does not override Save(), then the base class throws
//! NotImplemented().
virtual void Save(BufferedTransformation &bt) const
{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support saving");}
//! \brief Loads a key from a BufferedTransformation
//! \param bt the source BufferedTransformation
//! \throws KeyingErr
//! \details Load() attempts to read material from a BufferedTransformation. If the
//! material is a key that was generated outside the library, then the following
//! usually applies:
//! <ul>
//! <li>the key should be ASN.1 BER encoded
//! <li>the key should be a "key info"
//! </ul>
//! \details "key info" means the key should have an object identifier with an algorthm id,
//! like a subjectPublicKeyInfo.
//! \details To read a "raw" key without the "key info", then call the key's BERDecode() method.
//! \note Load generally does not check that the key is valid. Call Validate(), if needed.
virtual void Load(BufferedTransformation &bt)
{CRYPTOPP_UNUSED(bt); throw NotImplemented("CryptoMaterial: this object does not support loading");}
//! \brief Determines whether the object supports precomputation
//! \return true if the object supports precomputation, false otherwise
//! \sa Precompute()
virtual bool SupportsPrecomputation() const {return false;}
//! \brief Perform precomputation
//! \param precomputationStorage the suggested number of objects for the precompute table
//! \throws NotImplemented
//! \details The exact semantics of Precompute() varies, but it typically means calculate
//! a table of n objects that can be used later to speed up computation.
//! \details If a derived class does not override Precompute(), then the base class throws
//! NotImplemented.
//! \sa SupportsPrecomputation(), LoadPrecomputation(), SavePrecomputation()
virtual void Precompute(unsigned int precomputationStorage) {
CRYPTOPP_UNUSED(precomputationStorage); assert(!SupportsPrecomputation());
throw NotImplemented("CryptoMaterial: this object does not support precomputation");
}
//! \brief Retrieve previously saved precomputation
//! \param storedPrecomputation BufferedTransformation with the saved precomputation
//! \throws NotImplemented
//! \sa SupportsPrecomputation(), Precompute()
virtual void LoadPrecomputation(BufferedTransformation &storedPrecomputation)
{CRYPTOPP_UNUSED(storedPrecomputation); assert(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
//! \brief Save precomputation for later use
//! \param storedPrecomputation BufferedTransformation to write the precomputation
//! \throws NotImplemented
//! \sa SupportsPrecomputation(), Precompute()
virtual void SavePrecomputation(BufferedTransformation &storedPrecomputation) const
{CRYPTOPP_UNUSED(storedPrecomputation); assert(!SupportsPrecomputation()); throw NotImplemented("CryptoMaterial: this object does not support precomputation");}
//! \brief Perform a quick sanity check
//! \details DoQuickSanityCheck() is for internal library use, and it should not be called by library users.
void DoQuickSanityCheck() const {ThrowIfInvalid(NullRNG(), 0);}
#if (defined(__SUNPRO_CC) && __SUNPRO_CC < 0x590)
// Sun Studio 11/CC 5.8 workaround: it generates incorrect code when casting to an empty virtual base class
char m_sunCCworkaround;
#endif
};
//! \class GeneratableCryptoMaterial
//! \brief Interface for generatable crypto material, such as private keys and crypto parameters
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE GeneratableCryptoMaterial : virtual public CryptoMaterial
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~GeneratableCryptoMaterial() {}
#endif
//! \brief Generate a random key or crypto parameters
//! \param rng a RandomNumberGenerator to produce keying material
//! \param params additional initialization parameters
//! \throws KeyingErr if a key can't be generated or algorithm parameters are invalid
//! \details If a derived class does not override GenerateRandom, then the base class throws
//! NotImplemented.
virtual void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &params = g_nullNameValuePairs) {
CRYPTOPP_UNUSED(rng); CRYPTOPP_UNUSED(params);
throw NotImplemented("GeneratableCryptoMaterial: this object does not support key/parameter generation");
}
//! \brief Generate a random key or crypto parameters
//! \param rng a RandomNumberGenerator to produce keying material
//! \param keySize the size of the key, in bits
//! \throws KeyingErr if a key can't be generated or algorithm parameters are invalid
//! \details GenerateRandomWithKeySize calls GenerateRandom with a NameValuePairs
//! object with only "KeySize"
void GenerateRandomWithKeySize(RandomNumberGenerator &rng, unsigned int keySize);
};
//! \brief Interface for public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKey : virtual public CryptoMaterial
{
};
//! \brief Interface for private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKey : public GeneratableCryptoMaterial
{
};
//! \brief Interface for crypto prameters
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE CryptoParameters : public GeneratableCryptoMaterial
{
};
//! \brief Interface for asymmetric algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AsymmetricAlgorithm : public Algorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~AsymmetricAlgorithm() {}
#endif
//! \brief Retrieves a reference to CryptoMaterial
//! \return a reference to the crypto material
virtual CryptoMaterial & AccessMaterial() =0;
//! \brief Retrieves a reference to CryptoMaterial
//! \return a const reference to the crypto material
virtual const CryptoMaterial & GetMaterial() const =0;
//! \brief Loads this object from a BufferedTransformation
//! \param bt a BufferedTransformation object
//! \deprecated for backwards compatibility, calls <tt>AccessMaterial().Load(bt)</tt>
void BERDecode(BufferedTransformation &bt)
{AccessMaterial().Load(bt);}
//! \brief Saves this object to a BufferedTransformation
//! \param bt a BufferedTransformation object
//! \deprecated for backwards compatibility, calls GetMaterial().Save(bt)
void DEREncode(BufferedTransformation &bt) const
{GetMaterial().Save(bt);}
};
//! \brief Interface for asymmetric algorithms using public keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PublicKeyAlgorithm : public AsymmetricAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PublicKeyAlgorithm() {}
#endif
// VC60 workaround: no co-variant return type
//! \brief Retrieves a reference to a Public Key
//! \return a reference to the public key
CryptoMaterial & AccessMaterial()
{return AccessPublicKey();}
//! \brief Retrieves a reference to a Public Key
//! \return a const reference the public key
const CryptoMaterial & GetMaterial() const
{return GetPublicKey();}
//! \brief Retrieves a reference to a Public Key
//! \return a reference to the public key
virtual PublicKey & AccessPublicKey() =0;
//! \brief Retrieves a reference to a Public Key
//! \return a const reference the public key
virtual const PublicKey & GetPublicKey() const
{return const_cast<PublicKeyAlgorithm *>(this)->AccessPublicKey();}
};
//! \brief Interface for asymmetric algorithms using private keys
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PrivateKeyAlgorithm : public AsymmetricAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PrivateKeyAlgorithm() {}
#endif
//! \brief Retrieves a reference to a Private Key
//! \return a reference the private key
CryptoMaterial & AccessMaterial() {return AccessPrivateKey();}
//! \brief Retrieves a reference to a Private Key
//! \return a const reference the private key
const CryptoMaterial & GetMaterial() const {return GetPrivateKey();}
//! \brief Retrieves a reference to a Private Key
//! \return a reference the private key
virtual PrivateKey & AccessPrivateKey() =0;
//! \brief Retrieves a reference to a Private Key
//! \return a const reference the private key
virtual const PrivateKey & GetPrivateKey() const {return const_cast<PrivateKeyAlgorithm *>(this)->AccessPrivateKey();}
};
//! \brief Interface for key agreement algorithms
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE KeyAgreementAlgorithm : public AsymmetricAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~KeyAgreementAlgorithm() {}
#endif
//! \brief Retrieves a reference to Crypto Parameters
//! \return a reference the crypto parameters
CryptoMaterial & AccessMaterial() {return AccessCryptoParameters();}
//! \brief Retrieves a reference to Crypto Parameters
//! \return a const reference the crypto parameters
const CryptoMaterial & GetMaterial() const {return GetCryptoParameters();}
//! \brief Retrieves a reference to Crypto Parameters
//! \return a reference the crypto parameters
virtual CryptoParameters & AccessCryptoParameters() =0;
//! \brief Retrieves a reference to Crypto Parameters
//! \return a const reference the crypto parameters
virtual const CryptoParameters & GetCryptoParameters() const {return const_cast<KeyAgreementAlgorithm *>(this)->AccessCryptoParameters();}
};
//! \brief Interface for public-key encryptors and decryptors
//! \details This class provides an interface common to encryptors and decryptors
//! for querying their plaintext and ciphertext lengths.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_CryptoSystem
{
public:
virtual ~PK_CryptoSystem() {}
//! \brief Provides the maximum length of plaintext for a given ciphertext length
//! \return the maximum size of the plaintext, in bytes
//! \details This function returns 0 if ciphertextLength is not valid (too long or too short).
virtual size_t MaxPlaintextLength(size_t ciphertextLength) const =0;
//! \brief Calculate the length of ciphertext given length of plaintext
//! \return the maximum size of the ciphertext, in bytes
//! \details This function returns 0 if plaintextLength is not valid (too long).
virtual size_t CiphertextLength(size_t plaintextLength) const =0;
//! \brief Determines whether this object supports the use of a named parameter
//! \param name the name of the parameter
//! \return true if the parameter name is supported, false otherwise
//! \details Some possible parameter names: EncodingParameters(), KeyDerivationParameters()
//! and others Parameters listed in argnames.h
virtual bool ParameterSupported(const char *name) const =0;
//! \brief Provides the fixed ciphertext length, if one exists
//! \return the fixed ciphertext length if one exists, otherwise 0
//! \details "Fixed" here means length of ciphertext does not depend on length of plaintext.
//! In this case, it usually does depend on the key length.
virtual size_t FixedCiphertextLength() const {return 0;}
//! \brief Provides the maximum plaintext length given a fixed ciphertext length
//! \return maximum plaintext length given the fixed ciphertext length, if one exists,
//! otherwise return 0.
//! \details FixedMaxPlaintextLength(0 returns the maximum plaintext length given the fixed ciphertext
//! length, if one exists, otherwise return 0.
virtual size_t FixedMaxPlaintextLength() const {return 0;}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
size_t MaxPlainTextLength(size_t cipherTextLength) const {return MaxPlaintextLength(cipherTextLength);}
size_t CipherTextLength(size_t plainTextLength) const {return CiphertextLength(plainTextLength);}
#endif
};
//! \class PK_Encryptor
//! \brief Interface for public-key encryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Encryptor : public PK_CryptoSystem, public PublicKeyAlgorithm
{
public:
//! \brief Exception thrown when trying to encrypt plaintext of invalid length
class CRYPTOPP_DLL InvalidPlaintextLength : public Exception
{
public:
InvalidPlaintextLength() : Exception(OTHER_ERROR, "PK_Encryptor: invalid plaintext length") {}
};
//! \brief Encrypt a byte string
//! \param rng a RandomNumberGenerator derived class
//! \param plaintext the plaintext byte buffer
//! \param plaintextLength the size of the plaintext byte buffer
//! \param ciphertext a byte buffer to hold the encrypted string
//! \param parameters a set of NameValuePairs to initialize this object
//! \pre <tt>CiphertextLength(plaintextLength) != 0</tt> ensures the plaintext isn't too large
//! \pre <tt>COUNTOF(ciphertext) == CiphertextLength(plaintextLength)</tt> ensures the output
//! byte buffer is large enough.
//! \sa PK_Decryptor
virtual void Encrypt(RandomNumberGenerator &rng,
const byte *plaintext, size_t plaintextLength,
byte *ciphertext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;
//! \brief Create a new encryption filter
//! \param rng a RandomNumberGenerator derived class
//! \param attachment an attached transformation
//! \param parameters a set of NameValuePairs to initialize this object
//! \details \p attachment can be \p NULL. The caller is responsible for deleting the returned pointer.
//! Encoding parameters should be passed in the "EP" channel.
virtual BufferedTransformation * CreateEncryptionFilter(RandomNumberGenerator &rng,
BufferedTransformation *attachment=NULL, const NameValuePairs &parameters = g_nullNameValuePairs) const;
};
//! \class PK_Decryptor
//! \brief Interface for public-key decryptors
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Decryptor : public PK_CryptoSystem, public PrivateKeyAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PK_Decryptor() {}
#endif
//! \brief Decrypt a byte string
//! \param rng a RandomNumberGenerator derived class
//! \param ciphertext the encrypted byte buffer
//! \param ciphertextLength the size of the encrypted byte buffer
//! \param plaintext a byte buffer to hold the decrypted string
//! \param parameters a set of NameValuePairs to initialize this object
//! \return the result of the decryption operation
//! \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
//! is valid and holds the the actual length of the plaintext recovered. The result is undefined
//! if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
//! is undefined.
//! \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
//! byte buffer is large enough
//! \sa PK_Encryptor
virtual DecodingResult Decrypt(RandomNumberGenerator &rng,
const byte *ciphertext, size_t ciphertextLength,
byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const =0;
//! \brief Create a new decryption filter
//! \param rng a RandomNumberGenerator derived class
//! \param attachment an attached transformation
//! \param parameters a set of NameValuePairs to initialize this object
//! \return the newly created decryption filter
//! \note the caller is responsible for deleting the returned pointer
virtual BufferedTransformation * CreateDecryptionFilter(RandomNumberGenerator &rng,
BufferedTransformation *attachment=NULL, const NameValuePairs &parameters = g_nullNameValuePairs) const;
//! \brief Decrypt a fixed size ciphertext
//! \param rng a RandomNumberGenerator derived class
//! \param ciphertext the encrypted byte buffer
//! \param plaintext a byte buffer to hold the decrypted string
//! \param parameters a set of NameValuePairs to initialize this object
//! \return the result of the decryption operation
//! \details If DecodingResult::isValidCoding is true, then DecodingResult::messageLength
//! is valid and holds the the actual length of the plaintext recovered. The result is undefined
//! if decryption failed. If DecodingResult::isValidCoding is false, then DecodingResult::messageLength
//! is undefined.
//! \pre <tt>COUNTOF(plaintext) == MaxPlaintextLength(ciphertextLength)</tt> ensures the output
//! byte buffer is large enough
//! \sa PK_Encryptor
DecodingResult FixedLengthDecrypt(RandomNumberGenerator &rng, const byte *ciphertext, byte *plaintext, const NameValuePairs &parameters = g_nullNameValuePairs) const
{return Decrypt(rng, ciphertext, FixedCiphertextLength(), plaintext, parameters);}
};
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
typedef PK_CryptoSystem PK_FixedLengthCryptoSystem;
typedef PK_Encryptor PK_FixedLengthEncryptor;
typedef PK_Decryptor PK_FixedLengthDecryptor;
#endif
//! \class PK_SignatureScheme
//! \brief Interface for public-key signers and verifiers
//! \details This class provides an interface common to signers and verifiers for querying scheme properties
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_SignatureScheme
{
public:
//! \class InvalidKeyLength
//! \brief Exception throw when the private or public key has a length that can't be used
//! \details InvalidKeyLength() may be thrown by any function in this class if the private
//! or public key has a length that can't be used
class CRYPTOPP_DLL InvalidKeyLength : public Exception
{
public:
InvalidKeyLength(const std::string &message) : Exception(OTHER_ERROR, message) {}
};
//! \class KeyTooShort
//! \brief Exception throw when the private or public key is too short to sign or verify
//! \details KeyTooShort() may be thrown by any function in this class if the private or public
//! key is too short to sign or verify anything
class CRYPTOPP_DLL KeyTooShort : public InvalidKeyLength
{
public:
KeyTooShort() : InvalidKeyLength("PK_Signer: key too short for this signature scheme") {}
};
virtual ~PK_SignatureScheme() {}
//! \brief Provides the signature length if it only depends on the key
//! \return the signature length if it only depends on the key, in bytes
//! \details SignatureLength() returns the signature length if it only depends on the key, otherwise 0.
virtual size_t SignatureLength() const =0;
//! \brief Provides the maximum signature length produced given the length of the recoverable message part
//! \param recoverablePartLength the length of the recoverable message part, in bytes
//! \return the maximum signature length produced for a given length of recoverable message part, in bytes
//! \details MaxSignatureLength() returns the maximum signature length produced given the length of the
//! recoverable message part.
virtual size_t MaxSignatureLength(size_t recoverablePartLength = 0) const
{CRYPTOPP_UNUSED(recoverablePartLength); return SignatureLength();}
//! \brief Provides the length of longest message that can be recovered
//! \return the length of longest message that can be recovered, in bytes
//! \details MaxRecoverableLength() returns the length of longest message that can be recovered, or 0 if
//! this signature scheme does not support message recovery.
virtual size_t MaxRecoverableLength() const =0;
//! \brief Provides the length of longest message that can be recovered from a signature of given length
//! \param signatureLength the length of the signature, in bytes
//! \return the length of longest message that can be recovered from a signature of given length, in bytes
//! \details MaxRecoverableLengthFromSignatureLength() returns the length of longest message that can be
//! recovered from a signature of given length, or 0 if this signature scheme does not support message
//! recovery.
virtual size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const =0;
//! \brief Determines whether a signature scheme requires a random number generator
//! \return true if the signature scheme requires a RandomNumberGenerator() to sign
//! \details if IsProbabilistic() returns false, then NullRNG() can be passed to functions that take
//! RandomNumberGenerator().
virtual bool IsProbabilistic() const =0;
//! \brief Determines whether the non-recoverable message part can be signed
//! \return true if the non-recoverable message part can be signed
virtual bool AllowNonrecoverablePart() const =0;
//! \brief Determines whether the signature must be input before the message
//! \return true if the signature must be input before the message during verifcation
//! \details if SignatureUpfront() returns true, then you must input the signature before the message
//! during verification. Otherwise you can input the signature at anytime.
virtual bool SignatureUpfront() const {return false;}
//! \brief Determines whether the recoverable part must be input before the non-recoverable part
//! \return true if the recoverable part must be input before the non-recoverable part during signing
//! \details RecoverablePartFirst() determines whether you must input the recoverable part before the
//! non-recoverable part during signing
virtual bool RecoverablePartFirst() const =0;
};
//! \class PK_MessageAccumulator
//! \brief Interface for accumulating messages to be signed or verified
//! \details Only Update() should be called from the PK_MessageAccumulator() class. No other functions
//! inherited from HashTransformation, like DigestSize() and TruncatedFinal(), should be called.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_MessageAccumulator : public HashTransformation
{
public:
//! \warning DigestSize() should not be called on PK_MessageAccumulator
unsigned int DigestSize() const
{throw NotImplemented("PK_MessageAccumulator: DigestSize() should not be called");}
//! \warning TruncatedFinal() should not be called on PK_MessageAccumulator
void TruncatedFinal(byte *digest, size_t digestSize)
{
CRYPTOPP_UNUSED(digest); CRYPTOPP_UNUSED(digestSize);
throw NotImplemented("PK_MessageAccumulator: TruncatedFinal() should not be called");
}
};
//! \class PK_Signer
//! \brief Interface for public-key signers
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Signer : public PK_SignatureScheme, public PrivateKeyAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PK_Signer() {}
#endif
//! \brief Create a new HashTransformation to accumulate the message to be signed
//! \param rng a RandomNumberGenerator derived class
//! \return a pointer to a PK_MessageAccumulator
//! \details NewSignatureAccumulator() can be used with all signing methods. Sign() will autimatically delete the
//! accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
virtual PK_MessageAccumulator * NewSignatureAccumulator(RandomNumberGenerator &rng) const =0;
//! \brief Input a recoverable message to an accumulator
//! \param messageAccumulator a reference to a PK_MessageAccumulator
//! \param recoverableMessage a pointer to the recoverable message part to be signed
//! \param recoverableMessageLength the size of the recoverable message part
virtual void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const =0;
//! \brief Sign and delete the messageAccumulator
//! \param rng a RandomNumberGenerator derived class
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \param signature a block of bytes for the signature
//! \return actual signature length
//! \details Sign() deletes the messageAccumulator, even if an exception is thrown.
//! \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t Sign(RandomNumberGenerator &rng, PK_MessageAccumulator *messageAccumulator, byte *signature) const;
//! \brief Sign and restart messageAccumulator
//! \param rng a RandomNumberGenerator derived class
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \param signature a block of bytes for the signature
//! \param restart flag indicating whether the messageAccumulator should be restarted
//! \return actual signature length
//! \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart=true) const =0;
//! \brief Sign a message
//! \param rng a RandomNumberGenerator derived class
//! \param message a pointer to the message
//! \param messageLen the size of the message to be signed
//! \param signature a block of bytes for the signature
//! \return actual signature length
//! \pre <tt>COUNTOF(signature) == MaxSignatureLength()</tt>
virtual size_t SignMessage(RandomNumberGenerator &rng, const byte *message, size_t messageLen, byte *signature) const;
//! \brief Sign a recoverable message
//! \param rng a RandomNumberGenerator derived class
//! \param recoverableMessage a pointer to the recoverable message part to be signed
//! \param recoverableMessageLength the size of the recoverable message part
//! \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
//! \param nonrecoverableMessageLength the size of the non-recoverable message part
//! \param signature a block of bytes for the signature
//! \return actual signature length
//! \pre <tt>COUNTOF(signature) == MaxSignatureLength(recoverableMessageLength)</tt>
virtual size_t SignMessageWithRecovery(RandomNumberGenerator &rng, const byte *recoverableMessage, size_t recoverableMessageLength,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength, byte *signature) const;
};
//! \class PK_Verifier
//! \brief Interface for public-key signature verifiers
//! \details The Recover* functions throw NotImplemented if the signature scheme does not support
//! message recovery.
//! \details The Verify* functions throw InvalidDataFormat if the scheme does support message
//! recovery and the signature contains a non-empty recoverable message part. The
//! Recover* functions should be used in that case.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE PK_Verifier : public PK_SignatureScheme, public PublicKeyAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PK_Verifier() {}
#endif
//! \brief Create a new HashTransformation to accumulate the message to be verified
//! \return a pointer to a PK_MessageAccumulator
//! \details NewVerificationAccumulator() can be used with all verification methods. Verify() will autimatically delete
//! the accumulator pointer. The caller is responsible for deletion if a method is called that takes a reference.
virtual PK_MessageAccumulator * NewVerificationAccumulator() const =0;
//! \brief Input signature into a message accumulator
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \param signature the signature on the message
//! \param signatureLength the size of the signature
virtual void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const =0;
//! \brief Check whether messageAccumulator contains a valid signature and message
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \return true if the signature is valid, false otherwise
//! \details Verify() deletes the messageAccumulator, even if an exception is thrown.
virtual bool Verify(PK_MessageAccumulator *messageAccumulator) const;
//! \brief Check whether messageAccumulator contains a valid signature and message, and restart messageAccumulator
//! \param messageAccumulator a reference to a PK_MessageAccumulator derived class
//! \return true if the signature is valid, false otherwise
//! \details VerifyAndRestart() restarts the messageAccumulator
virtual bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const =0;
//! \brief Check whether input signature is a valid signature for input message
//! \param message a pointer to the message to be verified
//! \param messageLen the size of the message
//! \param signature a pointer to the signature over the message
//! \param signatureLen the size of the signature
//! \return true if the signature is valid, false otherwise
virtual bool VerifyMessage(const byte *message, size_t messageLen,
const byte *signature, size_t signatureLen) const;
//! \brief Recover a message from its signature
//! \param recoveredMessage a pointer to the recoverable message part to be verified
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \return the result of the verification operation
//! \details Recover() deletes the messageAccumulator, even if an exception is thrown.
//! \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult Recover(byte *recoveredMessage, PK_MessageAccumulator *messageAccumulator) const;
//! \brief Recover a message from its signature
//! \param recoveredMessage a pointer to the recoverable message part to be verified
//! \param messageAccumulator a pointer to a PK_MessageAccumulator derived class
//! \return the result of the verification operation
//! \details RecoverAndRestart() restarts the messageAccumulator
//! \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const =0;
//! \brief Recover a message from its signature
//! \param recoveredMessage a pointer for the recovered message
//! \param nonrecoverableMessage a pointer to the non-recoverable message part to be signed
//! \param nonrecoverableMessageLength the size of the non-recoverable message part
//! \param signature the signature on the message
//! \param signatureLength the size of the signature
//! \return the result of the verification operation
//! \pre <tt>COUNTOF(recoveredMessage) == MaxRecoverableLengthFromSignatureLength(signatureLength)</tt>
virtual DecodingResult RecoverMessage(byte *recoveredMessage,
const byte *nonrecoverableMessage, size_t nonrecoverableMessageLength,
const byte *signature, size_t signatureLength) const;
};
//! \class SimpleKeyAgreementDomain
//! \brief Interface for domains of simple key agreement protocols
//! \details A key agreement domain is a set of parameters that must be shared
//! by two parties in a key agreement protocol, along with the algorithms
//! for generating key pairs and deriving agreed values.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE SimpleKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~SimpleKeyAgreementDomain() {}
#endif
//! \brief Provides the size of the agreed value
//! \return size of agreed value produced in this domain
virtual unsigned int AgreedValueLength() const =0;
//! \brief Provides the size of the private key
//! \return size of private keys in this domain
virtual unsigned int PrivateKeyLength() const =0;
//! \brief Provides the size of the public key
//! \return size of public keys in this domain
virtual unsigned int PublicKeyLength() const =0;
//! \brief Generate private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
virtual void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
//! \brief Generate a public key from a private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer with the previously generated private key
//! \param publicKey a byte buffer for the generated public key in this domain
//! \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
virtual void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
//! \brief Generate a private/public key pair
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \param publicKey a byte buffer for the generated public key in this domain
//! \details GenerateKeyPair() is equivalent to calling GeneratePrivateKey() and then GeneratePublicKey().
//! \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
//! \pre <tt>COUNTOF(publicKey) == PublicKeyLength()</tt>
virtual void GenerateKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
//! \brief Derive agreed value
//! \param agreedValue a byte buffer for the shared secret
//! \param privateKey a byte buffer with your private key in this domain
//! \param otherPublicKey a byte buffer with the other party's public key in this domain
//! \param validateOtherPublicKey a flag indicating if the other party's public key should be validated
//! \return true upon success, false in case of failure
//! \details Agree() derives an agreed value from your private keys and couterparty's public keys.
//! \details The other party's public key is validated by default. If you have previously validated the
//! static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
//! \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
//! \pre <tt>COUNTOF(privateKey) == PrivateKeyLength()</tt>
//! \pre <tt>COUNTOF(otherPublicKey) == PublicKeyLength()</tt>
virtual bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const =0;
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
bool ValidateDomainParameters(RandomNumberGenerator &rng) const
{return GetCryptoParameters().Validate(rng, 2);}
#endif
};
//! \brief Interface for domains of authenticated key agreement protocols
//! \details In an authenticated key agreement protocol, each party has two
//! key pairs. The long-lived key pair is called the static key pair,
//! and the short-lived key pair is called the ephemeral key pair.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE AuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~AuthenticatedKeyAgreementDomain() {}
#endif
//! \brief Provides the size of the agreed value
//! \return size of agreed value produced in this domain
virtual unsigned int AgreedValueLength() const =0;
//! \brief Provides the size of the static private key
//! \return size of static private keys in this domain
virtual unsigned int StaticPrivateKeyLength() const =0;
//! \brief Provides the size of the static public key
//! \return size of static public keys in this domain
virtual unsigned int StaticPublicKeyLength() const =0;
//! \brief Generate static private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
virtual void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
//! \brief Generate a static public key from a private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer with the previously generated private key
//! \param publicKey a byte buffer for the generated public key in this domain
//! \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
virtual void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
//! \brief Generate a static private/public key pair
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \param publicKey a byte buffer for the generated public key in this domain
//! \details GenerateStaticKeyPair() is equivalent to calling GenerateStaticPrivateKey() and then GenerateStaticPublicKey().
//! \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
//! \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
virtual void GenerateStaticKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
//! \brief Provides the size of ephemeral private key
//! \return the size of ephemeral private key in this domain
virtual unsigned int EphemeralPrivateKeyLength() const =0;
//! \brief Provides the size of ephemeral public key
//! \return the size of ephemeral public key in this domain
virtual unsigned int EphemeralPublicKeyLength() const =0;
//! \brief Generate ephemeral private key
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \pre <tt>COUNTOF(privateKey) == PrivateEphemeralKeyLength()</tt>
virtual void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const =0;
//! \brief Generate ephemeral public key
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \param publicKey a byte buffer for the generated public key in this domain
//! \pre <tt>COUNTOF(publicKey) == PublicEphemeralKeyLength()</tt>
virtual void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const =0;
//! \brief Generate private/public key pair
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \param publicKey a byte buffer for the generated public key in this domain
//! \details GenerateEphemeralKeyPair() is equivalent to calling GenerateEphemeralPrivateKey() and then GenerateEphemeralPublicKey()
virtual void GenerateEphemeralKeyPair(RandomNumberGenerator &rng, byte *privateKey, byte *publicKey) const;
//! \brief Derive agreed value
//! \param agreedValue a byte buffer for the shared secret
//! \param staticPrivateKey a byte buffer with your static private key in this domain
//! \param ephemeralPrivateKey a byte buffer with your ephemeral private key in this domain
//! \param staticOtherPublicKey a byte buffer with the other party's static public key in this domain
//! \param ephemeralOtherPublicKey a byte buffer with the other party's ephemeral public key in this domain
//! \param validateStaticOtherPublicKey a flag indicating if the other party's public key should be validated
//! \return true upon success, false in case of failure
//! \details Agree() derives an agreed value from your private keys and couterparty's public keys.
//! \details The other party's ephemeral public key is validated by default. If you have previously validated
//! the static public key, use <tt>validateStaticOtherPublicKey=false</tt> to save time.
//! \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
//! \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
//! \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
//! \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
//! \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
virtual bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const =0;
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
bool ValidateDomainParameters(RandomNumberGenerator &rng) const
{return GetCryptoParameters().Validate(rng, 2);}
#endif
};
// interface for password authenticated key agreement protocols, not implemented yet
#if 0
//! \brief Interface for protocol sessions
/*! The methods should be called in the following order:
InitializeSession(rng, parameters); // or call initialize method in derived class
while (true)
{
if (OutgoingMessageAvailable())
{
length = GetOutgoingMessageLength();
GetOutgoingMessage(message);
; // send outgoing message
}
if (LastMessageProcessed())
break;
; // receive incoming message
ProcessIncomingMessage(message);
}
; // call methods in derived class to obtain result of protocol session
*/
class ProtocolSession
{
public:
//! Exception thrown when an invalid protocol message is processed
class ProtocolError : public Exception
{
public:
ProtocolError(ErrorType errorType, const std::string &s) : Exception(errorType, s) {}
};
//! Exception thrown when a function is called unexpectedly
/*! for example calling ProcessIncomingMessage() when ProcessedLastMessage() == true */
class UnexpectedMethodCall : public Exception
{
public:
UnexpectedMethodCall(const std::string &s) : Exception(OTHER_ERROR, s) {}
};
ProtocolSession() : m_rng(NULL), m_throwOnProtocolError(true), m_validState(false) {}
virtual ~ProtocolSession() {}
virtual void InitializeSession(RandomNumberGenerator &rng, const NameValuePairs &parameters) =0;
bool GetThrowOnProtocolError() const {return m_throwOnProtocolError;}
void SetThrowOnProtocolError(bool throwOnProtocolError) {m_throwOnProtocolError = throwOnProtocolError;}
bool HasValidState() const {return m_validState;}
virtual bool OutgoingMessageAvailable() const =0;
virtual unsigned int GetOutgoingMessageLength() const =0;
virtual void GetOutgoingMessage(byte *message) =0;
virtual bool LastMessageProcessed() const =0;
virtual void ProcessIncomingMessage(const byte *message, unsigned int messageLength) =0;
protected:
void HandleProtocolError(Exception::ErrorType errorType, const std::string &s) const;
void CheckAndHandleInvalidState() const;
void SetValidState(bool valid) {m_validState = valid;}
RandomNumberGenerator *m_rng;
private:
bool m_throwOnProtocolError, m_validState;
};
class KeyAgreementSession : public ProtocolSession
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~KeyAgreementSession() {}
#endif
virtual unsigned int GetAgreedValueLength() const =0;
virtual void GetAgreedValue(byte *agreedValue) const =0;
};
class PasswordAuthenticatedKeyAgreementSession : public KeyAgreementSession
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PasswordAuthenticatedKeyAgreementSession() {}
#endif
void InitializePasswordAuthenticatedKeyAgreementSession(RandomNumberGenerator &rng,
const byte *myId, unsigned int myIdLength,
const byte *counterPartyId, unsigned int counterPartyIdLength,
const byte *passwordOrVerifier, unsigned int passwordOrVerifierLength);
};
class PasswordAuthenticatedKeyAgreementDomain : public KeyAgreementAlgorithm
{
public:
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~PasswordAuthenticatedKeyAgreementDomain() {}
#endif
//! return whether the domain parameters stored in this object are valid
virtual bool ValidateDomainParameters(RandomNumberGenerator &rng) const
{return GetCryptoParameters().Validate(rng, 2);}
virtual unsigned int GetPasswordVerifierLength(const byte *password, unsigned int passwordLength) const =0;
virtual void GeneratePasswordVerifier(RandomNumberGenerator &rng, const byte *userId, unsigned int userIdLength, const byte *password, unsigned int passwordLength, byte *verifier) const =0;
enum RoleFlags {CLIENT=1, SERVER=2, INITIATOR=4, RESPONDER=8};
virtual bool IsValidRole(unsigned int role) =0;
virtual PasswordAuthenticatedKeyAgreementSession * CreateProtocolSession(unsigned int role) const =0;
};
#endif
//! \brief Exception thrown when an ASN.1 BER decoing error is encountered
class CRYPTOPP_DLL BERDecodeErr : public InvalidArgument
{
public:
BERDecodeErr() : InvalidArgument("BER decode error") {}
BERDecodeErr(const std::string &s) : InvalidArgument(s) {}
};
//! \brief Interface for encoding and decoding ASN1 objects
//! \details Each class that derives from ASN1Object should provide a serialization format
//! that controls subobject layout. Most of the time the serialization format is
//! taken from a standard, like P1363 or an RFC.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE ASN1Object
{
public:
virtual ~ASN1Object() {}
//! \brief Decode this object from a BufferedTransformation
//! \param bt BufferedTransformation object
//! \details Uses Basic Encoding Rules (BER)
virtual void BERDecode(BufferedTransformation &bt) =0;
//! \brief Encode this object into a BufferedTransformation
//! \param bt BufferedTransformation object
//! \details Uses Distinguished Encoding Rules (DER)
virtual void DEREncode(BufferedTransformation &bt) const =0;
//! \brief Encode this object into a BufferedTransformation
//! \param bt BufferedTransformation object
//! \details Uses Basic Encoding Rules (BER).
//! \details This may be useful if DEREncode() would be too inefficient.
virtual void BEREncode(BufferedTransformation &bt) const {DEREncode(bt);}
};
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
typedef PK_SignatureScheme PK_SignatureSystem;
typedef SimpleKeyAgreementDomain PK_SimpleKeyAgreementDomain;
typedef AuthenticatedKeyAgreementDomain PK_AuthenticatedKeyAgreementDomain;
#endif
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif