ext-cryptopp/misc.h
2018-01-13 07:14:21 -05:00

2577 lines
101 KiB
C++

// misc.h - originally written and placed in the public domain by Wei Dai
/// \file misc.h
/// \brief Utility functions for the Crypto++ library.
#ifndef CRYPTOPP_MISC_H
#define CRYPTOPP_MISC_H
#include "config.h"
#if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
#if (CRYPTOPP_MSC_VERSION)
# pragma warning(push)
# pragma warning(disable: 4146 4514)
# if (CRYPTOPP_MSC_VERSION >= 1400)
# pragma warning(disable: 6326)
# endif
#endif
// Issue 340
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
#include "cryptlib.h"
#include "stdcpp.h"
#include "smartptr.h"
#ifdef _MSC_VER
#if _MSC_VER >= 1400
// VC2005 workaround: disable declarations that conflict with winnt.h
#define _interlockedbittestandset CRYPTOPP_DISABLED_INTRINSIC_1
#define _interlockedbittestandreset CRYPTOPP_DISABLED_INTRINSIC_2
#define _interlockedbittestandset64 CRYPTOPP_DISABLED_INTRINSIC_3
#define _interlockedbittestandreset64 CRYPTOPP_DISABLED_INTRINSIC_4
#include <intrin.h>
#undef _interlockedbittestandset
#undef _interlockedbittestandreset
#undef _interlockedbittestandset64
#undef _interlockedbittestandreset64
#define CRYPTOPP_FAST_ROTATE(x) 1
#elif _MSC_VER >= 1300
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32 | (x) == 64)
#else
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
#endif
#elif (defined(__MWERKS__) && TARGET_CPU_PPC) || \
(defined(__GNUC__) && (defined(_ARCH_PWR2) || defined(_ARCH_PWR) || defined(_ARCH_PPC) || defined(_ARCH_PPC64) || defined(_ARCH_COM)))
#define CRYPTOPP_FAST_ROTATE(x) ((x) == 32)
#elif defined(__GNUC__) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86) // depend on GCC's peephole optimization to generate rotate instructions
#define CRYPTOPP_FAST_ROTATE(x) 1
#else
#define CRYPTOPP_FAST_ROTATE(x) 0
#endif
#ifdef __BORLANDC__
#include <mem.h>
#include <stdlib.h>
#endif
#if defined(__GNUC__) && defined(__linux__)
#define CRYPTOPP_BYTESWAP_AVAILABLE
#include <byteswap.h>
#endif
#if defined(__BMI__)
# include <x86intrin.h>
#endif // GCC and BMI
#endif // CRYPTOPP_DOXYGEN_PROCESSING
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief The maximum value of a machine word
/// \details SIZE_MAX provides the maximum value of a machine word. The value is
/// 0xffffffff on 32-bit machines, and 0xffffffffffffffff on 64-bit machines.
/// Internally, SIZE_MAX is defined as __SIZE_MAX__ if __SIZE_MAX__ is defined. If not
/// defined, then SIZE_T_MAX is tried. If neither __SIZE_MAX__ nor SIZE_T_MAX is
/// is defined, the library uses std::numeric_limits<size_t>::max(). The library
/// prefers __SIZE_MAX__ because its a constexpr that is optimized well
/// by all compilers. std::numeric_limits<size_t>::max() is not a constexpr,
/// and it is not always optimized well.
# define SIZE_MAX ...
#else
// Its amazing portability problems still plague this simple concept in 2015.
// http://stackoverflow.com/questions/30472731/which-c-standard-header-defines-size-max
// Avoid NOMINMAX macro on Windows. http://support.microsoft.com/en-us/kb/143208
#ifndef SIZE_MAX
# if defined(__SIZE_MAX__) && (__SIZE_MAX__ > 0)
# define SIZE_MAX __SIZE_MAX__
# elif defined(SIZE_T_MAX) && (SIZE_T_MAX > 0)
# define SIZE_MAX SIZE_T_MAX
# elif defined(__SIZE_TYPE__)
# define SIZE_MAX (~(__SIZE_TYPE__)0)
# else
# define SIZE_MAX ((std::numeric_limits<size_t>::max)())
# endif
#endif
#endif // CRYPTOPP_DOXYGEN_PROCESSING
// NumericLimitsMin and NumericLimitsMax added for word128 types,
// see http://github.com/weidai11/cryptopp/issues/364
ANONYMOUS_NAMESPACE_BEGIN
template<class T>
T NumericLimitsMin()
{
CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
return (std::numeric_limits<T>::min)();
};
template<class T>
T NumericLimitsMax()
{
CRYPTOPP_ASSERT(std::numeric_limits<T>::is_specialized);
return (std::numeric_limits<T>::max)();
};
#if defined(CRYPTOPP_WORD128_AVAILABLE)
template<>
CryptoPP::word128 NumericLimitsMin()
{
return 0;
}
template<>
CryptoPP::word128 NumericLimitsMax()
{
return (((CryptoPP::word128)W64LIT(0xffffffffffffffff)) << 64U) | (CryptoPP::word128)W64LIT(0xffffffffffffffff);
}
#endif
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
// Forward declaration for IntToString specialization
class Integer;
// ************** compile-time assertion ***************
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Compile time assertion
/// \param expr the expression to evaluate
/// \details Asserts the expression expr though a dummy struct.
#define CRYPTOPP_COMPILE_ASSERT(expr) { ... }
#else // CRYPTOPP_DOXYGEN_PROCESSING
template <bool b>
struct CompileAssert
{
static char dummy[2*b-1];
};
#define CRYPTOPP_COMPILE_ASSERT(assertion) CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, __LINE__)
#if defined(CRYPTOPP_EXPORTS) || defined(CRYPTOPP_IMPORTS)
#define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance)
#else
# if defined(__GNUC__)
# define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
static CompileAssert<(assertion)> \
CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance) __attribute__ ((unused))
# else
# define CRYPTOPP_COMPILE_ASSERT_INSTANCE(assertion, instance) \
static CompileAssert<(assertion)> \
CRYPTOPP_ASSERT_JOIN(cryptopp_CRYPTOPP_ASSERT_, instance)
# endif // __GNUC__
#endif
#define CRYPTOPP_ASSERT_JOIN(X, Y) CRYPTOPP_DO_ASSERT_JOIN(X, Y)
#define CRYPTOPP_DO_ASSERT_JOIN(X, Y) X##Y
#endif // CRYPTOPP_DOXYGEN_PROCESSING
// ************** count elements in an array ***************
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Counts elements in an array
/// \param arr an array of elements
/// \details COUNTOF counts elements in an array. On Windows COUNTOF(x) is defined
/// to <tt>_countof(x)</tt> to ensure correct results for pointers.
/// \note COUNTOF does not produce correct results with pointers, and an array must be used.
/// <tt>sizeof(x)/sizeof(x[0])</tt> suffers the same problem. The risk is eliminated by using
/// <tt>_countof(x)</tt> on Windows. Windows will provide the immunity for other platforms.
# define COUNTOF(arr)
#else
// VS2005 added _countof
#ifndef COUNTOF
# if defined(_MSC_VER) && (_MSC_VER >= 1400)
# define COUNTOF(x) _countof(x)
# else
# define COUNTOF(x) (sizeof(x)/sizeof(x[0]))
# endif
#endif // COUNTOF
#endif // CRYPTOPP_DOXYGEN_PROCESSING
// ************** misc classes ***************
/// \brief An Empty class
/// \details The Empty class can be used as a template parameter <tt>BASE</tt> when no base class exists.
class CRYPTOPP_DLL Empty
{
};
#if !defined(CRYPTOPP_DOXYGEN_PROCESSING)
template <class BASE1, class BASE2>
class CRYPTOPP_NO_VTABLE TwoBases : public BASE1, public BASE2
{
};
template <class BASE1, class BASE2, class BASE3>
class CRYPTOPP_NO_VTABLE ThreeBases : public BASE1, public BASE2, public BASE3
{
};
#endif // CRYPTOPP_DOXYGEN_PROCESSING
/// \class ObjectHolder
/// \tparam T class or type
/// \brief Uses encapsulation to hide an object in derived classes
/// \details The object T is declared as protected.
template <class T>
class ObjectHolder
{
protected:
T m_object;
};
/// \class NotCopyable
/// \brief Ensures an object is not copyable
/// \details NotCopyable ensures an object is not copyable by making the
/// copy constructor and assignment operator private. Deleters are not
/// used under C++11.
/// \sa Clonable class
class NotCopyable
{
public:
NotCopyable() {}
private:
NotCopyable(const NotCopyable &);
void operator=(const NotCopyable &);
};
/// \class NewObject
/// \brief An object factory function
/// \tparam T class or type
/// \details NewObject overloads operator()().
template <class T>
struct NewObject
{
T* operator()() const {return new T;}
};
#if CRYPTOPP_DOXYGEN_PROCESSING
/// \brief A memory barrier
/// \details MEMORY_BARRIER attempts to ensure reads and writes are completed
/// in the absence of a language synchronization point. It is used by the
/// Singleton class if the compiler supports it. The barrier is provided at the
/// customary places in a double-checked initialization.
/// \details Internally, MEMORY_BARRIER uses <tt>std::atomic_thread_fence</tt> if
/// C++11 atomics are available. Otherwise, <tt>intrinsic(_ReadWriteBarrier)</tt>,
/// <tt>_ReadWriteBarrier()</tt> or <tt>__asm__("" ::: "memory")</tt> is used.
#define MEMORY_BARRIER ...
#else
#if defined(CRYPTOPP_CXX11_ATOMICS)
# define MEMORY_BARRIER() std::atomic_thread_fence(std::memory_order_acq_rel)
#elif (_MSC_VER >= 1400)
# pragma intrinsic(_ReadWriteBarrier)
# define MEMORY_BARRIER() _ReadWriteBarrier()
#elif defined(__INTEL_COMPILER)
# define MEMORY_BARRIER() __memory_barrier()
#elif defined(__GNUC__) || defined(__clang__)
# define MEMORY_BARRIER() __asm__ __volatile__ ("" ::: "memory")
#else
# define MEMORY_BARRIER()
#endif
#endif // CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Restricts the instantiation of a class to one static object without locks
/// \tparam T the class or type
/// \tparam F the object factory for T
/// \tparam instance an instance counter for the class object
/// \details This class safely initializes a static object in a multithreaded environment. For C++03
/// and below it will do so without using locks for portability. If two threads call Ref() at the same
/// time, they may get back different references, and one object may end up being memory leaked. This
/// is by design and it avoids a subltle initialization problem ina multithreaded environment with thread
/// local storage on early Windows platforms, like Windows XP and Windows 2003.
/// \details For C++11 and above, a standard double-checked locking pattern with thread fences
/// are used. The locks and fences are standard and do not hinder portability.
/// \details Microsoft's C++11 implementation provides the necessary primitive support on Windows Vista and
/// above when using Visual Studio 2015 (<tt>cl.exe</tt> version 19.00). If C++11 is desired, you should
/// set <tt>WINVER</tt> or <tt>_WIN32_WINNT</tt> to 0x600 (or above), and compile with Visual Studio 2015.
/// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking
/// is Fixed In C++11</A>, <A HREF="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm">Dynamic
/// Initialization and Destruction with Concurrency</A> and
/// <A HREF="http://msdn.microsoft.com/en-us/library/6yh4a9k1.aspx">Thread Local Storage (TLS)</A> on MSDN.
/// \since Crypto++ 5.2
template <class T, class F = NewObject<T>, int instance=0>
class Singleton
{
public:
Singleton(F objectFactory = F()) : m_objectFactory(objectFactory) {}
// prevent this function from being inlined
CRYPTOPP_NOINLINE const T & Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const;
private:
F m_objectFactory;
};
/// \brief Return a reference to the inner Singleton object
/// \tparam T the class or type
/// \tparam F the object factory for T
/// \tparam instance an instance counter for the class object
/// \details Ref() is used to create the object using the object factory. The
/// object is only created once with the limitations discussed in the class documentation.
/// \sa <A HREF="http://preshing.com/20130930/double-checked-locking-is-fixed-in-cpp11/">Double-Checked Locking is Fixed In C++11</A>
/// \since Crypto++ 5.2
template <class T, class F, int instance>
const T & Singleton<T, F, instance>::Ref(CRYPTOPP_NOINLINE_DOTDOTDOT) const
{
#if defined(CRYPTOPP_CXX11_ATOMICS) && defined(CRYPTOPP_CXX11_SYNCHRONIZATION) && defined(CRYPTOPP_CXX11_DYNAMIC_INIT)
static std::mutex s_mutex;
static std::atomic<T*> s_pObject;
T *p = s_pObject.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
if (p)
return *p;
std::lock_guard<std::mutex> lock(s_mutex);
p = s_pObject.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
if (p)
return *p;
T *newObject = m_objectFactory();
s_pObject.store(newObject, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_release);
return *newObject;
#else
static volatile simple_ptr<T> s_pObject;
T *p = s_pObject.m_p;
MEMORY_BARRIER();
if (p)
return *p;
T *newObject = m_objectFactory();
p = s_pObject.m_p;
MEMORY_BARRIER();
if (p)
{
delete newObject;
return *p;
}
s_pObject.m_p = newObject;
MEMORY_BARRIER();
return *newObject;
#endif
}
// ************** misc functions ***************
#if (!__STDC_WANT_SECURE_LIB__ && !defined(_MEMORY_S_DEFINED)) || defined(CRYPTOPP_WANT_SECURE_LIB)
/// \brief Bounds checking replacement for memcpy()
/// \param dest pointer to the desination memory block
/// \param sizeInBytes the size of the desination memory block, in bytes
/// \param src pointer to the source memory block
/// \param count the size of the source memory block, in bytes
/// \throws InvalidArgument
/// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
/// unsafe functions like memcpy(), strcpy() and memmove(). However,
/// not all standard libraries provides them, like Glibc. The library's
/// memcpy_s() is a near-drop in replacement. Its only a near-replacement
/// because the library's version throws an InvalidArgument on a bounds violation.
/// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
/// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
/// makes memcpy_s() and memmove_s() available. The library will also optionally
/// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
/// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
/// \details memcpy_s() will assert the pointers src and dest are not NULL
/// in debug builds. Passing NULL for either pointer is undefined behavior.
inline void memcpy_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
// Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
// Pointers must be valid; otherwise undefined behavior
CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
// Destination buffer must be large enough to satsify request
CRYPTOPP_ASSERT(sizeInBytes >= count);
if (count > sizeInBytes)
throw InvalidArgument("memcpy_s: buffer overflow");
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4996)
# if (CRYPTOPP_MSC_VERSION >= 1400)
# pragma warning(disable: 6386)
# endif
#endif
memcpy(dest, src, count);
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
}
/// \brief Bounds checking replacement for memmove()
/// \param dest pointer to the desination memory block
/// \param sizeInBytes the size of the desination memory block, in bytes
/// \param src pointer to the source memory block
/// \param count the size of the source memory block, in bytes
/// \throws InvalidArgument
/// \details ISO/IEC TR-24772 provides bounds checking interfaces for potentially
/// unsafe functions like memcpy(), strcpy() and memmove(). However,
/// not all standard libraries provides them, like Glibc. The library's
/// memmove_s() is a near-drop in replacement. Its only a near-replacement
/// because the library's version throws an InvalidArgument on a bounds violation.
/// \details memcpy_s() and memmove_s() are guarded by __STDC_WANT_SECURE_LIB__.
/// If __STDC_WANT_SECURE_LIB__ is not defined or defined to 0, then the library
/// makes memcpy_s() and memmove_s() available. The library will also optionally
/// make the symbols available if <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is defined.
/// <tt>CRYPTOPP_WANT_SECURE_LIB</tt> is in config.h, but it is disabled by default.
/// \details memmove_s() will assert the pointers src and dest are not NULL
/// in debug builds. Passing NULL for either pointer is undefined behavior.
inline void memmove_s(void *dest, size_t sizeInBytes, const void *src, size_t count)
{
// Safer functions on Windows for C&A, http://github.com/weidai11/cryptopp/issues/55
// Pointers must be valid; otherwise undefined behavior
CRYPTOPP_ASSERT(dest != NULLPTR); CRYPTOPP_ASSERT(src != NULLPTR);
// Destination buffer must be large enough to satsify request
CRYPTOPP_ASSERT(sizeInBytes >= count);
if (count > sizeInBytes)
throw InvalidArgument("memmove_s: buffer overflow");
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4996)
# if (CRYPTOPP_MSC_VERSION >= 1400)
# pragma warning(disable: 6386)
# endif
#endif
memmove(dest, src, count);
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
}
#if __BORLANDC__ >= 0x620
// C++Builder 2010 workaround: can't use std::memcpy_s because it doesn't allow 0 lengths
# define memcpy_s CryptoPP::memcpy_s
# define memmove_s CryptoPP::memmove_s
#endif
#endif // __STDC_WANT_SECURE_LIB__
/// \brief Swaps two variables which are arrays
/// \tparam T class or type
/// \param a the first value
/// \param b the second value
/// \details C++03 does not provide support for <tt>std::swap(__m128i a, __m128i b)</tt>
/// because <tt>__m128i</tt> is an <tt>unsigned long long[2]</tt>. Most compilers
/// support it out of the box, but Sun Studio C++ compilers 12.2 and 12.3 do not.
/// \sa <A HREF="http://stackoverflow.com/q/38417413">How to swap two __m128i variables
/// in C++03 given its an opaque type and an array?</A> on Stack Overflow.
template <class T>
inline void vec_swap(T& a, T& b)
{
// __m128i is an unsigned long long[2], and support for swapping it was
// not added until C++11. SunCC 12.1 - 12.3 fail to consume the swap; while
// SunCC 12.4 consumes it without -std=c++11.
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
T t;
t=a, a=b, b=t;
#else
std::swap(a, b);
#endif
}
/// \brief Memory block initializer and eraser that attempts to survive optimizations
/// \param ptr pointer to the memory block being written
/// \param value the integer value to write for each byte
/// \param num the size of the source memory block, in bytes
/// \details Internally the function calls memset with the value value, and receives the
/// return value from memset as a <tt>volatile</tt> pointer.
inline void * memset_z(void *ptr, int value, size_t num)
{
// avoid extranous warning on GCC 4.3.2 Ubuntu 8.10
#if CRYPTOPP_GCC_VERSION >= 30001
if (__builtin_constant_p(num) && num==0)
return ptr;
#endif
volatile void* x = memset(ptr, value, num);
return const_cast<void*>(x);
}
/// \brief Replacement function for std::min
/// \tparam T class or type
/// \param a the first value
/// \param b the second value
/// \returns the minimum value based on a comparison of <tt>b \< a</tt> using <tt>operator\<</tt>
/// \details STDMIN was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
template <class T> inline const T& STDMIN(const T& a, const T& b)
{
return b < a ? b : a;
}
/// \brief Replacement function for std::max
/// \tparam T class or type
/// \param a the first value
/// \param b the second value
/// \returns the minimum value based on a comparison of <tt>a \< b</tt> using <tt>operator\<</tt>
/// \details STDMAX was provided because the library could not easily use std::min or std::max in Windows or Cygwin 1.1.0
template <class T> inline const T& STDMAX(const T& a, const T& b)
{
return a < b ? b : a;
}
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4389)
#endif
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wsign-compare"
# if (CRYPTOPP_LLVM_CLANG_VERSION >= 20800) || (CRYPTOPP_APPLE_CLANG_VERSION >= 30000)
# pragma GCC diagnostic ignored "-Wtautological-compare"
# elif (CRYPTOPP_GCC_VERSION >= 40300)
# pragma GCC diagnostic ignored "-Wtype-limits"
# endif
#endif
/// \brief Safe comparison of values that could be neagtive and incorrectly promoted
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param a the first value
/// \param b the second value
/// \returns the minimum value based on a comparison a and b using <tt>operator&lt;</tt>.
/// \details The comparison <tt>b \< a</tt> is performed and the value returned is a's type T1.
template <class T1, class T2> inline const T1 UnsignedMin(const T1& a, const T2& b)
{
CRYPTOPP_COMPILE_ASSERT((sizeof(T1)<=sizeof(T2) && T2(-1)>0) || (sizeof(T1)>sizeof(T2) && T1(-1)>0));
if (sizeof(T1)<=sizeof(T2))
return b < (T2)a ? (T1)b : a;
else
return (T1)b < a ? (T1)b : a;
}
/// \brief Tests whether a conversion from -> to is safe to perform
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param from the first value
/// \param to the second value
/// \returns true if its safe to convert from into to, false otherwise.
template <class T1, class T2>
inline bool SafeConvert(T1 from, T2 &to)
{
to = (T2)from;
if (from != to || (from > 0) != (to > 0))
return false;
return true;
}
/// \brief Converts a value to a string
/// \tparam T class or type
/// \param value the value to convert
/// \param base the base to use during the conversion
/// \returns the string representation of value in base.
template <class T>
std::string IntToString(T value, unsigned int base = 10)
{
// Hack... set the high bit for uppercase.
static const unsigned int HIGH_BIT = (1U << 31);
const char CH = !!(base & HIGH_BIT) ? 'A' : 'a';
base &= ~HIGH_BIT;
CRYPTOPP_ASSERT(base >= 2);
if (value == 0)
return "0";
bool negate = false;
if (value < 0)
{
negate = true;
value = 0-value; // VC .NET does not like -a
}
std::string result;
while (value > 0)
{
T digit = value % base;
result = char((digit < 10 ? '0' : (CH - 10)) + digit) + result;
value /= base;
}
if (negate)
result = "-" + result;
return result;
}
/// \brief Converts an unsigned value to a string
/// \param value the value to convert
/// \param base the base to use during the conversion
/// \returns the string representation of value in base.
/// \details this template function specialization was added to suppress
/// Coverity findings on IntToString() with unsigned types.
template <> CRYPTOPP_DLL
std::string IntToString<word64>(word64 value, unsigned int base);
/// \brief Converts an Integer to a string
/// \param value the Integer to convert
/// \param base the base to use during the conversion
/// \returns the string representation of value in base.
/// \details This is a template specialization of IntToString(). Use it
/// like IntToString():
/// <pre>
/// // Print integer in base 10
/// Integer n...
/// std::string s = IntToString(n, 10);
/// </pre>
/// \details The string is presented with lowercase letters by default. A
/// hack is available to switch to uppercase letters without modifying
/// the function signature.
/// <pre>
/// // Print integer in base 16, uppercase letters
/// Integer n...
/// const unsigned int UPPER = (1 << 31);
/// std::string s = IntToString(n, (UPPER | 16));</pre>
template <> CRYPTOPP_DLL
std::string IntToString<Integer>(Integer value, unsigned int base);
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif
#define RETURN_IF_NONZERO(x) size_t returnedValue = x; if (returnedValue) return returnedValue
// this version of the macro is fastest on Pentium 3 and Pentium 4 with MSVC 6 SP5 w/ Processor Pack
#define GETBYTE(x, y) (unsigned int)byte((x)>>(8*(y)))
// these may be faster on other CPUs/compilers
// #define GETBYTE(x, y) (unsigned int)(((x)>>(8*(y)))&255)
// #define GETBYTE(x, y) (((byte *)&(x))[y])
#define CRYPTOPP_GET_BYTE_AS_BYTE(x, y) byte((x)>>(8*(y)))
/// \brief Returns the parity of a value
/// \tparam T class or type
/// \param value the value to provide the parity
/// \returns 1 if the number 1-bits in the value is odd, 0 otherwise
template <class T>
unsigned int Parity(T value)
{
for (unsigned int i=8*sizeof(value)/2; i>0; i/=2)
value ^= value >> i;
return (unsigned int)value&1;
}
/// \brief Returns the number of 8-bit bytes or octets required for a value
/// \tparam T class or type
/// \param value the value to test
/// \returns the minimum number of 8-bit bytes or octets required to represent a value
template <class T>
unsigned int BytePrecision(const T &value)
{
if (!value)
return 0;
unsigned int l=0, h=8*sizeof(value);
while (h-l > 8)
{
unsigned int t = (l+h)/2;
if (value >> t)
l = t;
else
h = t;
}
return h/8;
}
/// \brief Returns the number of bits required for a value
/// \tparam T class or type
/// \param value the value to test
/// \returns the maximum number of bits required to represent a value.
template <class T>
unsigned int BitPrecision(const T &value)
{
if (!value)
return 0;
unsigned int l=0, h=8*sizeof(value);
while (h-l > 1)
{
unsigned int t = (l+h)/2;
if (value >> t)
l = t;
else
h = t;
}
return h;
}
/// Determines the number of trailing 0-bits in a value
/// \param v the 32-bit value to test
/// \returns the number of trailing 0-bits in v, starting at the least significant bit position
/// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
/// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
/// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
inline unsigned int TrailingZeros(word32 v)
{
// GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
// We don't enable for Microsoft because it requires a runtime check.
// http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
CRYPTOPP_ASSERT(v != 0);
#if defined(__BMI__)
return (unsigned int)_tzcnt_u32(v);
#elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
return (unsigned int)__builtin_ctz(v);
#elif defined(_MSC_VER) && (_MSC_VER >= 1400)
unsigned long result;
_BitScanForward(&result, v);
return (unsigned int)result;
#else
// from http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
static const int MultiplyDeBruijnBitPosition[32] =
{
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
return MultiplyDeBruijnBitPosition[((word32)((v & -v) * 0x077CB531U)) >> 27];
#endif
}
/// Determines the number of trailing 0-bits in a value
/// \param v the 64-bit value to test
/// \returns the number of trailing 0-bits in v, starting at the least significant bit position
/// \details TrailingZeros returns the number of trailing 0-bits in v, starting at the least
/// significant bit position. The return value is undefined if there are no 1-bits set in the value v.
/// \note The function does not return 0 if no 1-bits are set because 0 collides with a 1-bit at the 0-th position.
inline unsigned int TrailingZeros(word64 v)
{
// GCC 4.7 and VS2012 provides tzcnt on AVX2/BMI enabled processors
// We don't enable for Microsoft because it requires a runtime check.
// http://msdn.microsoft.com/en-us/library/hh977023%28v=vs.110%29.aspx
CRYPTOPP_ASSERT(v != 0);
#if defined(__BMI__) && defined(__x86_64__)
return (unsigned int)_tzcnt_u64(v);
#elif defined(__GNUC__) && (CRYPTOPP_GCC_VERSION >= 30400)
return (unsigned int)__builtin_ctzll(v);
#elif defined(_MSC_VER) && (_MSC_VER >= 1400) && (defined(_M_X64) || defined(_M_IA64))
unsigned long result;
_BitScanForward64(&result, v);
return (unsigned int)result;
#else
return word32(v) ? TrailingZeros(word32(v)) : 32 + TrailingZeros(word32(v>>32));
#endif
}
/// \brief Truncates the value to the specified number of bits.
/// \tparam T class or type
/// \param value the value to truncate or mask
/// \param bits the number of bits to truncate or mask
/// \returns the value truncated to the specified number of bits, starting at the least
/// significant bit position
/// \details This function masks the low-order bits of value and returns the result. The
/// mask is created with <tt>(1 << bits) - 1</tt>.
template <class T>
inline T Crop(T value, size_t bits)
{
if (bits < 8*sizeof(value))
return T(value & ((T(1) << bits) - 1));
else
return value;
}
/// \brief Returns the number of 8-bit bytes or octets required for the specified number of bits
/// \param bitCount the number of bits
/// \returns the minimum number of 8-bit bytes or octets required by bitCount
/// \details BitsToBytes is effectively a ceiling function based on 8-bit bytes.
inline size_t BitsToBytes(size_t bitCount)
{
return ((bitCount+7)/(8));
}
/// \brief Returns the number of words required for the specified number of bytes
/// \param byteCount the number of bytes
/// \returns the minimum number of words required by byteCount
/// \details BytesToWords is effectively a ceiling function based on <tt>WORD_SIZE</tt>.
/// <tt>WORD_SIZE</tt> is defined in config.h
inline size_t BytesToWords(size_t byteCount)
{
return ((byteCount+WORD_SIZE-1)/WORD_SIZE);
}
/// \brief Returns the number of words required for the specified number of bits
/// \param bitCount the number of bits
/// \returns the minimum number of words required by bitCount
/// \details BitsToWords is effectively a ceiling function based on <tt>WORD_BITS</tt>.
/// <tt>WORD_BITS</tt> is defined in config.h
inline size_t BitsToWords(size_t bitCount)
{
return ((bitCount+WORD_BITS-1)/(WORD_BITS));
}
/// \brief Returns the number of double words required for the specified number of bits
/// \param bitCount the number of bits
/// \returns the minimum number of double words required by bitCount
/// \details BitsToDwords is effectively a ceiling function based on <tt>2*WORD_BITS</tt>.
/// <tt>WORD_BITS</tt> is defined in config.h
inline size_t BitsToDwords(size_t bitCount)
{
return ((bitCount+2*WORD_BITS-1)/(2*WORD_BITS));
}
/// Performs an XOR of a buffer with a mask
/// \param buf the buffer to XOR with the mask
/// \param mask the mask to XOR with the buffer
/// \param count the size of the buffers, in bytes
/// \details The function effectively visits each element in the buffers and performs
/// <tt>buf[i] ^= mask[i]</tt>. buf and mask must be of equal size.
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *buf, const byte *mask, size_t count);
/// Performs an XOR of an input buffer with a mask and stores the result in an output buffer
/// \param output the destination buffer
/// \param input the source buffer to XOR with the mask
/// \param mask the mask buffer to XOR with the input buffer
/// \param count the size of the buffers, in bytes
/// \details The function effectively visits each element in the buffers and performs
/// <tt>output[i] = input[i] ^ mask[i]</tt>. output, input and mask must be of equal size.
CRYPTOPP_DLL void CRYPTOPP_API xorbuf(byte *output, const byte *input, const byte *mask, size_t count);
/// \brief Performs a near constant-time comparison of two equally sized buffers
/// \param buf1 the first buffer
/// \param buf2 the second buffer
/// \param count the size of the buffers, in bytes
/// \details The function effectively performs an XOR of the elements in two equally sized buffers
/// and retruns a result based on the XOR operation. The function is near constant-time because
/// CPU micro-code timings could affect the "constant-ness". Calling code is responsible for
/// mitigating timing attacks if the buffers are not equally sized.
/// \sa ModPowerOf2
CRYPTOPP_DLL bool CRYPTOPP_API VerifyBufsEqual(const byte *buf1, const byte *buf2, size_t count);
/// \brief Tests whether a value is a power of 2
/// \param value the value to test
/// \returns true if value is a power of 2, false otherwise
/// \details The function creates a mask of <tt>value - 1</tt> and returns the result of
/// an AND operation compared to 0. If value is 0 or less than 0, then the function returns false.
template <class T>
inline bool IsPowerOf2(const T &value)
{
return value > 0 && (value & (value-1)) == 0;
}
#if defined(__BMI__)
template <>
inline bool IsPowerOf2<word32>(const word32 &value)
{
return value > 0 && _blsr_u32(value) == 0;
}
# if defined(__x86_64__)
template <>
inline bool IsPowerOf2<word64>(const word64 &value)
{
return value > 0 && _blsr_u64(value) == 0;
}
# endif // __x86_64__
#endif // __BMI__
/// \brief Performs a saturating subtract clamped at 0
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param a the minuend
/// \param b the subtrahend
/// \returns the difference produced by the saturating subtract
/// \details Saturating arithmetic restricts results to a fixed range. Results that are less than 0 are clamped at 0.
/// \details Use of saturating arithmetic in places can be advantageous because it can
/// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
template <class T1, class T2>
inline T1 SaturatingSubtract(const T1 &a, const T2 &b)
{
// Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
return T1((a > b) ? (a - b) : 0);
}
/// \brief Performs a saturating subtract clamped at 1
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param a the minuend
/// \param b the subtrahend
/// \returns the difference produced by the saturating subtract
/// \details Saturating arithmetic restricts results to a fixed range. Results that are less than
/// 1 are clamped at 1.
/// \details Use of saturating arithmetic in places can be advantageous because it can
/// avoid a branch by using an instruction like a conditional move (<tt>CMOVE</tt>).
template <class T1, class T2>
inline T1 SaturatingSubtract1(const T1 &a, const T2 &b)
{
// Generated ASM of a typical clamp, http://gcc.gnu.org/ml/gcc-help/2014-10/msg00112.html
return T1((a > b) ? (a - b) : 1);
}
/// \brief Reduces a value to a power of 2
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param a the first value
/// \param b the second value
/// \returns ModPowerOf2() returns <tt>a & (b-1)</tt>. <tt>b</tt> must be a power of 2.
/// Use IsPowerOf2() to determine if <tt>b</tt> is a suitable candidate.
/// \sa IsPowerOf2
template <class T1, class T2>
inline T2 ModPowerOf2(const T1 &a, const T2 &b)
{
CRYPTOPP_ASSERT(IsPowerOf2(b));
// Coverity finding CID 170383 Overflowed return value (INTEGER_OVERFLOW)
return T2(a) & SaturatingSubtract(b,1U);
}
/// \brief Rounds a value down to a multiple of a second value
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param n the value to reduce
/// \param m the value to reduce \n to to a multiple
/// \returns the possibly unmodified value \n
/// \details RoundDownToMultipleOf is effectively a floor function based on m. The function returns
/// the value <tt>n - n\%m</tt>. If n is a multiple of m, then the original value is returned.
/// \note <tt>T1</tt> and <tt>T2</tt> should be usigned arithmetic types. If <tt>T1</tt> or
/// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
/// debug builds when practical, but allows you to perform the operation in release builds.
template <class T1, class T2>
inline T1 RoundDownToMultipleOf(const T1 &n, const T2 &m)
{
// http://github.com/weidai11/cryptopp/issues/364
#if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
#endif
CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
if (IsPowerOf2(m))
return n - ModPowerOf2(n, m);
else
return n - n%m;
}
/// \brief Rounds a value up to a multiple of a second value
/// \tparam T1 class or type
/// \tparam T2 class or type
/// \param n the value to reduce
/// \param m the value to reduce \n to to a multiple
/// \returns the possibly unmodified value \n
/// \details RoundUpToMultipleOf is effectively a ceiling function based on m. The function
/// returns the value <tt>n + n\%m</tt>. If n is a multiple of m, then the original value is
/// returned. If the value n would overflow, then an InvalidArgument exception is thrown.
/// \note <tt>T1</tt> and <tt>T2</tt> should be usigned arithmetic types. If <tt>T1</tt> or
/// <tt>T2</tt> is signed, then the value should be non-negative. The library asserts in
/// debug builds when practical, but allows you to perform the operation in release builds.
template <class T1, class T2>
inline T1 RoundUpToMultipleOf(const T1 &n, const T2 &m)
{
// http://github.com/weidai11/cryptopp/issues/364
#if !defined(CRYPTOPP_APPLE_CLANG_VERSION) || (CRYPTOPP_APPLE_CLANG_VERSION >= 80000)
CRYPTOPP_ASSERT(std::numeric_limits<T1>::is_integer);
CRYPTOPP_ASSERT(std::numeric_limits<T2>::is_integer);
#endif
CRYPTOPP_ASSERT(!std::numeric_limits<T1>::is_signed || n > 0);
CRYPTOPP_ASSERT(!std::numeric_limits<T2>::is_signed || m > 0);
if (NumericLimitsMax<T1>() - m + 1 < n)
throw InvalidArgument("RoundUpToMultipleOf: integer overflow");
return RoundDownToMultipleOf(T1(n+m-1), m);
}
/// \brief Returns the minimum alignment requirements of a type
/// \tparam T class or type
/// \returns the minimum alignment requirements of <tt>T</tt>, in bytes
/// \details Internally the function calls C++11's <tt>alignof</tt> if available. If not available,
/// then the function uses compiler specific extensions such as <tt>__alignof</tt> and
/// <tt>_alignof_</tt>. If an extension is not available, then the function uses
/// <tt>__BIGGEST_ALIGNMENT__</tt> if <tt>__BIGGEST_ALIGNMENT__</tt> is smaller than <tt>sizeof(T)</tt>.
/// <tt>sizeof(T)</tt> is used if all others are not available.
/// In <em>all</em> cases, if <tt>CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS</tt> is defined, then the
/// function returns 1.
template <class T>
inline unsigned int GetAlignmentOf()
{
// GCC 4.6 (circa 2008) and above aggressively uses vectorization.
#if defined(CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS)
if (sizeof(T) < 16)
return 1;
#endif
#if defined(CRYPTOPP_CXX11_ALIGNOF)
return alignof(T);
#elif (_MSC_VER >= 1300)
return __alignof(T);
#elif defined(__GNUC__)
return __alignof__(T);
#elif CRYPTOPP_BOOL_SLOW_WORD64
return UnsignedMin(4U, sizeof(T));
#else
# if __BIGGEST_ALIGNMENT__
if (__BIGGEST_ALIGNMENT__ < sizeof(T))
return __BIGGEST_ALIGNMENT__;
else
# endif
return sizeof(T);
#endif
}
/// \brief Determines whether ptr is aligned to a minimum value
/// \param ptr the pointer being checked for alignment
/// \param alignment the alignment value to test the pointer against
/// \returns true if <tt>ptr</tt> is aligned on at least <tt>alignment</tt> boundary, false otherwise
/// \details Internally the function tests whether alignment is 1. If so, the function returns true.
/// If not, then the function effectively performs a modular reduction and returns true if the residue is 0
inline bool IsAlignedOn(const void *ptr, unsigned int alignment)
{
return alignment==1 || (IsPowerOf2(alignment) ? ModPowerOf2((size_t)ptr, alignment) == 0 : (size_t)ptr % alignment == 0);
}
/// \brief Determines whether ptr is minimally aligned
/// \tparam T class or type
/// \param ptr the pointer to check for alignment
/// \returns true if <tt>ptr</tt> is aligned to at least <tt>T</tt> boundary, false otherwise
/// \details Internally the function calls IsAlignedOn with a second parameter of GetAlignmentOf<T>
template <class T>
inline bool IsAligned(const void *ptr)
{
return IsAlignedOn(ptr, GetAlignmentOf<T>());
}
#if defined(CRYPTOPP_LITTLE_ENDIAN)
typedef LittleEndian NativeByteOrder;
#elif defined(CRYPTOPP_BIG_ENDIAN)
typedef BigEndian NativeByteOrder;
#else
# error "Unable to determine endian-ness"
#endif
/// \brief Returns NativeByteOrder as an enumerated ByteOrder value
/// \returns LittleEndian if the native byte order is little-endian, and BigEndian if the
/// native byte order is big-endian
/// \details NativeByteOrder is a typedef depending on the platform. If CRYPTOPP_LITTLE_ENDIAN is
/// set in config.h, then GetNativeByteOrder returns LittleEndian. If
/// CRYPTOPP_BIG_ENDIAN is set, then GetNativeByteOrder returns BigEndian.
/// \note There are other byte orders besides little- and big-endian, and they include bi-endian
/// and PDP-endian. If a system is neither little-endian nor big-endian, then a compile time
/// error occurs.
inline ByteOrder GetNativeByteOrder()
{
return NativeByteOrder::ToEnum();
}
/// \brief Determines whether order follows native byte ordering
/// \param order the ordering being tested against native byte ordering
/// \returns true if order follows native byte ordering, false otherwise
inline bool NativeByteOrderIs(ByteOrder order)
{
return order == GetNativeByteOrder();
}
/// \brief Returns the direction the cipher is being operated
/// \tparam T class or type
/// \param obj the cipher object being queried
/// \returns ENCRYPTION if the cipher obj is being operated in its forward direction,
/// DECRYPTION otherwise
/// \details A cipher can be operated in a "forward" direction (encryption) or a "reverse"
/// direction (decryption). The operations do not have to be symmetric, meaning a second
/// application of the transformation does not necessariy return the original message.
/// That is, <tt>E(D(m))</tt> may not equal <tt>E(E(m))</tt>; and <tt>D(E(m))</tt> may not
/// equal <tt>D(D(m))</tt>.
template <class T>
inline CipherDir GetCipherDir(const T &obj)
{
return obj.IsForwardTransformation() ? ENCRYPTION : DECRYPTION;
}
/// \brief Attempts to reclaim unused memory
/// \throws bad_alloc
/// \details In the normal course of running a program, a request for memory normally succeeds. If a
/// call to AlignedAllocate or UnalignedAllocate fails, then CallNewHandler is called in
/// an effort to recover. Internally, CallNewHandler calls set_new_handler(NULLPTR) in an effort
/// to free memory. There is no guarantee CallNewHandler will be able to procure more memory so
/// an allocation succeeds. If the call to set_new_handler fails, then CallNewHandler throws
/// a bad_alloc exception.
CRYPTOPP_DLL void CRYPTOPP_API CallNewHandler();
/// \brief Performs an addition with carry on a block of bytes
/// \param inout the byte block
/// \param size the size of the block, in bytes
/// \details Performs an addition with carry by adding 1 on a block of bytes starting at the least
/// significant byte. Once carry is 0, the function terminates and returns to the caller.
/// \note The function is not constant time because it stops processing when the carry is 0.
inline void IncrementCounterByOne(byte *inout, unsigned int size)
{
CRYPTOPP_ASSERT(inout != NULLPTR); CRYPTOPP_ASSERT(size < INT_MAX);
for (int i=int(size-1), carry=1; i>=0 && carry; i--)
carry = !++inout[i];
}
/// \brief Performs an addition with carry on a block of bytes
/// \param output the destination block of bytes
/// \param input the source block of bytes
/// \param size the size of the block
/// \details Performs an addition with carry on a block of bytes starting at the least significant
/// byte. Once carry is 0, the remaining bytes from input are copied to output using memcpy.
/// \details The function is close to near-constant time because it operates on all the bytes in the blocks.
inline void IncrementCounterByOne(byte *output, const byte *input, unsigned int size)
{
CRYPTOPP_ASSERT(output != NULLPTR); CRYPTOPP_ASSERT(input != NULLPTR); CRYPTOPP_ASSERT(size < INT_MAX);
int i, carry;
for (i=int(size-1), carry=1; i>=0 && carry; i--)
carry = ((output[i] = input[i]+1) == 0);
memcpy_s(output, size, input, size_t(i)+1);
}
/// \brief Performs a branchless swap of values a and b if condition c is true
/// \tparam T class or type
/// \param c the condition to perform the swap
/// \param a the first value
/// \param b the second value
template <class T>
inline void ConditionalSwap(bool c, T &a, T &b)
{
T t = c * (a ^ b);
a ^= t;
b ^= t;
}
/// \brief Performs a branchless swap of pointers a and b if condition c is true
/// \tparam T class or type
/// \param c the condition to perform the swap
/// \param a the first pointer
/// \param b the second pointer
template <class T>
inline void ConditionalSwapPointers(bool c, T &a, T &b)
{
ptrdiff_t t = size_t(c) * (a - b);
a -= t;
b += t;
}
// see http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/protect-secrets.html
// and http://www.securecoding.cert.org/confluence/display/cplusplus/MSC06-CPP.+Be+aware+of+compiler+optimization+when+dealing+with+sensitive+data
/// \brief Sets each element of an array to 0
/// \tparam T class or type
/// \param buf an array of elements
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal
template <class T>
void SecureWipeBuffer(T *buf, size_t n)
{
// GCC 4.3.2 on Cygwin optimizes away the first store if this loop is done in the forward direction
volatile T *p = buf+n;
while (n--)
*(--p) = 0;
}
#if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)
/// \brief Sets each byte of an array to 0
/// \param buf an array of bytes
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(byte *buf, size_t n)
{
volatile byte *p = buf;
#ifdef __GNUC__
asm volatile("rep stosb" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
__stosb((byte *)(size_t)p, 0, n);
#endif
}
/// \brief Sets each 16-bit element of an array to 0
/// \param buf an array of 16-bit words
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
{
volatile word16 *p = buf;
#ifdef __GNUC__
asm volatile("rep stosw" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
__stosw((word16 *)(size_t)p, 0, n);
#endif
}
/// \brief Sets each 32-bit element of an array to 0
/// \param buf an array of 32-bit words
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
{
volatile word32 *p = buf;
#ifdef __GNUC__
asm volatile("rep stosl" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
__stosd((unsigned long *)(size_t)p, 0, n);
#endif
}
/// \brief Sets each 64-bit element of an array to 0
/// \param buf an array of 64-bit words
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
{
#if CRYPTOPP_BOOL_X64
volatile word64 *p = buf;
#ifdef __GNUC__
asm volatile("rep stosq" : "+c"(n), "+D"(p) : "a"(0) : "memory");
#else
__stosq((word64 *)(size_t)p, 0, n);
#endif
#else
SecureWipeBuffer((word32 *)buf, 2*n);
#endif
}
#endif // #if (_MSC_VER >= 1400 || defined(__GNUC__)) && (CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X86)
#if (_MSC_VER >= 1700) && defined(_M_ARM)
template<> inline void SecureWipeBuffer(byte *buf, size_t n)
{
char *p = reinterpret_cast<char*>(buf+n);
while (n--)
__iso_volatile_store8(--p, 0);
}
template<> inline void SecureWipeBuffer(word16 *buf, size_t n)
{
short *p = reinterpret_cast<short*>(buf+n);
while (n--)
__iso_volatile_store16(--p, 0);
}
template<> inline void SecureWipeBuffer(word32 *buf, size_t n)
{
int *p = reinterpret_cast<int*>(buf+n);
while (n--)
__iso_volatile_store32(--p, 0);
}
template<> inline void SecureWipeBuffer(word64 *buf, size_t n)
{
__int64 *p = reinterpret_cast<__int64*>(buf+n);
while (n--)
__iso_volatile_store64(--p, 0);
}
#endif
/// \brief Sets each element of an array to 0
/// \tparam T class or type
/// \param buf an array of elements
/// \param n the number of elements in the array
/// \details The operation performs a wipe or zeroization. The function attempts to survive optimizations and dead code removal.
template <class T>
inline void SecureWipeArray(T *buf, size_t n)
{
if (sizeof(T) % 8 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word64>() == 0)
SecureWipeBuffer((word64 *)(void *)buf, n * (sizeof(T)/8));
else if (sizeof(T) % 4 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word32>() == 0)
SecureWipeBuffer((word32 *)(void *)buf, n * (sizeof(T)/4));
else if (sizeof(T) % 2 == 0 && GetAlignmentOf<T>() % GetAlignmentOf<word16>() == 0)
SecureWipeBuffer((word16 *)(void *)buf, n * (sizeof(T)/2));
else
SecureWipeBuffer((byte *)(void *)buf, n * sizeof(T));
}
/// \brief Converts a wide character C-string to a multibyte string
/// \param str C-string consisting of wide characters
/// \param throwOnError flag indicating the function should throw on error
/// \returns str converted to a multibyte string or an empty string.
/// \details StringNarrow() converts a wide string to a narrow string using C++ std::wcstombs() under
/// the executing thread's locale. A locale must be set before using this function, and it can be
/// set with std::setlocale() if needed. Upon success, the converted string is returned.
/// \details Upon failure with throwOnError as false, the function returns an empty string. If
/// throwOnError as true, the function throws an InvalidArgument() exception.
/// \note If you try to convert, say, the Chinese character for "bone" from UTF-16 (0x9AA8) to UTF-8
/// (0xE9 0xAA 0xA8), then you must ensure the locale is available. If the locale is not available,
/// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
std::string StringNarrow(const wchar_t *str, bool throwOnError = true);
/// \brief Converts a multibyte C-string to a wide character string
/// \param str C-string consisting of wide characters
/// \param throwOnError flag indicating the function should throw on error
/// \returns str converted to a multibyte string or an empty string.
/// \details StringWiden() converts a narrow string to a wide string using C++ std::mbstowcs() under
/// the executing thread's locale. A locale must be set before using this function, and it can be
/// set with std::setlocale() if needed. Upon success, the converted string is returned.
/// \details Upon failure with throwOnError as false, the function returns an empty string. If
/// throwOnError as true, the function throws an InvalidArgument() exception.
/// \note If you try to convert, say, the Chinese character for "bone" from UTF-8 (0xE9 0xAA 0xA8)
/// to UTF-16 (0x9AA8), then you must ensure the locale is available. If the locale is not available,
/// then a 0x21 error is returned on Windows which eventually results in an InvalidArgument() exception.
std::wstring StringWiden(const char *str, bool throwOnError = true);
#ifdef CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Allocates a buffer on 16-byte boundary
/// \param size the size of the buffer
/// \details AlignedAllocate is primarily used when the data will be proccessed by MMX, SSE2 and NEON
/// instructions. The assembly language routines rely on the alignment. If the alignment is not
/// respected, then a SIGBUS could be generated on Unix and Linux, and an
/// EXCEPTION_DATATYPE_MISALIGNMENT could be generated on Windows.
/// \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is
/// defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h
CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size);
/// \brief Frees a buffer allocated with AlignedAllocate
/// \param ptr the buffer to free
/// \note AlignedAllocate and AlignedDeallocate are available when CRYPTOPP_BOOL_ALIGN16 is
/// defined. CRYPTOPP_BOOL_ALIGN16 is defined in config.h
CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr);
#endif // CRYPTOPP_DOXYGEN_PROCESSING
#if CRYPTOPP_BOOL_ALIGN16
CRYPTOPP_DLL void* CRYPTOPP_API AlignedAllocate(size_t size);
CRYPTOPP_DLL void CRYPTOPP_API AlignedDeallocate(void *ptr);
#endif // CRYPTOPP_BOOL_ALIGN16
/// \brief Allocates a buffer
/// \param size the size of the buffer
CRYPTOPP_DLL void * CRYPTOPP_API UnalignedAllocate(size_t size);
/// \brief Frees a buffer allocated with UnalignedAllocate
/// \param ptr the buffer to free
CRYPTOPP_DLL void CRYPTOPP_API UnalignedDeallocate(void *ptr);
// ************** rotate functions ***************
/// \brief Performs a left rotate
/// \tparam R the number of bit positions to rotate the value
/// \tparam T the word type
/// \param x the value to rotate
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotlMod if the rotate amount R is outside the range.
/// \details Use rotlConstant when the rotate amount is constant. The template function was added
/// because Clang did not propagate the constant when passed as a function parameter. Clang's
/// need for a constexpr meant rotlFixed failed to compile on occassion.
/// \note rotlConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 6.0
template <unsigned int R, class T> inline T rotlConstant(T x)
{
// Portable rotate that reduces to single instruction...
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
// http://software.intel.com/en-us/forums/topic/580884
// and http://llvm.org/bugs/show_bug.cgi?id=24226
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(R < THIS_SIZE);
return T((x<<R)|(x>>(-R&MASK)));
}
/// \brief Performs a right rotate
/// \tparam R the number of bit positions to rotate the value
/// \tparam T the word type
/// \param x the value to rotate
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details R must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotrMod if the rotate amount R is outside the range.
/// \details Use rotrConstant when the rotate amount is constant. The template function was added
/// because Clang did not propagate the constant when passed as a function parameter. Clang's
/// need for a constexpr meant rotrFixed failed to compile on occassion.
/// \note rotrConstant attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
template <unsigned int R, class T> inline T rotrConstant(T x)
{
// Portable rotate that reduces to single instruction...
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
// http://software.intel.com/en-us/forums/topic/580884
// and http://llvm.org/bugs/show_bug.cgi?id=24226
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(R < THIS_SIZE);
return T((x >> R)|(x<<(-R&MASK)));
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotlMod if the rotate amount y is outside the range.
/// \note rotlFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts. New code should use <tt>rotlConstant</tt>, which accepts the rotate amount as a
/// template parameter.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 6.0
template <class T> inline T rotlFixed(T x, unsigned int y)
{
// Portable rotate that reduces to single instruction...
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
// http://software.intel.com/en-us/forums/topic/580884
// and http://llvm.org/bugs/show_bug.cgi?id=24226
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(y < THIS_SIZE);
return T((x<<y)|(x>>(-y&MASK)));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotrMod if the rotate amount y is outside the range.
/// \note rotrFixed attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts. New code should use <tt>rotrConstant</tt>, which accepts the rotate amount as a
/// template parameter.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 3.0
template <class T> inline T rotrFixed(T x, unsigned int y)
{
// Portable rotate that reduces to single instruction...
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=57157,
// http://software.intel.com/en-us/forums/topic/580884
// and http://llvm.org/bugs/show_bug.cgi?id=24226
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(y < THIS_SIZE);
return T((x >> y)|(x<<(-y&MASK)));
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotlMod if the rotate amount y is outside the range.
/// \note rotlVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 3.0
template <class T> inline T rotlVariable(T x, unsigned int y)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(y < THIS_SIZE);
return T((x<<y)|(x>>(-y&MASK)));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y must be in the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// Use rotrMod if the rotate amount y is outside the range.
/// \note rotrVariable attempts to enlist a <tt>rotate IMM</tt> instruction because its often faster
/// than a <tt>rotate REG</tt>. Immediate rotates can be up to three times faster than their register
/// counterparts.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 3.0
template <class T> inline T rotrVariable(T x, unsigned int y)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
CRYPTOPP_ASSERT(y < THIS_SIZE);
return T((x>>y)|(x<<(-y&MASK)));
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 3.0
template <class T> inline T rotlMod(T x, unsigned int y)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
return T((x<<(y&MASK))|(x>>(-y&MASK)));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a portable C/C++ implementation. The value x to be rotated can be 8 to 64-bits wide.
/// \details y is reduced to the range <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrVariable will use either <tt>rotate IMM</tt> or <tt>rotate REG</tt>.
/// \sa rotlConstant, rotrConstant, rotlFixed, rotrFixed, rotlVariable, rotrVariable
/// \since Crypto++ 3.0
template <class T> inline T rotrMod(T x, unsigned int y)
{
static const unsigned int THIS_SIZE = sizeof(T)*8;
static const unsigned int MASK = THIS_SIZE-1;
return T((x>>(y&MASK))|(x<<(-y&MASK)));
}
#ifdef _MSC_VER
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotlFixed will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _lrotl(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrFixed will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _lrotr(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotlVariable will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return _lrotl(x, static_cast<byte>(y));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrVariable will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return _lrotr(x, static_cast<byte>(y));
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \since Crypto++ 3.0
template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
y %= 8*sizeof(x);
return _lrotl(x, static_cast<byte>(y));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 32-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 32-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \since Crypto++ 3.0
template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
y %= 8*sizeof(x);
return _lrotr(x, static_cast<byte>(y));
}
#endif // #ifdef _MSC_VER
#if (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
// Intel C++ Compiler 10.0 calls a function instead of using the rotate instruction when using these instructions
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrFixed will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word64 rotlFixed<word64>(word64 x, unsigned int y)
{
// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _rotl64(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrFixed will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word64 rotrFixed<word64>(word64 x, unsigned int y)
{
// Uses Microsoft <stdlib.h> call, bound to C/C++ language rules.
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _rotr64(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotlVariable will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word64 rotlVariable<word64>(word64 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return _rotl64(x, static_cast<byte>(y));
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \note rotrVariable will assert in Debug builds if is outside the allowed range.
/// \since Crypto++ 3.0
template<> inline word64 rotrVariable<word64>(word64 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _rotr64(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a left rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotl</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \since Crypto++ 3.0
template<> inline word64 rotlMod<word64>(word64 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _rotl64(x, static_cast<byte>(y)) : x;
}
/// \brief Performs a right rotate
/// \tparam T the word type
/// \param x the 64-bit value to rotate
/// \param y the number of bit positions to rotate the value
/// \details This is a Microsoft specific implementation using <tt>_lrotr</tt> provided by
/// <stdlib.h>. The value x to be rotated is 64-bits. y must be in the range
/// <tt>[0, sizeof(T)*8 - 1]</tt> to avoid undefined behavior.
/// \since Crypto++ 3.0
template<> inline word64 rotrMod<word64>(word64 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 8*sizeof(x));
return y ? _rotr64(x, static_cast<byte>(y)) : x;
}
#endif // #if _MSC_VER >= 1310
#if _MSC_VER >= 1400 && !defined(__INTEL_COMPILER)
// Intel C++ Compiler 10.0 gives undefined externals with these
template<> inline word16 rotlFixed<word16>(word16 x, unsigned int y)
{
// Intrinsic, not bound to C/C++ language rules.
return _rotl16(x, static_cast<byte>(y));
}
template<> inline word16 rotrFixed<word16>(word16 x, unsigned int y)
{
// Intrinsic, not bound to C/C++ language rules.
return _rotr16(x, static_cast<byte>(y));
}
template<> inline word16 rotlVariable<word16>(word16 x, unsigned int y)
{
return _rotl16(x, static_cast<byte>(y));
}
template<> inline word16 rotrVariable<word16>(word16 x, unsigned int y)
{
return _rotr16(x, static_cast<byte>(y));
}
template<> inline word16 rotlMod<word16>(word16 x, unsigned int y)
{
return _rotl16(x, static_cast<byte>(y));
}
template<> inline word16 rotrMod<word16>(word16 x, unsigned int y)
{
return _rotr16(x, static_cast<byte>(y));
}
template<> inline byte rotlFixed<byte>(byte x, unsigned int y)
{
// Intrinsic, not bound to C/C++ language rules.
return _rotl8(x, static_cast<byte>(y));
}
template<> inline byte rotrFixed<byte>(byte x, unsigned int y)
{
// Intrinsic, not bound to C/C++ language rules.
return _rotr8(x, static_cast<byte>(y));
}
template<> inline byte rotlVariable<byte>(byte x, unsigned int y)
{
return _rotl8(x, static_cast<byte>(y));
}
template<> inline byte rotrVariable<byte>(byte x, unsigned int y)
{
return _rotr8(x, static_cast<byte>(y));
}
template<> inline byte rotlMod<byte>(byte x, unsigned int y)
{
return _rotl8(x, static_cast<byte>(y));
}
template<> inline byte rotrMod<byte>(byte x, unsigned int y)
{
return _rotr8(x, static_cast<byte>(y));
}
#endif // #if _MSC_VER >= 1400
#if (defined(__MWERKS__) && TARGET_CPU_PPC)
template<> inline word32 rotlFixed<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 32);
return y ? __rlwinm(x,y,0,31) : x;
}
template<> inline word32 rotrFixed<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 32);
return y ? __rlwinm(x,32-y,0,31) : x;
}
template<> inline word32 rotlVariable<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 32);
return (__rlwnm(x,y,0,31));
}
template<> inline word32 rotrVariable<word32>(word32 x, unsigned int y)
{
CRYPTOPP_ASSERT(y < 32);
return (__rlwnm(x,32-y,0,31));
}
template<> inline word32 rotlMod<word32>(word32 x, unsigned int y)
{
return (__rlwnm(x,y,0,31));
}
template<> inline word32 rotrMod<word32>(word32 x, unsigned int y)
{
return (__rlwnm(x,32-y,0,31));
}
#endif // #if (defined(__MWERKS__) && TARGET_CPU_PPC)
// ************** endian reversal ***************
/// \brief Gets a byte from a value
/// \param order the ByteOrder of the value
/// \param value the value to retrieve the byte
/// \param index the location of the byte to retrieve
template <class T>
inline unsigned int GetByte(ByteOrder order, T value, unsigned int index)
{
if (order == LITTLE_ENDIAN_ORDER)
return GETBYTE(value, index);
else
return GETBYTE(value, sizeof(T)-index-1);
}
/// \brief Reverses bytes in a 8-bit value
/// \param value the 8-bit value to reverse
/// \note ByteReverse returns the value passed to it since there is nothing to reverse
inline byte ByteReverse(byte value)
{
return value;
}
/// \brief Reverses bytes in a 16-bit value
/// \param value the 16-bit value to reverse
/// \details ByteReverse calls bswap if available. Otherwise the function performs a 8-bit rotate on the word16
inline word16 ByteReverse(word16 value)
{
#if defined(CRYPTOPP_BYTESWAP_AVAILABLE)
return bswap_16(value);
#elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
return _byteswap_ushort(value);
#else
return rotlFixed(value, 8U);
#endif
}
/// \brief Reverses bytes in a 32-bit value
/// \param value the 32-bit value to reverse
/// \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word32
inline word32 ByteReverse(word32 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE)
__asm__ ("bswap %0" : "=r" (value) : "0" (value));
return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
return bswap_32(value);
#elif defined(__MWERKS__) && TARGET_CPU_PPC
return (word32)__lwbrx(&value,0);
#elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
return _byteswap_ulong(value);
#elif CRYPTOPP_FAST_ROTATE(32) && !defined(__xlC__)
// 5 instructions with rotate instruction, 9 without
return (rotrFixed(value, 8U) & 0xff00ff00) | (rotlFixed(value, 8U) & 0x00ff00ff);
#else
// 6 instructions with rotate instruction, 8 without
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
return rotlFixed(value, 16U);
#endif
}
/// \brief Reverses bytes in a 64-bit value
/// \param value the 64-bit value to reverse
/// \details ByteReverse calls bswap if available. Otherwise the function uses a combination of rotates on the word64
inline word64 ByteReverse(word64 value)
{
#if defined(__GNUC__) && defined(CRYPTOPP_X86_ASM_AVAILABLE) && defined(__x86_64__)
__asm__ ("bswap %0" : "=r" (value) : "0" (value));
return value;
#elif defined(CRYPTOPP_BYTESWAP_AVAILABLE)
return bswap_64(value);
#elif (_MSC_VER >= 1400) || (defined(_MSC_VER) && !defined(_DLL))
return _byteswap_uint64(value);
#elif CRYPTOPP_BOOL_SLOW_WORD64
return (word64(ByteReverse(word32(value))) << 32) | ByteReverse(word32(value>>32));
#else
value = ((value & W64LIT(0xFF00FF00FF00FF00)) >> 8) | ((value & W64LIT(0x00FF00FF00FF00FF)) << 8);
value = ((value & W64LIT(0xFFFF0000FFFF0000)) >> 16) | ((value & W64LIT(0x0000FFFF0000FFFF)) << 16);
return rotlFixed(value, 32U);
#endif
}
/// \brief Reverses bits in a 8-bit value
/// \param value the 8-bit value to reverse
/// \details BitReverse performs a combination of shifts on the byte
inline byte BitReverse(byte value)
{
value = byte((value & 0xAA) >> 1) | byte((value & 0x55) << 1);
value = byte((value & 0xCC) >> 2) | byte((value & 0x33) << 2);
return rotlFixed(value, 4U);
}
/// \brief Reverses bits in a 16-bit value
/// \param value the 16-bit value to reverse
/// \details BitReverse performs a combination of shifts on the word16
inline word16 BitReverse(word16 value)
{
value = word16((value & 0xAAAA) >> 1) | word16((value & 0x5555) << 1);
value = word16((value & 0xCCCC) >> 2) | word16((value & 0x3333) << 2);
value = word16((value & 0xF0F0) >> 4) | word16((value & 0x0F0F) << 4);
return ByteReverse(value);
}
/// \brief Reverses bits in a 32-bit value
/// \param value the 32-bit value to reverse
/// \details BitReverse performs a combination of shifts on the word32
inline word32 BitReverse(word32 value)
{
value = word32((value & 0xAAAAAAAA) >> 1) | word32((value & 0x55555555) << 1);
value = word32((value & 0xCCCCCCCC) >> 2) | word32((value & 0x33333333) << 2);
value = word32((value & 0xF0F0F0F0) >> 4) | word32((value & 0x0F0F0F0F) << 4);
return ByteReverse(value);
}
/// \brief Reverses bits in a 64-bit value
/// \param value the 64-bit value to reverse
/// \details BitReverse performs a combination of shifts on the word64
inline word64 BitReverse(word64 value)
{
#if CRYPTOPP_BOOL_SLOW_WORD64
return (word64(BitReverse(word32(value))) << 32) | BitReverse(word32(value>>32));
#else
value = word64((value & W64LIT(0xAAAAAAAAAAAAAAAA)) >> 1) | word64((value & W64LIT(0x5555555555555555)) << 1);
value = word64((value & W64LIT(0xCCCCCCCCCCCCCCCC)) >> 2) | word64((value & W64LIT(0x3333333333333333)) << 2);
value = word64((value & W64LIT(0xF0F0F0F0F0F0F0F0)) >> 4) | word64((value & W64LIT(0x0F0F0F0F0F0F0F0F)) << 4);
return ByteReverse(value);
#endif
}
/// \brief Reverses bits in a value
/// \param value the value to reverse
/// \details The template overload of BitReverse operates on signed and unsigned values.
/// Internally the size of T is checked, and then value is cast to a byte,
/// word16, word32 or word64. After the cast, the appropriate BitReverse
/// overload is called.
template <class T>
inline T BitReverse(T value)
{
if (sizeof(T) == 1)
return (T)BitReverse((byte)value);
else if (sizeof(T) == 2)
return (T)BitReverse((word16)value);
else if (sizeof(T) == 4)
return (T)BitReverse((word32)value);
else
{
CRYPTOPP_ASSERT(sizeof(T) == 8);
return (T)BitReverse((word64)value);
}
}
/// \brief Reverses bytes in a value depending upon endianness
/// \tparam T the class or type
/// \param order the ByteOrder of the data
/// \param value the value to conditionally reverse
/// \details Internally, the ConditionalByteReverse calls NativeByteOrderIs.
/// If order matches native byte order, then the original value is returned.
/// If not, then ByteReverse is called on the value before returning to the caller.
template <class T>
inline T ConditionalByteReverse(ByteOrder order, T value)
{
return NativeByteOrderIs(order) ? value : ByteReverse(value);
}
/// \brief Reverses bytes in an element from an array of elements
/// \tparam T the class or type
/// \param out the output array of elements
/// \param in the input array of elements
/// \param byteCount the total number of bytes in the array
/// \details Internally, ByteReverse visits each element in the in array
/// calls ByteReverse on it, and writes the result to out.
/// \details ByteReverse does not process tail byes, or bytes that are
/// not part of a full element. If T is int (and int is 4 bytes), then
/// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
/// reversed.
/// \details The follwoing program should help illustrate the behavior.
/// <pre>vector<word32> v1, v2;
///
/// v1.push_back(1);
/// v1.push_back(2);
/// v1.push_back(3);
/// v1.push_back(4);
///
/// v2.resize(v1.size());
/// ByteReverse<word32>(&v2[0], &v1[0], 16);
///
/// cout << "V1: ";
/// for(unsigned int i = 0; i < v1.size(); i++)
/// cout << std::hex << v1[i] << " ";
/// cout << endl;
///
/// cout << "V2: ";
/// for(unsigned int i = 0; i < v2.size(); i++)
/// cout << std::hex << v2[i] << " ";
/// cout << endl;</pre>
/// The program above results in the follwoing output.
/// <pre>V1: 00000001 00000002 00000003 00000004
/// V2: 01000000 02000000 03000000 04000000</pre>
/// \sa ConditionalByteReverse
template <class T>
void ByteReverse(T *out, const T *in, size_t byteCount)
{
CRYPTOPP_ASSERT(byteCount % sizeof(T) == 0);
size_t count = byteCount/sizeof(T);
for (size_t i=0; i<count; i++)
out[i] = ByteReverse(in[i]);
}
/// \brief Conditionally reverses bytes in an element from an array of elements
/// \tparam T the class or type
/// \param order the ByteOrder of the data
/// \param out the output array of elements
/// \param in the input array of elements
/// \param byteCount the byte count of the arrays
/// \details Internally, ByteReverse visits each element in the in array
/// calls ByteReverse on it depending on the desired endianness, and writes the result to out.
/// \details ByteReverse does not process tail byes, or bytes that are
/// not part of a full element. If T is int (and int is 4 bytes), then
/// <tt>byteCount = 10</tt> means only the first 2 elements or 8 bytes are
/// reversed.
/// \sa ByteReverse
template <class T>
inline void ConditionalByteReverse(ByteOrder order, T *out, const T *in, size_t byteCount)
{
if (!NativeByteOrderIs(order))
ByteReverse(out, in, byteCount);
else if (in != out)
memcpy_s(out, byteCount, in, byteCount);
}
template <class T>
inline void GetUserKey(ByteOrder order, T *out, size_t outlen, const byte *in, size_t inlen)
{
const size_t U = sizeof(T);
CRYPTOPP_ASSERT(inlen <= outlen*U);
memcpy_s(out, outlen*U, in, inlen);
memset_z((byte *)out+inlen, 0, outlen*U-inlen);
ConditionalByteReverse(order, out, out, RoundUpToMultipleOf(inlen, U));
}
#ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
inline byte UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const byte *)
{
CRYPTOPP_UNUSED(order);
return block[0];
}
inline word16 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word16 *)
{
return (order == BIG_ENDIAN_ORDER)
? block[1] | (block[0] << 8)
: block[0] | (block[1] << 8);
}
inline word32 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word32 *)
{
return (order == BIG_ENDIAN_ORDER)
? word32(block[3]) | (word32(block[2]) << 8) | (word32(block[1]) << 16) | (word32(block[0]) << 24)
: word32(block[0]) | (word32(block[1]) << 8) | (word32(block[2]) << 16) | (word32(block[3]) << 24);
}
inline word64 UnalignedGetWordNonTemplate(ByteOrder order, const byte *block, const word64 *)
{
return (order == BIG_ENDIAN_ORDER)
?
(word64(block[7]) |
(word64(block[6]) << 8) |
(word64(block[5]) << 16) |
(word64(block[4]) << 24) |
(word64(block[3]) << 32) |
(word64(block[2]) << 40) |
(word64(block[1]) << 48) |
(word64(block[0]) << 56))
:
(word64(block[0]) |
(word64(block[1]) << 8) |
(word64(block[2]) << 16) |
(word64(block[3]) << 24) |
(word64(block[4]) << 32) |
(word64(block[5]) << 40) |
(word64(block[6]) << 48) |
(word64(block[7]) << 56));
}
inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, byte value, const byte *xorBlock)
{
CRYPTOPP_UNUSED(order);
block[0] = (byte)(xorBlock ? (value ^ xorBlock[0]) : value);
}
inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word16 value, const byte *xorBlock)
{
if (order == BIG_ENDIAN_ORDER)
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
}
else
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
}
}
}
inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word32 value, const byte *xorBlock)
{
if (order == BIG_ENDIAN_ORDER)
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
}
else
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
}
}
}
inline void UnalignedbyteNonTemplate(ByteOrder order, byte *block, word64 value, const byte *xorBlock)
{
if (order == BIG_ENDIAN_ORDER)
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
}
}
else
{
if (xorBlock)
{
block[0] = xorBlock[0] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = xorBlock[1] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[2] = xorBlock[2] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[3] = xorBlock[3] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[4] = xorBlock[4] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
block[5] = xorBlock[5] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
block[6] = xorBlock[6] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
block[7] = xorBlock[7] ^ CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
}
else
{
block[0] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 0);
block[1] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 1);
block[2] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 2);
block[3] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 3);
block[4] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 4);
block[5] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 5);
block[6] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 6);
block[7] = CRYPTOPP_GET_BYTE_AS_BYTE(value, 7);
}
}
}
#endif // #ifndef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
/// \brief Access a block of memory
/// \tparam T class or type
/// \param assumeAligned flag indicating alignment
/// \param order the ByteOrder of the data
/// \param block the byte buffer to be processed
/// \returns the word in the specified byte order
/// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
/// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
/// LITTLE_ENDIAN_ORDER.
/// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
/// will be <tt>0x03020100</tt>.
/// <pre>
/// word32 w;
/// byte buffer[4] = {0,1,2,3};
/// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
/// </pre>
template <class T>
inline T GetWord(bool assumeAligned, ByteOrder order, const byte *block)
{
CRYPTOPP_UNUSED(assumeAligned);
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
return ConditionalByteReverse(order, *reinterpret_cast<const T *>((const void *)block));
#else
T temp;
memcpy(&temp, block, sizeof(T));
return ConditionalByteReverse(order, temp);
#endif
}
/// \brief Access a block of memory
/// \tparam T class or type
/// \param assumeAligned flag indicating alignment
/// \param order the ByteOrder of the data
/// \param result the word in the specified byte order
/// \param block the byte buffer to be processed
/// \details GetWord() provides alternate read access to a block of memory. The flag assumeAligned indicates
/// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
/// LITTLE_ENDIAN_ORDER.
/// \details An example of reading two word32 values from a block of memory is shown below. <tt>w</tt>
/// will be <tt>0x03020100</tt>.
/// <pre>
/// word32 w;
/// byte buffer[4] = {0,1,2,3};
/// w = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, buffer);
/// </pre>
template <class T>
inline void GetWord(bool assumeAligned, ByteOrder order, T &result, const byte *block)
{
result = GetWord<T>(assumeAligned, order, block);
}
/// \brief Access a block of memory
/// \tparam T class or type
/// \param assumeAligned flag indicating alignment
/// \param order the ByteOrder of the data
/// \param block the destination byte buffer
/// \param value the word in the specified byte order
/// \param xorBlock an optional byte buffer to xor
/// \details PutWord() provides alternate write access to a block of memory. The flag assumeAligned indicates
/// if the memory block is aligned for class or type T. The enumeration ByteOrder is BIG_ENDIAN_ORDER or
/// LITTLE_ENDIAN_ORDER.
template <class T>
inline void PutWord(bool assumeAligned, ByteOrder order, byte *block, T value, const byte *xorBlock = NULLPTR)
{
CRYPTOPP_UNUSED(assumeAligned);
#ifdef CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS
*reinterpret_cast<T *>((void *)block) = ConditionalByteReverse(order, value) ^ (xorBlock ? *reinterpret_cast<const T *>((const void *)xorBlock) : 0);
#else
T t1, t2;
t1 = ConditionalByteReverse(order, value);
if (xorBlock) {memcpy(&t2, xorBlock, sizeof(T)); t1 ^= t2;}
memcpy(block, &t1, sizeof(T));
#endif
}
/// \class GetBlock
/// \brief Access a block of memory
/// \tparam T class or type
/// \tparam B enumeration indicating endianness
/// \tparam A flag indicating alignment
/// \details GetBlock() provides alternate read access to a block of memory. The enumeration B is
/// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
/// Repeatedly applying operator() results in advancing in the block of memory.
/// \details An example of reading two word32 values from a block of memory is shown below. <tt>w1</tt>
/// will be <tt>0x03020100</tt> and <tt>w1</tt> will be <tt>0x07060504</tt>.
/// <pre>
/// word32 w1, w2;
/// byte buffer[8] = {0,1,2,3,4,5,6,7};
/// GetBlock<word32, LittleEndian> block(buffer);
/// block(w1)(w2);
/// </pre>
template <class T, class B, bool A=false>
class GetBlock
{
public:
/// \brief Construct a GetBlock
/// \param block the memory block
GetBlock(const void *block)
: m_block((const byte *)block) {}
/// \brief Access a block of memory
/// \tparam U class or type
/// \param x the value to read
/// \returns pointer to the remainder of the block after reading x
template <class U>
inline GetBlock<T, B, A> & operator()(U &x)
{
CRYPTOPP_COMPILE_ASSERT(sizeof(U) >= sizeof(T));
x = GetWord<T>(A, B::ToEnum(), m_block);
m_block += sizeof(T);
return *this;
}
private:
const byte *m_block;
};
/// \class PutBlock
/// \brief Access a block of memory
/// \tparam T class or type
/// \tparam B enumeration indicating endianness
/// \tparam A flag indicating alignment
/// \details PutBlock() provides alternate write access to a block of memory. The enumeration B is
/// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
/// Repeatedly applying operator() results in advancing in the block of memory.
/// \details An example of writing two word32 values from a block of memory is shown below. After the code
/// executes, the byte buffer will be <tt>{0,1,2,3,4,5,6,7}</tt>.
/// <pre>
/// word32 w1=0x03020100, w2=0x07060504;
/// byte buffer[8];
/// PutBlock<word32, LittleEndian> block(NULLPTR, buffer);
/// block(w1)(w2);
/// </pre>
template <class T, class B, bool A=false>
class PutBlock
{
public:
/// \brief Construct a PutBlock
/// \param block the memory block
/// \param xorBlock optional mask
PutBlock(const void *xorBlock, void *block)
: m_xorBlock((const byte *)xorBlock), m_block((byte *)block) {}
/// \brief Access a block of memory
/// \tparam U class or type
/// \param x the value to write
/// \returns pointer to the remainder of the block after writing x
template <class U>
inline PutBlock<T, B, A> & operator()(U x)
{
PutWord(A, B::ToEnum(), m_block, (T)x, m_xorBlock);
m_block += sizeof(T);
if (m_xorBlock)
m_xorBlock += sizeof(T);
return *this;
}
private:
const byte *m_xorBlock;
byte *m_block;
};
/// \class BlockGetAndPut
/// \brief Access a block of memory
/// \tparam T class or type
/// \tparam B enumeration indicating endianness
/// \tparam GA flag indicating alignment for the Get operation
/// \tparam PA flag indicating alignment for the Put operation
/// \details GetBlock() provides alternate write access to a block of memory. The enumeration B is
/// BigEndian or LittleEndian. The flag A indicates if the memory block is aligned for class or type T.
/// \sa GetBlock() and PutBlock().
template <class T, class B, bool GA=false, bool PA=false>
struct BlockGetAndPut
{
// function needed because of C++ grammatical ambiguity between expression-statements and declarations
static inline GetBlock<T, B, GA> Get(const void *block) {return GetBlock<T, B, GA>(block);}
typedef PutBlock<T, B, PA> Put;
};
/// \brief Convert a word to a string
/// \tparam T class or type
/// \param value the word to convert
/// \param order byte order
/// \returns a string representing the value of the word
template <class T>
std::string WordToString(T value, ByteOrder order = BIG_ENDIAN_ORDER)
{
if (!NativeByteOrderIs(order))
value = ByteReverse(value);
return std::string((char *)&value, sizeof(value));
}
/// \brief Convert a string to a word
/// \tparam T class or type
/// \param str the string to convert
/// \param order byte order
/// \returns a word representing the value of the string
template <class T>
T StringToWord(const std::string &str, ByteOrder order = BIG_ENDIAN_ORDER)
{
T value = 0;
memcpy_s(&value, sizeof(value), str.data(), UnsignedMin(str.size(), sizeof(value)));
return NativeByteOrderIs(order) ? value : ByteReverse(value);
}
// ************** help remove warning on g++ ***************
/// \class SafeShifter
/// \brief Safely shift values when undefined behavior could occur
/// \tparam overflow boolean flag indicating if overflow is present
/// \details SafeShifter safely shifts values when undefined behavior could occur under C/C++ rules.
/// The class behaves much like a saturating arithmetic class, clamping values rather than allowing
/// the compiler to remove undefined behavior.
/// \sa SafeShifter<true>, SafeShifter<false>
template <bool overflow> struct SafeShifter;
/// \class SafeShifter<true>
/// \brief Shifts a value in the presence of overflow
/// \details the true template parameter indicates overflow would occur.
/// In this case, SafeShifter clamps the value and returns 0.
template<> struct SafeShifter<true>
{
/// \brief Right shifts a value that overflows
/// \tparam T class or type
/// \return 0
/// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
/// \sa SafeLeftShift
template <class T>
static inline T RightShift(T value, unsigned int bits)
{
CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
return 0;
}
/// \brief Left shifts a value that overflows
/// \tparam T class or type
/// \return 0
/// \details Since <tt>overflow == true</tt>, the value 0 is always returned.
/// \sa SafeRightShift
template <class T>
static inline T LeftShift(T value, unsigned int bits)
{
CRYPTOPP_UNUSED(value); CRYPTOPP_UNUSED(bits);
return 0;
}
};
/// \class SafeShifter<false>
/// \brief Shifts a value in the absence of overflow
/// \details the false template parameter indicates overflow would not occur.
/// In this case, SafeShifter returns the shfted value.
template<> struct SafeShifter<false>
{
/// \brief Right shifts a value that does not overflow
/// \tparam T class or type
/// \return the shifted value
/// \details Since <tt>overflow == false</tt>, the shifted value is returned.
/// \sa SafeLeftShift
template <class T>
static inline T RightShift(T value, unsigned int bits)
{
return value >> bits;
}
/// \brief Left shifts a value that does not overflow
/// \tparam T class or type
/// \return the shifted value
/// \details Since <tt>overflow == false</tt>, the shifted value is returned.
/// \sa SafeRightShift
template <class T>
static inline T LeftShift(T value, unsigned int bits)
{
return value << bits;
}
};
/// \brief Safely right shift values when undefined behavior could occur
/// \tparam bits the number of bit positions to shift the value
/// \tparam T class or type
/// \param value the value to right shift
/// \result the shifted value or 0
/// \details SafeRightShift safely shifts the value to the right when undefined behavior
/// could occur under C/C++ rules. SafeRightShift will return the shifted value or 0
/// if undefined behavior would occur.
template <unsigned int bits, class T>
inline T SafeRightShift(T value)
{
return SafeShifter<(bits>=(8*sizeof(T)))>::RightShift(value, bits);
}
/// \brief Safely left shift values when undefined behavior could occur
/// \tparam bits the number of bit positions to shift the value
/// \tparam T class or type
/// \param value the value to left shift
/// \result the shifted value or 0
/// \details SafeLeftShift safely shifts the value to the left when undefined behavior
/// could occur under C/C++ rules. SafeLeftShift will return the shifted value or 0
/// if undefined behavior would occur.
template <unsigned int bits, class T>
inline T SafeLeftShift(T value)
{
return SafeShifter<(bits>=(8*sizeof(T)))>::LeftShift(value, bits);
}
/// \brief Finds first element not in a range
/// \tparam InputIt Input iterator type
/// \tparam T class or type
/// \param first iterator to first element
/// \param last iterator to last element
/// \param value the value used as a predicate
/// \returns iterator to the first element in the range that is not value
template<typename InputIt, typename T>
inline InputIt FindIfNot(InputIt first, InputIt last, const T &value) {
#ifdef CRYPTOPP_CXX11_LAMBDA
return std::find_if(first, last, [&value](const T &o) {
return value!=o;
});
#else
return std::find_if(first, last, std::bind2nd(std::not_equal_to<T>(), value));
#endif
}
// ************** use one buffer for multiple data members ***************
#define CRYPTOPP_BLOCK_1(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+0);} size_t SS1() {return sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_2(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS1());} size_t SS2() {return SS1()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_3(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS2());} size_t SS3() {return SS2()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_4(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS3());} size_t SS4() {return SS3()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_5(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS4());} size_t SS5() {return SS4()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_6(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS5());} size_t SS6() {return SS5()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_7(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS6());} size_t SS7() {return SS6()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCK_8(n, t, s) t* m_##n() {return (t *)(void *)(m_aggregate+SS7());} size_t SS8() {return SS7()+sizeof(t)*(s);} size_t m_##n##Size() {return (s);}
#define CRYPTOPP_BLOCKS_END(i) size_t SST() {return SS##i();} void AllocateBlocks() {m_aggregate.New(SST());} AlignedSecByteBlock m_aggregate;
NAMESPACE_END
#if (CRYPTOPP_MSC_VERSION)
# pragma warning(pop)
#endif
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif
#endif