ext-cryptopp/chacha.cpp
Jeffrey Walton 39418a8512
Use PowerPC unaligned loads and stores with Power8 (GH #825, PR #826)
Use PowerPC unaligned loads and stores with Power8. Formerly we were using Power7 as the floor because the IBM POWER Architecture manuals said unaligned loads and stores were available. However, some compilers generate bad code for unaligned loads and stores using `-march=power7`, so bump to a known good.
2019-04-27 20:35:01 -04:00

591 lines
20 KiB
C++

// chacha.cpp - written and placed in the public domain by Jeffrey Walton.
// Based on Wei Dai's Salsa20, Botan's SSE2 implementation,
// and Bernstein's reference ChaCha family implementation at
// http://cr.yp.to/chacha.html.
#include "pch.h"
#include "config.h"
#include "chacha.h"
#include "argnames.h"
#include "misc.h"
#include "cpu.h"
// Internal compiler error in GCC 3.3 and below
#if defined(__GNUC__) && (__GNUC__ < 4)
# undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_AVX2_AVAILABLE)
extern void ChaCha_OperateKeystream_AVX2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
extern void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
extern void ChaCha_OperateKeystream_POWER8(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
extern void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void ChaCha_TestInstantiations()
{
ChaCha::Encryption x;
ChaChaTLS::Encryption y;
XChaCha20::Encryption z;
}
#endif
NAMESPACE_END // CryptoPP
////////////////////////////// ChaCha Core //////////////////////////////
#define CHACHA_QUARTER_ROUND(a,b,c,d) \
a += b; d ^= a; d = rotlConstant<16,word32>(d); \
c += d; b ^= c; b = rotlConstant<12,word32>(b); \
a += b; d ^= a; d = rotlConstant<8,word32>(d); \
c += d; b ^= c; b = rotlConstant<7,word32>(b);
#define CHACHA_OUTPUT(x){\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + state[0]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x1 + state[1]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x2 + state[2]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x3 + state[3]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + state[4]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x5 + state[5]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x6 + state[6]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x7 + state[7]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + state[8]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x9 + state[9]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x10 + state[10]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x11 + state[11]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + state[12]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x13 + state[13]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x14 + state[14]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x15 + state[15]);}
ANONYMOUS_NAMESPACE_BEGIN
// Hacks... Bring in all symbols, and supply
// the stuff the templates normally provide.
using namespace CryptoPP;
typedef word32 WordType;
enum {BYTES_PER_ITERATION=64};
// MultiBlockSafe detects a condition that can arise in the SIMD
// implementations where we overflow one of the 32-bit state words during
// addition in an intermediate result. Preconditions for the issue include
// a user seeks to around 2^32 blocks (256 GB of data) for ChaCha; or a
// user specifies an arbitrarily large initial counter block for ChaChaTLS.
// Also see https://github.com/weidai11/cryptopp/issues/732.
inline bool MultiBlockSafe(unsigned int ctrLow, unsigned int blocks)
{
return 0xffffffff - ctrLow > blocks;
}
// OperateKeystream always produces a key stream. The key stream is written
// to output. Optionally a message may be supplied to xor with the key stream.
// The message is input, and output = output ^ input.
void ChaCha_OperateKeystream(KeystreamOperation operation,
word32 state[16], word32& ctrLow, word32& ctrHigh, word32 rounds,
byte *output, const byte *input, size_t iterationCount)
{
do
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
{
while (iterationCount >= 8 && MultiBlockSafe(state[12], 8))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_AVX2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 8;
input += (!!xorInput) * 8 * BYTES_PER_ITERATION;
output += 8 * BYTES_PER_ITERATION;
iterationCount -= 8;
}
}
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_SSE2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_NEON(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_POWER8(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_ALTIVEC(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
if (iterationCount)
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(CHACHA_OUTPUT, BYTES_PER_ITERATION);
// This is state[12] and state[13] from ChaCha. In the case of
// ChaChaTLS ctrHigh is a reference to a discard value.
if (++ctrLow == 0)
ctrHigh++;
}
// We may re-enter a SIMD keystream operation from here.
} while (iterationCount--);
}
// XChaCha key derivation
void HChaCha_OperateKeystream(const word32 state[16], word32 output[8])
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = 20; i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
output[0] = x0; output[1] = x1;
output[2] = x2; output[3] = x3;
output[4] = x12; output[5] = x13;
output[6] = x14; output[7] = x15;
}
std::string ChaCha_AlgorithmProvider()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return "AVX2";
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return "SSE2";
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
else
#endif
#if (CRYPTOPP_POWER8_AVAILABLE)
if (HasPower8())
return "Power8";
else
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
else
#endif
return "C++";
}
unsigned int ChaCha_GetAlignment()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 16;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 16;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16;
else
#endif
return GetAlignmentOf<word32>();
}
unsigned int ChaCha_GetOptimalBlockSize()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 8 * BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 4*BYTES_PER_ITERATION;
else
#endif
return BYTES_PER_ITERATION;
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
////////////////////////////// Bernstein ChaCha //////////////////////////////
std::string ChaCha_Policy::AlgorithmName() const
{
return std::string("ChaCha")+IntToString(m_rounds);
}
std::string ChaCha_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaCha_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 16 || length == 32);
CRYPTOPP_UNUSED(key); CRYPTOPP_UNUSED(length);
// Use previous rounds as the default value
int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds);
if (rounds != 20 && rounds != 12 && rounds != 8)
throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds);
// Latch a good value
m_rounds = rounds;
// "expand 16-byte k" or "expand 32-byte k"
m_state[0] = 0x61707865;
m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e;
m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32;
m_state[3] = 0x6b206574;
GetBlock<word32, LittleEndian> get1(key);
get1(m_state[4])(m_state[5])(m_state[6])(m_state[7]);
GetBlock<word32, LittleEndian> get2(key + ((length == 32) ? 16 : 0));
get2(m_state[8])(m_state[9])(m_state[10])(m_state[11]);
}
void ChaCha_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==8); CRYPTOPP_UNUSED(length);
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_state[13] = 0;
get(m_state[14])(m_state[15]);
}
void ChaCha_Policy::SeekToIteration(lword iterationCount)
{
m_state[12] = (word32)iterationCount; // low word
m_state[13] = (word32)SafeRightShift<32>(iterationCount);
}
unsigned int ChaCha_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaCha_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaCha_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
m_rounds, output, input, iterationCount);
}
////////////////////////////// IETF ChaChaTLS //////////////////////////////
std::string ChaChaTLS_Policy::AlgorithmName() const
{
return std::string("ChaChaTLS");
}
std::string ChaChaTLS_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaChaTLS_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
CRYPTOPP_UNUSED(length);
// ChaChaTLS is always 20 rounds. Fetch Rounds() to avoid a spurious failure.
int rounds = params.GetIntValueWithDefault(Name::Rounds(), ROUNDS);
if (rounds != 20)
throw InvalidRounds(ChaChaTLS::StaticAlgorithmName(), rounds);
// RFC 8439 test vectors use an initial block counter. However, the counter
// can be an arbitrary value per RFC 8439 Section 2.4. We stash the counter
// away in state[16] and use it for a Resynchronize() operation. I think
// the initial counter is used more like a Tweak when non-0, and it should
// be provided in Resynchronize() (light-weight re-keying). However,
// Resynchronize() does not have an overload that allows us to pass it into
// the function, so we have to use the heavier-weight SetKey to change it.
word64 block;
if (params.GetValue("InitialBlock", block))
m_counter = static_cast<word32>(block);
else
m_counter = 0;
// State words are defined in RFC 8439, Section 2.3. Key is 32-bytes.
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void ChaChaTLS_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==12);
// State words are defined in RFC 8439, Section 2.3.
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
// State words are defined in RFC 8439, Section 2.3
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_counter;
get(m_state[13])(m_state[14])(m_state[15]);
}
void ChaChaTLS_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? If the initial block counter is
// large then we can wrap and process more data as long as
// data processed in the security context does not exceed
// 2^32 blocks or approximately 256 GB of data.
CRYPTOPP_ASSERT(iterationCount <= std::numeric_limits<word32>::max());
m_state[12] = (word32)iterationCount; // low word
}
unsigned int ChaChaTLS_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaChaTLS_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaChaTLS_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
word32 discard=0;
ChaCha_OperateKeystream(operation, m_state, m_state[12], discard,
ROUNDS, output, input, iterationCount);
// If this fires it means ChaCha_OperateKeystream generated a counter
// block carry that was discarded. The problem is, the RFC does not
// specify what should happen when the counter block wraps. All we can
// do is inform the user that something bad may happen because we don't
// know what we should do.
// Also see https://github.com/weidai11/cryptopp/issues/790 and
// https://mailarchive.ietf.org/arch/msg/cfrg/gsOnTJzcbgG6OqD8Sc0GO5aR_tU
// CRYPTOPP_ASSERT(discard==0);
}
////////////////////////////// IETF XChaCha20 //////////////////////////////
std::string XChaCha20_Policy::AlgorithmName() const
{
return std::string("XChaCha20");
}
std::string XChaCha20_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void XChaCha20_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
CRYPTOPP_UNUSED(length);
// Use previous rounds as the default value
int rounds = params.GetIntValueWithDefault(Name::Rounds(), m_rounds);
if (rounds != 20 && rounds != 12)
throw InvalidRounds(ChaCha::StaticAlgorithmName(), rounds);
// Latch a good value
m_rounds = rounds;
word64 block;
if (params.GetValue("InitialBlock", block))
m_counter = static_cast<word32>(block);
else
m_counter = 1;
// Stash key away for use in CipherResynchronize
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void XChaCha20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==24);
// HChaCha derivation
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
GetBlock<word32, LittleEndian> get(iv);
get(m_state[12])(m_state[13])(m_state[14])(m_state[15]);
// Operate the keystream without adding state back in.
// This function also gathers the key words into a
// contiguous 8-word block.
HChaCha_OperateKeystream(m_state, m_state+4);
// XChaCha state
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Setup new IV
m_state[12] = m_counter;
m_state[13] = 0;
m_state[14] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+16);
m_state[15] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+20);
}
void XChaCha20_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? XChaCha does not have a block
// counter, so I'm not sure how to seek on it.
CRYPTOPP_ASSERT(0); CRYPTOPP_UNUSED(iterationCount);
}
unsigned int XChaCha20_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int XChaCha20_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void XChaCha20_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
m_rounds, output, input, iterationCount);
}
NAMESPACE_END