ext-cryptopp/algebra.cpp

343 lines
9.1 KiB
C++

// algebra.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#ifndef CRYPTOPP_ALGEBRA_CPP // SunCC workaround: compiler could cause this file to be included twice
#define CRYPTOPP_ALGEBRA_CPP
#include "algebra.h"
#include "integer.h"
#include "trap.h"
#include <vector>
NAMESPACE_BEGIN(CryptoPP)
template <class T> const T& AbstractGroup<T>::Double(const Element &a) const
{
return this->Add(a, a);
}
template <class T> const T& AbstractGroup<T>::Subtract(const Element &a, const Element &b) const
{
// make copy of a in case Inverse() overwrites it
Element a1(a);
return this->Add(a1, Inverse(b));
}
template <class T> T& AbstractGroup<T>::Accumulate(Element &a, const Element &b) const
{
return a = this->Add(a, b);
}
template <class T> T& AbstractGroup<T>::Reduce(Element &a, const Element &b) const
{
return a = this->Subtract(a, b);
}
template <class T> const T& AbstractRing<T>::Square(const Element &a) const
{
return this->Multiply(a, a);
}
template <class T> const T& AbstractRing<T>::Divide(const Element &a, const Element &b) const
{
// make copy of a in case MultiplicativeInverse() overwrites it
Element a1(a);
return this->Multiply(a1, this->MultiplicativeInverse(b));
}
template <class T> const T& AbstractEuclideanDomain<T>::Mod(const Element &a, const Element &b) const
{
Element q;
this->DivisionAlgorithm(result, q, a, b);
return result;
}
template <class T> const T& AbstractEuclideanDomain<T>::Gcd(const Element &a, const Element &b) const
{
Element g[3]={b, a};
unsigned int i0=0, i1=1, i2=2;
while (!this->Equal(g[i1], this->Identity()))
{
g[i2] = this->Mod(g[i0], g[i1]);
unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
}
return result = g[i0];
}
template <class T> const typename QuotientRing<T>::Element& QuotientRing<T>::MultiplicativeInverse(const Element &a) const
{
Element g[3]={m_modulus, a};
Element v[3]={m_domain.Identity(), m_domain.MultiplicativeIdentity()};
Element y;
unsigned int i0=0, i1=1, i2=2;
while (!this->Equal(g[i1], this->Identity()))
{
// y = g[i0] / g[i1];
// g[i2] = g[i0] % g[i1];
m_domain.DivisionAlgorithm(g[i2], y, g[i0], g[i1]);
// v[i2] = v[i0] - (v[i1] * y);
v[i2] = m_domain.Subtract(v[i0], m_domain.Multiply(v[i1], y));
unsigned int t = i0; i0 = i1; i1 = i2; i2 = t;
}
return m_domain.IsUnit(g[i0]) ? m_domain.Divide(v[i0], g[i0]) : m_domain.Identity();
}
template <class T> T AbstractGroup<T>::ScalarMultiply(const Element &base, const Integer &exponent) const
{
Element result;
this->SimultaneousMultiply(&result, base, &exponent, 1);
return result;
}
template <class T> T AbstractGroup<T>::CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{
const unsigned expLen = STDMAX(e1.BitCount(), e2.BitCount());
if (expLen==0)
return this->Identity();
const unsigned w = (expLen <= 46 ? 1 : (expLen <= 260 ? 2 : 3));
const unsigned tableSize = 1<<w;
std::vector<Element> powerTable(tableSize << w);
powerTable[1] = x;
powerTable[tableSize] = y;
if (w==1)
powerTable[3] = this->Add(x,y);
else
{
powerTable[2] = this->Double(x);
powerTable[2*tableSize] = this->Double(y);
unsigned i, j;
for (i=3; i<tableSize; i+=2)
powerTable[i] = Add(powerTable[i-2], powerTable[2]);
for (i=1; i<tableSize; i+=2)
for (j=i+tableSize; j<(tableSize<<w); j+=tableSize)
powerTable[j] = Add(powerTable[j-tableSize], y);
for (i=3*tableSize; i<(tableSize<<w); i+=2*tableSize)
powerTable[i] = Add(powerTable[i-2*tableSize], powerTable[2*tableSize]);
for (i=tableSize; i<(tableSize<<w); i+=2*tableSize)
for (j=i+2; j<i+tableSize; j+=2)
powerTable[j] = Add(powerTable[j-1], x);
}
Element result;
unsigned power1 = 0, power2 = 0, prevPosition = expLen-1;
bool firstTime = true;
for (int i = expLen-1; i>=0; i--)
{
power1 = 2*power1 + e1.GetBit(i);
power2 = 2*power2 + e2.GetBit(i);
if (i==0 || 2*power1 >= tableSize || 2*power2 >= tableSize)
{
unsigned squaresBefore = prevPosition-i;
unsigned squaresAfter = 0;
prevPosition = i;
while ((power1 || power2) && power1%2 == 0 && power2%2==0)
{
power1 /= 2;
power2 /= 2;
squaresBefore--;
squaresAfter++;
}
if (firstTime)
{
result = powerTable[(power2<<w) + power1];
firstTime = false;
}
else
{
while (squaresBefore--)
result = this->Double(result);
if (power1 || power2)
Accumulate(result, powerTable[(power2<<w) + power1]);
}
while (squaresAfter--)
result = this->Double(result);
power1 = power2 = 0;
}
}
return result;
}
template <class Element, class Iterator> Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end)
{
if (end-begin == 1)
return group.ScalarMultiply(begin->base, begin->exponent);
else if (end-begin == 2)
return group.CascadeScalarMultiply(begin->base, begin->exponent, (begin+1)->base, (begin+1)->exponent);
else
{
Integer q, t;
Iterator last = end;
--last;
std::make_heap(begin, end);
std::pop_heap(begin, end);
while (!!begin->exponent)
{
// last->exponent is largest exponent, begin->exponent is next largest
t = last->exponent;
Integer::Divide(last->exponent, q, t, begin->exponent);
if (q == Integer::One())
group.Accumulate(begin->base, last->base); // avoid overhead of ScalarMultiply()
else
group.Accumulate(begin->base, group.ScalarMultiply(last->base, q));
std::push_heap(begin, end);
std::pop_heap(begin, end);
}
return group.ScalarMultiply(last->base, last->exponent);
}
}
struct WindowSlider
{
WindowSlider(const Integer &expIn, bool fastNegate, unsigned int windowSizeIn=0)
: m_exp(expIn), m_windowModulus(Integer::One()), m_windowSize(windowSizeIn), m_windowBegin(0), m_fastNegate(fastNegate), m_negateNext(false), m_firstTime(true), m_finished(false)
{
if (m_windowSize == 0)
{
const unsigned int expLen = m_exp.BitCount();
m_windowSize = expLen <= 17 ? 1 : (expLen <= 24 ? 2 : (expLen <= 70 ? 3 : (expLen <= 197 ? 4 : (expLen <= 539 ? 5 : (expLen <= 1434 ? 6 : 7)))));
}
m_windowModulus <<= m_windowSize;
}
void FindNextWindow()
{
const unsigned int expLen = m_exp.WordCount() * WORD_BITS;
unsigned int skipCount = m_firstTime ? 0 : m_windowSize;
m_firstTime = false;
while (!m_exp.GetBit(skipCount))
{
if (skipCount >= expLen)
{
m_finished = true;
return;
}
skipCount++;
}
m_exp >>= skipCount;
m_windowBegin += skipCount;
m_expWindow = word32(m_exp % (word(1) << m_windowSize));
if (m_fastNegate && m_exp.GetBit(m_windowSize))
{
m_negateNext = true;
m_expWindow = (word32(1) << m_windowSize) - m_expWindow;
m_exp += m_windowModulus;
}
else
m_negateNext = false;
}
Integer m_exp, m_windowModulus;
unsigned int m_windowSize, m_windowBegin;
word32 m_expWindow;
bool m_fastNegate, m_negateNext, m_firstTime, m_finished;
};
template <class T>
void AbstractGroup<T>::SimultaneousMultiply(T *results, const T &base, const Integer *expBegin, unsigned int expCount) const
{
std::vector<std::vector<Element> > buckets(expCount);
std::vector<WindowSlider> exponents;
exponents.reserve(expCount);
unsigned int i;
for (i=0; i<expCount; i++)
{
CRYPTOPP_ASSERT(expBegin->NotNegative());
exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 0));
exponents[i].FindNextWindow();
buckets[i].resize(1<<(exponents[i].m_windowSize-1), Identity());
}
unsigned int expBitPosition = 0;
Element g = base;
bool notDone = true;
while (notDone)
{
notDone = false;
for (i=0; i<expCount; i++)
{
if (!exponents[i].m_finished && expBitPosition == exponents[i].m_windowBegin)
{
Element &bucket = buckets[i][exponents[i].m_expWindow/2];
if (exponents[i].m_negateNext)
Accumulate(bucket, Inverse(g));
else
Accumulate(bucket, g);
exponents[i].FindNextWindow();
}
notDone = notDone || !exponents[i].m_finished;
}
if (notDone)
{
g = Double(g);
expBitPosition++;
}
}
for (i=0; i<expCount; i++)
{
Element &r = *results++;
r = buckets[i][buckets[i].size()-1];
if (buckets[i].size() > 1)
{
for (int j = (int)buckets[i].size()-2; j >= 1; j--)
{
Accumulate(buckets[i][j], buckets[i][j+1]);
Accumulate(r, buckets[i][j]);
}
Accumulate(buckets[i][0], buckets[i][1]);
r = Add(Double(r), buckets[i][0]);
}
}
}
template <class T> T AbstractRing<T>::Exponentiate(const Element &base, const Integer &exponent) const
{
Element result;
SimultaneousExponentiate(&result, base, &exponent, 1);
return result;
}
template <class T> T AbstractRing<T>::CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{
return MultiplicativeGroup().AbstractGroup<T>::CascadeScalarMultiply(x, e1, y, e2);
}
template <class Element, class Iterator> Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end)
{
return GeneralCascadeMultiplication<Element>(ring.MultiplicativeGroup(), begin, end);
}
template <class T>
void AbstractRing<T>::SimultaneousExponentiate(T *results, const T &base, const Integer *exponents, unsigned int expCount) const
{
MultiplicativeGroup().AbstractGroup<T>::SimultaneousMultiply(results, base, exponents, expCount);
}
NAMESPACE_END
#endif