ext-cryptopp/modarith.h

326 lines
13 KiB
C++

// modarith.h - originally written and placed in the public domain by Wei Dai
/// \file modarith.h
/// \brief Class file for performing modular arithmetic.
#ifndef CRYPTOPP_MODARITH_H
#define CRYPTOPP_MODARITH_H
// implementations are in integer.cpp
#include "cryptlib.h"
#include "integer.h"
#include "algebra.h"
#include "secblock.h"
#include "misc.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain<Integer>;
/// \class ModularArithmetic
/// \brief Ring of congruence classes modulo n
/// \details This implementation represents each congruence class as the smallest
/// non-negative integer in that class.
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing<Integer>
{
public:
typedef int RandomizationParameter;
typedef Integer Element;
virtual ~ModularArithmetic() {}
/// \brief Construct a ModularArithmetic
/// \param modulus congruence class modulus
ModularArithmetic(const Integer &modulus = Integer::One())
: AbstractRing<Integer>(), m_modulus(modulus), m_result((word)0, modulus.reg.size()) {}
/// \brief Copy construct a ModularArithmetic
/// \param ma other ModularArithmetic
ModularArithmetic(const ModularArithmetic &ma)
: AbstractRing<Integer>(), m_modulus(ma.m_modulus), m_result((word)0, ma.m_modulus.reg.size()) {}
/// \brief Construct a ModularArithmetic
/// \param bt BER encoded ModularArithmetic
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
/// \brief Clone a ModularArithmetic
/// \returns pointer to a new ModularArithmetic
/// \details Clone effectively copy constructs a new ModularArithmetic. The caller is
/// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
/// \brief Encodes in DER format
/// \param bt BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
/// \brief Encodes element in DER format
/// \param out BufferedTransformation object
/// \param a Element to encode
void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
/// \brief Decodes element in DER format
/// \param in BufferedTransformation object
/// \param a Element to decode
void BERDecodeElement(BufferedTransformation &in, Element &a) const;
/// \brief Retrieves the modulus
/// \returns the modulus
const Integer& GetModulus() const {return m_modulus;}
/// \brief Sets the modulus
/// \param newModulus the new modulus
void SetModulus(const Integer &newModulus)
{m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());}
/// \brief Retrieves the representation
/// \returns true if the if the modulus is in Montgomery form for multiplication, false otherwise
virtual bool IsMontgomeryRepresentation() const {return false;}
/// \brief Reduces an element in the congruence class
/// \param a element to convert
/// \returns the reduced element
/// \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which
/// must convert between representations.
virtual Integer ConvertIn(const Integer &a) const
{return a%m_modulus;}
/// \brief Reduces an element in the congruence class
/// \param a element to convert
/// \returns the reduced element
/// \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which
/// must convert between representations.
virtual Integer ConvertOut(const Integer &a) const
{return a;}
/// \brief Divides an element by 2
/// \param a element to convert
const Integer& Half(const Integer &a) const;
/// \brief Compare two elements for equality
/// \param a first element
/// \param b second element
/// \returns true if the elements are equal, false otherwise
/// \details Equal() tests the elements for equality using <tt>a==b</tt>
bool Equal(const Integer &a, const Integer &b) const
{return a==b;}
/// \brief Provides the Identity element
/// \returns the Identity element
const Integer& Identity() const
{return Integer::Zero();}
/// \brief Adds elements in the ring
/// \param a first element
/// \param b second element
/// \returns the sum of <tt>a</tt> and <tt>b</tt>
const Integer& Add(const Integer &a, const Integer &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \returns TODO
Integer& Accumulate(Integer &a, const Integer &b) const;
/// \brief Inverts the element in the ring
/// \param a first element
/// \returns the inverse of the element
const Integer& Inverse(const Integer &a) const;
/// \brief Subtracts elements in the ring
/// \param a first element
/// \param b second element
/// \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
const Integer& Subtract(const Integer &a, const Integer &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \returns TODO
Integer& Reduce(Integer &a, const Integer &b) const;
/// \brief Doubles an element in the ring
/// \param a the element
/// \returns the element doubled
/// \details Double returns <tt>Add(a, a)</tt>. The element <tt>a</tt> must provide an Add member function.
const Integer& Double(const Integer &a) const
{return Add(a, a);}
/// \brief Retrieves the multiplicative identity
/// \returns the multiplicative identity
/// \details the base class implementations returns 1.
const Integer& MultiplicativeIdentity() const
{return Integer::One();}
/// \brief Multiplies elements in the ring
/// \param a the multiplicand
/// \param b the multiplier
/// \returns the product of a and b
/// \details Multiply returns <tt>a*b\%n</tt>.
const Integer& Multiply(const Integer &a, const Integer &b) const
{return m_result1 = a*b%m_modulus;}
/// \brief Square an element in the ring
/// \param a the element
/// \returns the element squared
/// \details Square returns <tt>a*a\%n</tt>. The element <tt>a</tt> must provide a Square member function.
const Integer& Square(const Integer &a) const
{return m_result1 = a.Squared()%m_modulus;}
/// \brief Determines whether an element is a unit in the ring
/// \param a the element
/// \returns true if the element is a unit after reduction, false otherwise.
bool IsUnit(const Integer &a) const
{return Integer::Gcd(a, m_modulus).IsUnit();}
/// \brief Calculate the multiplicative inverse of an element in the ring
/// \param a the element
/// \details MultiplicativeInverse returns <tt>a<sup>-1</sup>\%n</tt>. The element <tt>a</tt> must
/// provide a InverseMod member function.
const Integer& MultiplicativeInverse(const Integer &a) const
{return m_result1 = a.InverseMod(m_modulus);}
/// \brief Divides elements in the ring
/// \param a the dividend
/// \param b the divisor
/// \returns the quotient
/// \details Divide returns <tt>a*b<sup>-1</sup>\%n</tt>.
const Integer& Divide(const Integer &a, const Integer &b) const
{return Multiply(a, MultiplicativeInverse(b));}
/// \brief TODO
/// \param x first element
/// \param e1 first exponent
/// \param y second element
/// \param e2 second exponent
/// \returns TODO
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
/// \brief Exponentiates a base to multiple exponents in the ring
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousExponentiate() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
/// \brief Provides the maximum bit size of an element in the ring
/// \returns maximum bit size of an element
unsigned int MaxElementBitLength() const
{return (m_modulus-1).BitCount();}
/// \brief Provides the maximum byte size of an element in the ring
/// \returns maximum byte size of an element
unsigned int MaxElementByteLength() const
{return (m_modulus-1).ByteCount();}
/// \brief Provides a random element in the ring
/// \param rng RandomNumberGenerator used to generate material
/// \param ignore_for_now unused
/// \returns a random element that is uniformly distributed
/// \details RandomElement constructs a new element in the range <tt>[0,n-1]</tt>, inclusive.
/// The element's class must provide a constructor with the signature <tt>Element(RandomNumberGenerator rng,
/// Element min, Element max)</tt>.
Element RandomElement(RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0) const
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
{
CRYPTOPP_UNUSED(ignore_for_now);
return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ;
}
/// \brief Compares two ModularArithmetic for equality
/// \param rhs other ModularArithmetic
/// \returns true if this is equal to the other, false otherwise
/// \details The operator tests for equality using <tt>this.m_modulus == rhs.m_modulus</tt>.
bool operator==(const ModularArithmetic &rhs) const
{return m_modulus == rhs.m_modulus;}
static const RandomizationParameter DefaultRandomizationParameter ;
protected:
Integer m_modulus;
mutable Integer m_result, m_result1;
};
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
/// \class MontgomeryRepresentation
/// \brief Performs modular arithmetic in Montgomery representation for increased speed
/// \details The Montgomery representation represents each congruence class <tt>[a]</tt> as
/// <tt>a*r\%n</tt>, where <tt>r</tt> is a convenient power of 2.
/// \details <tt>const Element&</tt> returned by member functions are references to
/// internal data members. Since each object may have only one such data member for holding
/// results, the following code will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic
{
public:
virtual ~MontgomeryRepresentation() {}
/// \brief Construct a MontgomeryRepresentation
/// \param modulus congruence class modulus
/// \note The modulus must be odd.
MontgomeryRepresentation(const Integer &modulus);
/// \brief Clone a MontgomeryRepresentation
/// \returns pointer to a new MontgomeryRepresentation
/// \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is
/// responsible for deleting the pointer returned from this method.
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
bool IsMontgomeryRepresentation() const {return true;}
Integer ConvertIn(const Integer &a) const
{return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;}
Integer ConvertOut(const Integer &a) const;
const Integer& MultiplicativeIdentity() const
{return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;}
const Integer& Multiply(const Integer &a, const Integer &b) const;
const Integer& Square(const Integer &a) const;
const Integer& MultiplicativeInverse(const Integer &a) const;
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
private:
Integer m_u;
mutable IntegerSecBlock m_workspace;
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif