ext-cryptopp/eccrypto.h
2017-06-02 05:18:52 -04:00

678 lines
29 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// eccrypto.h - originally written and placed in the public domain by Wei Dai
// deterministic signatures added by by Douglas Roark
//! \file eccrypto.h
//! \brief Classes and functions for Elliptic Curves over prime and binary fields
#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H
#include "config.h"
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "hmqv.h"
#include "fhmqv.h"
#include "ecp.h"
#include "ec2n.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
//! \brief Elliptic Curve Parameters
//! \tparam EC elliptic curve field
//! \details This class corresponds to the ASN.1 sequence of the same name
//! in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
template <class EC>
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
{
typedef DL_GroupParameters_EC<EC> ThisClass;
public:
typedef EC EllipticCurve;
typedef typename EllipticCurve::Point Point;
typedef Point Element;
typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
virtual ~DL_GroupParameters_EC() {}
//! \brief Construct an EC GroupParameters
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
//! \brief Construct an EC GroupParameters
//! \param oid the OID of a curve
DL_GroupParameters_EC(const OID &oid)
: m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
//! \brief Construct an EC GroupParameters
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param k the cofactor
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
//! \brief Construct an EC GroupParameters
//! \param bt BufferedTransformation with group parameters
DL_GroupParameters_EC(BufferedTransformation &bt)
: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
//! \brief Initialize an EC GroupParameters using {EC,G,n,k}
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param k the cofactor
//! \details This Initialize() function overload initializes group parameters from existing parameters.
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
{
this->m_groupPrecomputation.SetCurve(ec);
this->SetSubgroupGenerator(G);
m_n = n;
m_k = k;
}
//! \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
//! \param oid the OID of a curve
//! \details This Initialize() function overload initializes group parameters from existing parameters.
void Initialize(const OID &oid);
// NameValuePairs
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// GeneratibleCryptoMaterial interface
//! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
const Integer & GetSubgroupOrder() const {return m_n;}
Integer GetCofactor() const;
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
bool FastSubgroupCheckAvailable() const {return false;}
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
{
if (reversible)
GetCurve().EncodePoint(encoded, element, m_compress);
else
element.x.Encode(encoded, GetEncodedElementSize(false));
}
virtual unsigned int GetEncodedElementSize(bool reversible) const
{
if (reversible)
return GetCurve().EncodedPointSize(m_compress);
else
return GetCurve().GetField().MaxElementByteLength();
}
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
{
Point result;
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
throw DL_BadElement();
if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
throw DL_BadElement();
return result;
}
Integer ConvertElementToInteger(const Element &element) const;
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
bool IsIdentity(const Element &element) const {return element.identity;}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
// ASN1Key
OID GetAlgorithmID() const;
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const;
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
// non-inherited
// enumerate OIDs for recommended parameters, use OID() to get first one
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
void SetPointCompression(bool compress) {m_compress = compress;}
bool GetPointCompression() const {return m_compress;}
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
bool GetEncodeAsOID() const {return m_encodeAsOID;}
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
bool operator==(const ThisClass &rhs) const
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
//#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
//const Point& GetBasePoint() const {return this->GetSubgroupGenerator();}
//const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();}
//void LoadRecommendedParameters(const OID &oid) {Initialize(oid);}
//#endif
protected:
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
unsigned int ExponentLength() const {return m_n.ByteCount();}
OID m_oid; // set if parameters loaded from a recommended curve
Integer m_n; // order of base point
mutable Integer m_k; // cofactor
mutable bool m_compress, m_encodeAsOID; // presentation details
};
//! \class DL_PublicKey_EC
//! \brief Elliptic Curve Discrete Log (DL) public key
//! \tparam EC elliptic curve field
template <class EC>
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PublicKey_EC() {}
//! \brief Initialize an EC Public Key using {GP,Q}
//! \param params group parameters
//! \param Q the public point
//! \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
//! \brief Initialize an EC Public Key using {EC,G,n,Q}
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param Q the public point
//! \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
};
//! \class DL_PrivateKey_EC
//! \brief Elliptic Curve Discrete Log (DL) private key
//! \tparam EC elliptic curve field
template <class EC>
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PrivateKey_EC() {}
//! \brief Initialize an EC Private Key using {GP,x}
//! \param params group parameters
//! \param x the private exponent
//! \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
//! \brief Initialize an EC Private Key using {EC,G,n,x}
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param x the private exponent
//! \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
//! \brief Create an EC private key
//! \param rng a RandomNumberGenerator derived class
//! \param params the EC group parameters
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> &params)
{this->GenerateRandom(rng, params);}
//! \brief Create an EC private key
//! \param rng a RandomNumberGenerator derived class
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
};
//! \class ECDH
//! \brief Elliptic Curve Diffie-Hellman
//! \tparam EC elliptic curve field
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
//! \sa <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECDH
{
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};
//! \class ECMQV
//! \brief Elliptic Curve Menezes-Qu-Vanstone
//! \tparam EC elliptic curve field
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
/// \sa <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECMQV
{
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};
//! \class ECHMQV
//! \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
//! \tparam EC elliptic curve field
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
//! \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
//! Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECHMQV
{
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
//! \class ECFHMQV
//! \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
//! \tparam EC elliptic curve field
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
//! \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
//! <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
//! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECFHMQV
{
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
//! \class DL_Keys_EC
//! \brief Elliptic Curve Discrete Log (DL) keys
//! \tparam EC elliptic curve field
template <class EC>
struct DL_Keys_EC
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_EC<EC> PrivateKey;
};
// Forward declaration; documented below
template <class EC, class H>
struct ECDSA;
//! \class DL_Keys_ECDSA
//! \brief Elliptic Curve DSA keys
//! \tparam EC elliptic curve field
template <class EC>
struct DL_Keys_ECDSA
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
};
//! \class DL_Algorithm_ECDSA
//! \brief Elliptic Curve DSA (ECDSA) signature algorithm
//! \tparam EC elliptic curve field
template <class EC>
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
};
//! \class DL_Algorithm_ECDSA_RFC6979
//! \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
//! \tparam EC elliptic curve field
//! \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
//! Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
//! \since Crypto++ 6.0
template <class EC, class H>
class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
};
//! \class DL_Algorithm_ECNR
//! \brief Elliptic Curve NR (ECNR) signature algorithm
//! \tparam EC elliptic curve field
template <class EC>
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
};
//! \class ECDSA
//! \brief Elliptic Curve DSA (ECDSA) signature scheme
//! \tparam EC elliptic curve field
//! \tparam H HashTransformation derived class
//! \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
template <class EC, class H>
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
{
};
//! \class ECDSA_RFC6979
//! \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
//! \tparam EC elliptic curve field
//! \tparam H HashTransformation derived class
//! \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
//! Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
template <class EC, class H>
struct ECDSA_RFC6979 : public DL_SS<
DL_Keys_ECDSA<EC>,
DL_Algorithm_ECDSA_RFC6979<EC, H>,
DL_SignatureMessageEncodingMethod_DSA,
H,
ECDSA_RFC6979<EC,H> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
};
//! \class ECNR
//! \brief Elliptic Curve NR (ECNR) signature scheme
//! \tparam EC elliptic curve field
//! \tparam H HashTransformation derived class
template <class EC, class H = SHA1>
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
{
};
// ******************************************
template <class EC>
class DL_PublicKey_ECGDSA_ISO15946;
template <class EC>
class DL_PrivateKey_ECGDSA_ISO15946;
//! \class DL_PrivateKey_ECGDSA_ISO15946
//! \brief Elliptic Curve German DSA key for ISO/IEC 15946
//! \tparam EC elliptic curve field
//! \sa ECGDSA_ISO15946
//! \since Crypto++ 6.0
template <class EC>
class DL_PrivateKey_ECGDSA_ISO15946 : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
virtual ~DL_PrivateKey_ECGDSA_ISO15946() {}
//! \brief Initialize an EC Private Key using {GP,x}
//! \param params group parameters
//! \param x the private exponent
//! \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
{
this->AccessGroupParameters() = params;
this->SetPrivateExponent(x);
CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
}
//! \brief Initialize an EC Private Key using {EC,G,n,x}
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param x the private exponent
//! \details This Initialize() function overload initializes a private key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
{
this->AccessGroupParameters().Initialize(ec, G, n);
this->SetPrivateExponent(x);
CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
}
//! \brief Create an EC private key
//! \param rng a RandomNumberGenerator derived class
//! \param params the EC group parameters
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> &params)
{this->GenerateRandom(rng, params);}
//! \brief Create an EC private key
//! \param rng a RandomNumberGenerator derived class
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
virtual void MakePublicKey(DL_PublicKey_ECGDSA_ISO15946<EC> &pub) const
{
const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters();
pub.AccessAbstractGroupParameters().AssignFrom(params);
const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
pub.SetPublicElement(params.ExponentiateBase(xInv));
CRYPTOPP_ASSERT(xInv.NotZero());
}
virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<DL_PrivateKey_ECGDSA_ISO15946<EC>,
DL_PrivateKey_ECGDSA_ISO15946<EC> >(this, name, valueType, pValue).Assignable();
}
virtual void AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<DL_PrivateKey_ECGDSA_ISO15946<EC>,
DL_PrivateKey_ECGDSA_ISO15946<EC> >(this, source);
}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
};
//! \class DL_PublicKey_ECGDSA_ISO15946
//! \brief Elliptic Curve German DSA key for ISO/IEC 15946
//! \tparam EC elliptic curve field
//! \sa ECGDSA_ISO15946
//! \since Crypto++ 6.0
template <class EC>
class DL_PublicKey_ECGDSA_ISO15946 : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
typedef DL_PublicKey_ECGDSA_ISO15946<EC> ThisClass;
public:
typedef typename EC::Point Element;
virtual ~DL_PublicKey_ECGDSA_ISO15946() {}
//! \brief Initialize an EC Public Key using {GP,Q}
//! \param params group parameters
//! \param Q the public point
//! \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
//! \brief Initialize an EC Public Key using {EC,G,n,Q}
//! \param ec the elliptic curve
//! \param G the base point
//! \param n the order of the base point
//! \param Q the public point
//! \details This Initialize() function overload initializes a public key from existing parameters.
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
virtual void AssignFrom(const NameValuePairs &source)
{
DL_PrivateKey_ECGDSA_ISO15946<EC> *pPrivateKey = NULLPTR;
if (source.GetThisPointer(pPrivateKey))
pPrivateKey->MakePublicKey(*this);
else
{
this->AccessAbstractGroupParameters().AssignFrom(source);
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
}
}
// DL_PublicKey<T>
virtual void SetPublicElement(const Element &y)
{this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
};
//! \class DL_Keys_ECGDSA_ISO15946
//! \brief Elliptic Curve German DSA keys for ISO/IEC 15946
//! \tparam EC elliptic curve field
//! \sa ECGDSA_ISO15946
//! \since Crypto++ 6.0
template <class EC>
struct DL_Keys_ECGDSA_ISO15946
{
typedef DL_PublicKey_ECGDSA_ISO15946<EC> PublicKey;
typedef DL_PrivateKey_ECGDSA_ISO15946<EC> PrivateKey;
};
//! \class DL_Algorithm_ECGDSA_ISO15946
//! \brief Elliptic Curve German DSA signature algorithm
//! \tparam EC elliptic curve field
//! \sa ECGDSA_ISO15946
//! \since Crypto++ 6.0
template <class EC>
class DL_Algorithm_ECGDSA_ISO15946 : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
};
//! \class ECGDSA
//! \brief Elliptic Curve German Digital Signature Algorithm signature scheme
//! \tparam EC elliptic curve field
//! \tparam H HashTransformation derived class
//! \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The
//! Digital Signature Scheme ECGDSA (October 24, 2006)</A>
//! \since Crypto++ 6.0
template <class EC, class H>
struct ECGDSA : public DL_SS<
DL_Keys_ECGDSA_ISO15946<EC>,
DL_Algorithm_ECGDSA_ISO15946<EC>,
DL_SignatureMessageEncodingMethod_DSA,
H>
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
};
// ******************************************
//! \class ECIES
//! \brief Elliptic Curve Integrated Encryption Scheme
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
//! \tparam HASH HashTransformation derived class used for key drivation and MAC computation
//! \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
//! \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
//! \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
//! Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
//! <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
//! You should prefer an Integrated Encryption Scheme over homegrown schemes.
//! \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
//! SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
//! Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES template class with
//! <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
//! template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
//! \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
//! <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
//! SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
//! security provided by the MAC. The hash is also used in the key derivation function as a PRF.
//! \details Below is an example of constructing a Crypto++ 4.2 compatible ECIES encryptor and decryptor.
//! <pre>
//! AutoSeededRandomPool prng;
//! DL_PrivateKey_EC<ECP> key;
//! key.Initialize(prng, ASN1::secp160r1());
//!
//! ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
//! ECIES<ECP,SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
//! </pre>
//! \sa DLIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
//! Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
//! Curve Integrated Encryption Schemes</A>
//! \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
struct ECIES
: public DL_ES<
DL_Keys_EC<EC>,
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
ECIES<EC> >
{
// TODO: fix this after name is standardized
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
};
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA_ISO15946<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA_ISO15946<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA_ISO15946<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA_ISO15946<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif