ext-cryptopp/rijndael-simd.cpp

736 lines
25 KiB
C++

// rijndael-simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
// AES-NI code originally written by Wei Dai.
//
// This source file uses intrinsics and built-ins to gain access to
// AES-NI, ARMv8a AES and Power8 AES instructions. A separate source
// file is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
//
// ARMv8a AES code based on CriticalBlue code from Johannes Schneiders,
// Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping
// mbedTLS under a debugger was helped for us to determine problems
// with our subkey generation and scheduling.
//
// AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and
// http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/
// For Power8 do not remove the casts, even when const-ness is cast away. It causes
// failed compiles and a 0.3 to 0.6 cpb drop in performance. The IBM documentation
// absolutely sucks. Thanks to Andy Polyakov, Paul R and Trudeaun for answering
// questions and filling the gaps in the IBM documentation.
//
#include "pch.h"
#include "config.h"
#include "misc.h"
#include "adv-simd.h"
// We set CRYPTOPP_POWER8_CRYPTO_AVAILABLE based on compiler version.
// If the crypto is not available, then we have to disable it here.
#if !(defined(__CRYPTO) || defined(_ARCH_PWR8) || defined(_ARCH_PWR9))
# undef CRYPTOPP_POWER8_CRYPTO_AVAILABLE
# undef CRYPTOPP_POWER8_AES_AVAILABLE
#endif
#if (CRYPTOPP_AESNI_AVAILABLE)
# include <smmintrin.h>
# include <wmmintrin.h>
#endif
// Use ARMv8 rather than NEON due to compiler inconsistencies
#if (CRYPTOPP_ARM_AES_AVAILABLE)
# include <arm_neon.h>
#endif
// Can't use CRYPTOPP_ARM_XXX_AVAILABLE because too many
// compilers don't follow ACLE conventions for the include.
#if defined(CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if defined(CRYPTOPP_POWER8_AES_AVAILABLE)
# include "ppc-simd.h"
#endif
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif
#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
NAMESPACE_BEGIN(CryptoPP)
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
}
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64)
bool CPU_ProbeAES()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_AES_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
// AES encrypt and decrypt
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
uint8x16_t r1 = vaeseq_u8(data, key);
uint8x16_t r2 = vaesdq_u8(data, key);
r1 = vaesmcq_u8(r1);
r2 = vaesimcq_u8(r2);
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
uint8x16_t r1 = vaeseq_u8(data, key);
uint8x16_t r2 = vaesdq_u8(data, key);
r1 = vaesmcq_u8(r1);
r2 = vaesimcq_u8(r2);
// Hack... GCC optimizes away the code and returns true
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_AES_AVAILABLE
}
#endif // ARM32 or ARM64
// ***************************** ARMv8 ***************************** //
#if (CRYPTOPP_ARM_AES_AVAILABLE)
ANONYMOUS_NAMESPACE_BEGIN
static inline void ARMV8_Enc_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint8x16_t block = vreinterpretq_u8_u64(data);
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+0*16));
// AES mix columns
block = vaesmcq_u8(block);
for (unsigned int i=1; i<rounds-1; i+=2)
{
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+i*16));
// AES mix columns
block = vaesmcq_u8(block);
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+(i+1)*16));
// AES mix columns
block = vaesmcq_u8(block);
}
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+(rounds-1)*16));
// Final Add (bitwise Xor)
block = veorq_u8(block, vld1q_u8(keys+rounds*16));
data = vreinterpretq_u64_u8(block);
}
static inline void ARMV8_Enc_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint8x16_t block0 = vreinterpretq_u8_u64(data0);
uint8x16_t block1 = vreinterpretq_u8_u64(data1);
uint8x16_t block2 = vreinterpretq_u8_u64(data2);
uint8x16_t block3 = vreinterpretq_u8_u64(data3);
uint8x16_t block4 = vreinterpretq_u8_u64(data4);
uint8x16_t block5 = vreinterpretq_u8_u64(data5);
uint8x16_t key;
for (unsigned int i=0; i<rounds-1; ++i)
{
uint8x16_t key = vld1q_u8(keys+i*16);
// AES single round encryption
block0 = vaeseq_u8(block0, key);
// AES mix columns
block0 = vaesmcq_u8(block0);
// AES single round encryption
block1 = vaeseq_u8(block1, key);
// AES mix columns
block1 = vaesmcq_u8(block1);
// AES single round encryption
block2 = vaeseq_u8(block2, key);
// AES mix columns
block2 = vaesmcq_u8(block2);
// AES single round encryption
block3 = vaeseq_u8(block3, key);
// AES mix columns
block3 = vaesmcq_u8(block3);
// AES single round encryption
block4 = vaeseq_u8(block4, key);
// AES mix columns
block4 = vaesmcq_u8(block4);
// AES single round encryption
block5 = vaeseq_u8(block5, key);
// AES mix columns
block5 = vaesmcq_u8(block5);
}
// AES single round encryption
key = vld1q_u8(keys+(rounds-1)*16);
block0 = vaeseq_u8(block0, key);
block1 = vaeseq_u8(block1, key);
block2 = vaeseq_u8(block2, key);
block3 = vaeseq_u8(block3, key);
block4 = vaeseq_u8(block4, key);
block5 = vaeseq_u8(block5, key);
// Final Add (bitwise Xor)
key = vld1q_u8(keys+rounds*16);
data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
}
static inline void ARMV8_Dec_Block(uint64x2_t &data, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint8x16_t block = vreinterpretq_u8_u64(data);
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+0*16));
// AES inverse mix columns
block = vaesimcq_u8(block);
for (unsigned int i=1; i<rounds-1; i+=2)
{
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+i*16));
// AES inverse mix columns
block = vaesimcq_u8(block);
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+(i+1)*16));
// AES inverse mix columns
block = vaesimcq_u8(block);
}
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+(rounds-1)*16));
// Final Add (bitwise Xor)
block = veorq_u8(block, vld1q_u8(keys+rounds*16));
data = vreinterpretq_u64_u8(block);
}
static inline void ARMV8_Dec_6_Blocks(uint64x2_t &data0, uint64x2_t &data1,
uint64x2_t &data2, uint64x2_t &data3, uint64x2_t &data4, uint64x2_t &data5,
const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint8x16_t block0 = vreinterpretq_u8_u64(data0);
uint8x16_t block1 = vreinterpretq_u8_u64(data1);
uint8x16_t block2 = vreinterpretq_u8_u64(data2);
uint8x16_t block3 = vreinterpretq_u8_u64(data3);
uint8x16_t block4 = vreinterpretq_u8_u64(data4);
uint8x16_t block5 = vreinterpretq_u8_u64(data5);
uint8x16_t key;
for (unsigned int i=0; i<rounds-1; ++i)
{
key = vld1q_u8(keys+i*16);
// AES single round decryption
block0 = vaesdq_u8(block0, key);
// AES inverse mix columns
block0 = vaesimcq_u8(block0);
// AES single round decryption
block1 = vaesdq_u8(block1, key);
// AES inverse mix columns
block1 = vaesimcq_u8(block1);
// AES single round decryption
block2 = vaesdq_u8(block2, key);
// AES inverse mix columns
block2 = vaesimcq_u8(block2);
// AES single round decryption
block3 = vaesdq_u8(block3, key);
// AES inverse mix columns
block3 = vaesimcq_u8(block3);
// AES single round decryption
block4 = vaesdq_u8(block4, key);
// AES inverse mix columns
block4 = vaesimcq_u8(block4);
// AES single round decryption
block5 = vaesdq_u8(block5, key);
// AES inverse mix columns
block5 = vaesimcq_u8(block5);
}
// AES single round decryption
key = vld1q_u8(keys+(rounds-1)*16);
block0 = vaesdq_u8(block0, key);
block1 = vaesdq_u8(block1, key);
block2 = vaesdq_u8(block2, key);
block3 = vaesdq_u8(block3, key);
block4 = vaesdq_u8(block4, key);
block5 = vaesdq_u8(block5, key);
// Final Add (bitwise Xor)
key = vld1q_u8(keys+rounds*16);
data0 = vreinterpretq_u64_u8(veorq_u8(block0, key));
data1 = vreinterpretq_u64_u8(veorq_u8(block1, key));
data2 = vreinterpretq_u64_u8(veorq_u8(block2, key));
data3 = vreinterpretq_u64_u8(veorq_u8(block3, key));
data4 = vreinterpretq_u64_u8(veorq_u8(block4, key));
data5 = vreinterpretq_u64_u8(veorq_u8(block5, key));
}
ANONYMOUS_NAMESPACE_END
size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_NEON1x6(ARMV8_Enc_Block, ARMV8_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_NEON1x6(ARMV8_Dec_Block, ARMV8_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_AES_AVAILABLE
// ***************************** AES-NI ***************************** //
#if (CRYPTOPP_AESNI_AVAILABLE)
ANONYMOUS_NAMESPACE_BEGIN
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
CRYPTOPP_ALIGN_DATA(16)
const word32 s_rconLE[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36
};
static inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
block = _mm_xor_si128(block, skeys[0]);
for (unsigned int i=1; i<rounds-1; i+=2)
{
block = _mm_aesenc_si128(block, skeys[i]);
block = _mm_aesenc_si128(block, skeys[i+1]);
}
block = _mm_aesenc_si128(block, skeys[rounds-1]);
block = _mm_aesenclast_si128(block, skeys[rounds]);
}
static inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
__m128i rk = skeys[0];
block0 = _mm_xor_si128(block0, rk);
block1 = _mm_xor_si128(block1, rk);
block2 = _mm_xor_si128(block2, rk);
block3 = _mm_xor_si128(block3, rk);
for (unsigned int i=1; i<rounds; i++)
{
rk = skeys[i];
block0 = _mm_aesenc_si128(block0, rk);
block1 = _mm_aesenc_si128(block1, rk);
block2 = _mm_aesenc_si128(block2, rk);
block3 = _mm_aesenc_si128(block3, rk);
}
rk = skeys[rounds];
block0 = _mm_aesenclast_si128(block0, rk);
block1 = _mm_aesenclast_si128(block1, rk);
block2 = _mm_aesenclast_si128(block2, rk);
block3 = _mm_aesenclast_si128(block3, rk);
}
static inline void AESNI_Dec_Block(__m128i &block, MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
block = _mm_xor_si128(block, skeys[0]);
for (unsigned int i=1; i<rounds-1; i+=2)
{
block = _mm_aesdec_si128(block, skeys[i]);
block = _mm_aesdec_si128(block, skeys[i+1]);
}
block = _mm_aesdec_si128(block, skeys[rounds-1]);
block = _mm_aesdeclast_si128(block, skeys[rounds]);
}
static inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
MAYBE_CONST word32 *subkeys, unsigned int rounds)
{
const __m128i* skeys = reinterpret_cast<const __m128i*>(subkeys);
__m128i rk = skeys[0];
block0 = _mm_xor_si128(block0, rk);
block1 = _mm_xor_si128(block1, rk);
block2 = _mm_xor_si128(block2, rk);
block3 = _mm_xor_si128(block3, rk);
for (unsigned int i=1; i<rounds; i++)
{
rk = skeys[i];
block0 = _mm_aesdec_si128(block0, rk);
block1 = _mm_aesdec_si128(block1, rk);
block2 = _mm_aesdec_si128(block2, rk);
block3 = _mm_aesdec_si128(block3, rk);
}
rk = skeys[rounds];
block0 = _mm_aesdeclast_si128(block0, rk);
block1 = _mm_aesdeclast_si128(block1, rk);
block2 = _mm_aesdeclast_si128(block2, rk);
block3 = _mm_aesdeclast_si128(block3, rk);
}
ANONYMOUS_NAMESPACE_END
void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk)
{
const size_t rounds = keyLen / 4 + 6;
const word32 *rc = s_rconLE;
__m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
std::memcpy(rk, userKey, keyLen);
// keySize: m_key allocates 4*(rounds+1) word32's.
const size_t keySize = 4*(rounds+1);
const word32* end = rk + keySize;
while (true)
{
rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
if (rk + keyLen/4 + 4 == end)
break;
if (keyLen == 24)
{
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
temp = _mm_insert_epi32(temp, rk[11], 3);
}
else if (keyLen == 32)
{
temp = _mm_insert_epi32(temp, rk[11], 3);
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
temp = _mm_insert_epi32(temp, rk[15], 3);
}
else
{
temp = _mm_insert_epi32(temp, rk[7], 3);
}
rk += keyLen/4;
}
}
void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
{
unsigned int i, j;
__m128i temp;
vec_swap(*M128_CAST(key), *M128_CAST(key+4*rounds));
for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4)
{
temp = _mm_aesimc_si128(*M128_CAST(key+i));
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j));
*M128_CAST(key+j) = temp;
}
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
}
size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
// SunCC workaround
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
return AdvancedProcessBlocks128_4x1_SSE(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
sk, rounds, ib, xb, outBlocks, length, flags);
}
size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
return AdvancedProcessBlocks128_4x1_SSE(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
sk, rounds, ib, xb, outBlocks, length, flags);
}
#endif // CRYPTOPP_AESNI_AVAILABLE
// ***************************** Power 8 ***************************** //
#if (CRYPTOPP_POWER8_AES_AVAILABLE)
ANONYMOUS_NAMESPACE_BEGIN
/* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
CRYPTOPP_ALIGN_DATA(16)
static const uint32_t s_rconBE[] = {
0x01000000, 0x02000000, 0x04000000, 0x08000000,
0x10000000, 0x20000000, 0x40000000, 0x80000000,
0x1B000000, 0x36000000
};
static inline void POWER8_Enc_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint32x4_p k = VectorLoadKey(keys);
block = VectorXor(block, k);
for (size_t i=1; i<rounds-1; i+=2)
{
block = VectorEncrypt(block, VectorLoadKey( i*16, keys));
block = VectorEncrypt(block, VectorLoadKey((i+1)*16, keys));
}
block = VectorEncrypt(block, VectorLoadKey((rounds-1)*16, keys));
block = VectorEncryptLast(block, VectorLoadKey(rounds*16, keys));
}
static inline void POWER8_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint32x4_p k = VectorLoadKey(keys);
block0 = VectorXor(block0, k);
block1 = VectorXor(block1, k);
block2 = VectorXor(block2, k);
block3 = VectorXor(block3, k);
block4 = VectorXor(block4, k);
block5 = VectorXor(block5, k);
for (size_t i=1; i<rounds; ++i)
{
k = VectorLoadKey(i*16, keys);
block0 = VectorEncrypt(block0, k);
block1 = VectorEncrypt(block1, k);
block2 = VectorEncrypt(block2, k);
block3 = VectorEncrypt(block3, k);
block4 = VectorEncrypt(block4, k);
block5 = VectorEncrypt(block5, k);
}
k = VectorLoadKey(rounds*16, keys);
block0 = VectorEncryptLast(block0, k);
block1 = VectorEncryptLast(block1, k);
block2 = VectorEncryptLast(block2, k);
block3 = VectorEncryptLast(block3, k);
block4 = VectorEncryptLast(block4, k);
block5 = VectorEncryptLast(block5, k);
}
static inline void POWER8_Dec_Block(uint32x4_p &block, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint32x4_p k = VectorLoadKey(rounds*16, keys);
block = VectorXor(block, k);
for (size_t i=rounds-1; i>1; i-=2)
{
block = VectorDecrypt(block, VectorLoadKey( i*16, keys));
block = VectorDecrypt(block, VectorLoadKey((i-1)*16, keys));
}
block = VectorDecrypt(block, VectorLoadKey(16, keys));
block = VectorDecryptLast(block, VectorLoadKey(0, keys));
}
static inline void POWER8_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
uint32x4_p &block5, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16));
const byte *keys = reinterpret_cast<const byte*>(subkeys);
uint32x4_p k = VectorLoadKey(rounds*16, keys);
block0 = VectorXor(block0, k);
block1 = VectorXor(block1, k);
block2 = VectorXor(block2, k);
block3 = VectorXor(block3, k);
block4 = VectorXor(block4, k);
block5 = VectorXor(block5, k);
for (size_t i=rounds-1; i>0; --i)
{
k = VectorLoadKey(i*16, keys);
block0 = VectorDecrypt(block0, k);
block1 = VectorDecrypt(block1, k);
block2 = VectorDecrypt(block2, k);
block3 = VectorDecrypt(block3, k);
block4 = VectorDecrypt(block4, k);
block5 = VectorDecrypt(block5, k);
}
k = VectorLoadKey(0, keys);
block0 = VectorDecryptLast(block0, k);
block1 = VectorDecryptLast(block1, k);
block2 = VectorDecryptLast(block2, k);
block3 = VectorDecryptLast(block3, k);
block4 = VectorDecryptLast(block4, k);
block5 = VectorDecryptLast(block5, k);
}
ANONYMOUS_NAMESPACE_END
void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const byte* Se)
{
const size_t rounds = keyLen / 4 + 6;
const word32 *rc = s_rconBE;
GetUserKey(BIG_ENDIAN_ORDER, rk, keyLen/4, userKey, keyLen);
word32 *rk_saved = rk, temp; // unused in big-endian
CRYPTOPP_UNUSED(rk_saved);
// keySize: m_key allocates 4*(rounds+1) word32's.
const size_t keySize = 4*(rounds+1);
const word32* end = rk + keySize;
while (true)
{
temp = rk[keyLen/4-1];
word32 x = (word32(Se[GETBYTE(temp, 2)]) << 24) ^ (word32(Se[GETBYTE(temp, 1)]) << 16) ^
(word32(Se[GETBYTE(temp, 0)]) << 8) ^ Se[GETBYTE(temp, 3)];
rk[keyLen/4] = rk[0] ^ x ^ *(rc++);
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
if (rk + keyLen/4 + 4 == end)
break;
if (keyLen == 24)
{
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
}
else if (keyLen == 32)
{
temp = rk[11];
rk[12] = rk[ 4] ^ (word32(Se[GETBYTE(temp, 3)]) << 24) ^ (word32(Se[GETBYTE(temp, 2)]) << 16) ^ (word32(Se[GETBYTE(temp, 1)]) << 8) ^ Se[GETBYTE(temp, 0)];
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
}
rk += keyLen/4;
}
#if defined(CRYPTOPP_LITTLE_ENDIAN)
rk = rk_saved;
const uint8x16_p mask = ((uint8x16_p){12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3});
const uint8x16_p zero = {0};
unsigned int i=0;
for (i=0; i<rounds; i+=2, rk+=8)
{
const uint8x16_p d1 = vec_vsx_ld( 0, (uint8_t*)rk);
const uint8x16_p d2 = vec_vsx_ld(16, (uint8_t*)rk);
vec_vsx_st(vec_perm(d1, zero, mask), 0, (uint8_t*)rk);
vec_vsx_st(vec_perm(d2, zero, mask), 16, (uint8_t*)rk);
}
for ( ; i<rounds+1; i++, rk+=4)
vec_vsx_st(vec_perm(vec_vsx_ld(0, (uint8_t*)rk), zero, mask), 0, (uint8_t*)rk);
#endif
}
size_t Rijndael_Enc_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Enc_Block, POWER8_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t Rijndael_Dec_AdvancedProcessBlocks128_6x1_ALTIVEC(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x1_ALTIVEC(POWER8_Dec_Block, POWER8_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_POWER8_AES_AVAILABLE
NAMESPACE_END