ext-cryptopp/sha.cpp
Jeffrey Walton afbd3e60f6
Fix alignment on Win32 and Solaris Sparc (PR #709)
These fixes were interesting in a morbid sort of way. I thought the FixedSizeAllocatorWithCleanup specializations faithfully reproduced semantics but I was wrong on Win32 and Sparc. Also see Commit e054d36dc8.

It seems there was another requirement or dependency that we missed, but it was not readily apparent. If I am parsing results correctly (which I may not be), it appears the bit twiddling using 8 byte alignment had more influence on alignment than I originally thought based on use of CRYPTOPP_BOOL_ALIGN16 and T_Align16. Or maybe the alignment attributes specified by CRYPTOPP_ALIGN_DATA are not being honored like they should for stack allocations.

This check-in avoids some uses of x86 movdqa (aligned) in favor of movdqu (unaligned). The uses were concentrated on memory operands which were 8-byte aligned instead of 16-byte aligned. It is not clear to me how the specializations lost 8-bytes of alignment. The check-in also enlists CRYPTOPP_ASSERT to tell us when there's a problem so we don't need to go hunting for bugs.
2018-08-23 14:42:29 -04:00

1259 lines
39 KiB
C++

// sha.cpp - modified by Wei Dai from Steve Reid's public domain sha1.c
// Steve Reid implemented SHA-1. Wei Dai implemented SHA-2. Jeffrey Walton
// implemented Intel SHA extensions based on Intel articles and code by
// Sean Gulley. Jeffrey Walton implemented ARM SHA based on ARM code and
// code from Johannes Schneiders, Skip Hovsmith and Barry O'Rourke.
// All code is in the public domain.
// In August 2017 JW reworked the internals to align all the implementations.
// Formerly all hashes were software based, IterHashBase handled endian conversions,
// and IterHashBase dispatched a single to block SHA{N}::Transform. SHA{N}::Transform
// then performed the single block hashing. It was repeated for multiple blocks.
//
// The rework added SHA{N}::HashMultipleBlocks (class) and SHA{N}_HashMultipleBlocks
// (free standing). There are also hardware accelerated variations. Callers enter
// SHA{N}::HashMultipleBlocks (class), and the function calls SHA{N}_HashMultipleBlocks
// (free standing) or SHA{N}_HashBlock (free standing) as a fallback.
//
// An added wrinkle is hardware is little endian, C++ is big endian, and callers use
// big endian, so SHA{N}_HashMultipleBlock accepts a ByteOrder for the incoming data
// arrangement. Hardware based SHA{N}_HashMultipleBlock can often perform the endian
// swap much easier by setting an EPI mask. Endian swap incurs no penalty on Intel SHA,
// and 4-instruction penaly on ARM SHA. Under C++ the full software based swap penalty
// is incurred due to use of ReverseBytes().
//
// The rework also removed the hacked-in pointers to implementations.
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM sha.cpp" to generate MASM code
#include "pch.h"
#include "config.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4100 4731)
#endif
#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM
#include "secblock.h"
#include "sha.h"
#include "misc.h"
#include "cpu.h"
#if defined(CRYPTOPP_DISABLE_SHA_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
#if CRYPTOPP_SHANI_AVAILABLE
extern void SHA1_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order);
extern void SHA256_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order);
#endif
#if CRYPTOPP_ARM_SHA1_AVAILABLE
extern void SHA1_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order);
#endif
#if CRYPTOPP_ARM_SHA2_AVAILABLE
extern void SHA256_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order);
#endif
#if CRYPTOPP_ARM_SHA512_AVAILABLE
extern void SHA512_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order);
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
extern void SHA256_HashMultipleBlocks_POWER8(word32 *state, const word32 *data, size_t length, ByteOrder order);
extern void SHA512_HashMultipleBlocks_POWER8(word64 *state, const word64 *data, size_t length, ByteOrder order);
#endif
////////////////////////////////
// start of Steve Reid's code //
////////////////////////////////
ANONYMOUS_NAMESPACE_BEGIN
#define blk0(i) (W[i] = data[i])
#define blk1(i) (W[i&15] = rotlConstant<1>(W[(i+13)&15]^W[(i+8)&15]^W[(i+2)&15]^W[i&15]))
#define f1(x,y,z) (z^(x&(y^z)))
#define f2(x,y,z) (x^y^z)
#define f3(x,y,z) ((x&y)|(z&(x|y)))
#define f4(x,y,z) (x^y^z)
/* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
#define R0(v,w,x,y,z,i) z+=f1(w,x,y)+blk0(i)+0x5A827999+rotlConstant<5>(v);w=rotlConstant<30>(w);
#define R1(v,w,x,y,z,i) z+=f1(w,x,y)+blk1(i)+0x5A827999+rotlConstant<5>(v);w=rotlConstant<30>(w);
#define R2(v,w,x,y,z,i) z+=f2(w,x,y)+blk1(i)+0x6ED9EBA1+rotlConstant<5>(v);w=rotlConstant<30>(w);
#define R3(v,w,x,y,z,i) z+=f3(w,x,y)+blk1(i)+0x8F1BBCDC+rotlConstant<5>(v);w=rotlConstant<30>(w);
#define R4(v,w,x,y,z,i) z+=f4(w,x,y)+blk1(i)+0xCA62C1D6+rotlConstant<5>(v);w=rotlConstant<30>(w);
void SHA1_HashBlock_CXX(word32 *state, const word32 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
word32 W[16];
/* Copy context->state[] to working vars */
word32 a = state[0];
word32 b = state[1];
word32 c = state[2];
word32 d = state[3];
word32 e = state[4];
/* 4 rounds of 20 operations each. Loop unrolled. */
R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
#undef blk0
#undef blk1
#undef f1
#undef f2
#undef f3
#undef f4
#undef R1
#undef R2
#undef R3
#undef R4
ANONYMOUS_NAMESPACE_END
//////////////////////////////
// end of Steve Reid's code //
//////////////////////////////
std::string SHA1::AlgorithmProvider() const
{
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
return "SHANI";
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE
if (HasSSE2())
return "SSE2";
#endif
#if CRYPTOPP_ARM_SHA1_AVAILABLE
if (HasSHA1())
return "ARMv8";
#endif
return "C++";
}
void SHA1::InitState(HashWordType *state)
{
state[0] = 0x67452301;
state[1] = 0xEFCDAB89;
state[2] = 0x98BADCFE;
state[3] = 0x10325476;
state[4] = 0xC3D2E1F0;
}
void SHA1::Transform(word32 *state, const word32 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
{
SHA1_HashMultipleBlocks_SHANI(state, data, SHA1::BLOCKSIZE, LITTLE_ENDIAN_ORDER);
return;
}
#endif
#if CRYPTOPP_ARM_SHA1_AVAILABLE
if (HasSHA1())
{
SHA1_HashMultipleBlocks_ARMV8(state, data, SHA1::BLOCKSIZE, LITTLE_ENDIAN_ORDER);
return;
}
#endif
SHA1_HashBlock_CXX(state, data);
}
size_t SHA1::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
{
SHA1_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA1::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_ARM_SHA1_AVAILABLE
if (HasSHA1())
{
SHA1_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA1::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
SHA1_HashBlock_CXX(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA1::BLOCKSIZE);
SHA1_HashBlock_CXX(m_state, dataBuf);
}
input += SHA1::BLOCKSIZE/sizeof(word32);
length -= SHA1::BLOCKSIZE;
}
while (length >= SHA1::BLOCKSIZE);
return length;
}
// *************************************************************
CRYPTOPP_ALIGN_DATA(16)
CRYPTOPP_TABLE
const word32 SHA256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
ANONYMOUS_NAMESPACE_BEGIN
#define a(i) T[(0-i)&7]
#define b(i) T[(1-i)&7]
#define c(i) T[(2-i)&7]
#define d(i) T[(3-i)&7]
#define e(i) T[(4-i)&7]
#define f(i) T[(5-i)&7]
#define g(i) T[(6-i)&7]
#define h(i) T[(7-i)&7]
#define blk0(i) (W[i] = data[i])
#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) (y^((x^y)&(y^z)))
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA256_K[i+j]+(j?blk2(i):blk0(i));\
d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i))
// for SHA256
#define s0(x) (rotrConstant<7>(x)^rotrConstant<18>(x)^(x>>3))
#define s1(x) (rotrConstant<17>(x)^rotrConstant<19>(x)^(x>>10))
#define S0(x) (rotrConstant<2>(x)^rotrConstant<13>(x)^rotrConstant<22>(x))
#define S1(x) (rotrConstant<6>(x)^rotrConstant<11>(x)^rotrConstant<25>(x))
void SHA256_HashBlock_CXX(word32 *state, const word32 *data)
{
word32 W[16]={0}, T[8];
/* Copy context->state[] to working vars */
memcpy(T, state, sizeof(T));
/* 64 operations, partially loop unrolled */
for (unsigned int j=0; j<64; j+=16)
{
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
/* Add the working vars back into context.state[] */
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
#undef Ch
#undef Maj
#undef s0
#undef s1
#undef S0
#undef S1
#undef blk0
#undef blk1
#undef blk2
#undef R
#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
ANONYMOUS_NAMESPACE_END
std::string SHA256_AlgorithmProvider()
{
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
return "SHANI";
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE
if (HasSSE2())
return "SSE2";
#endif
#if CRYPTOPP_ARM_SHA2_AVAILABLE
if (HasSHA2())
return "ARMv8";
#endif
#if (CRYPTOPP_POWER8_SHA_AVAILABLE)
if (HasSHA256())
return "Power8";
#endif
return "C++";
}
std::string SHA224::AlgorithmProvider() const
{
return SHA256_AlgorithmProvider();
}
void SHA224::InitState(HashWordType *state)
{
static const word32 s[8] = {0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939, 0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4};
memcpy(state, s, sizeof(s));
}
void SHA256::InitState(HashWordType *state)
{
static const word32 s[8] = {0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19};
memcpy(state, s, sizeof(s));
}
#endif // Not CRYPTOPP_GENERATE_X64_MASM
#if defined(CRYPTOPP_X86_ASM_AVAILABLE)
ANONYMOUS_NAMESPACE_BEGIN
void CRYPTOPP_FASTCALL SHA256_HashMultipleBlocks_SSE2(word32 *state, const word32 *data, size_t len)
{
#define LOCALS_SIZE 8*4 + 16*4 + 4*WORD_SZ
#define H(i) [BASE+ASM_MOD(1024+7-(i),8)*4]
#define G(i) H(i+1)
#define F(i) H(i+2)
#define E(i) H(i+3)
#define D(i) H(i+4)
#define C(i) H(i+5)
#define B(i) H(i+6)
#define A(i) H(i+7)
#define Wt(i) BASE+8*4+ASM_MOD(1024+15-(i),16)*4
#define Wt_2(i) Wt((i)-2)
#define Wt_15(i) Wt((i)-15)
#define Wt_7(i) Wt((i)-7)
#define K_END [BASE+8*4+16*4+0*WORD_SZ]
#define STATE_SAVE [BASE+8*4+16*4+1*WORD_SZ]
#define DATA_SAVE [BASE+8*4+16*4+2*WORD_SZ]
#define DATA_END [BASE+8*4+16*4+3*WORD_SZ]
#define Kt(i) WORD_REG(si)+(i)*4
#if CRYPTOPP_BOOL_X86
#define BASE esp+4
#elif defined(__GNUC__)
#define BASE r8
#else
#define BASE rsp
#endif
#define RA0(i, edx, edi) \
AS2( add edx, [Kt(i)] )\
AS2( add edx, [Wt(i)] )\
AS2( add edx, H(i) )\
#define RA1(i, edx, edi)
#define RB0(i, edx, edi)
#define RB1(i, edx, edi) \
AS2( mov AS_REG_7d, [Wt_2(i)] )\
AS2( mov edi, [Wt_15(i)])\
AS2( mov ebx, AS_REG_7d )\
AS2( shr AS_REG_7d, 10 )\
AS2( ror ebx, 17 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( xor ebx, AS_REG_7d )/* s1(W_t-2) */\
AS2( add ebx, [Wt_7(i)])\
AS2( mov AS_REG_7d, edi )\
AS2( shr AS_REG_7d, 3 )\
AS2( ror edi, 7 )\
AS2( add ebx, [Wt(i)])/* s1(W_t-2) + W_t-7 + W_t-16 */\
AS2( xor AS_REG_7d, edi )\
AS2( add edx, [Kt(i)])\
AS2( ror edi, 11 )\
AS2( add edx, H(i) )\
AS2( xor AS_REG_7d, edi )/* s0(W_t-15) */\
AS2( add AS_REG_7d, ebx )/* W_t = s1(W_t-2) + W_t-7 + s0(W_t-15) W_t-16*/\
AS2( mov [Wt(i)], AS_REG_7d)\
AS2( add edx, AS_REG_7d )\
#define ROUND(i, r, eax, ecx, edi, edx)\
/* in: edi = E */\
/* unused: eax, ecx, temp: ebx, AS_REG_7d, out: edx = T1 */\
AS2( mov edx, F(i) )\
AS2( xor edx, G(i) )\
AS2( and edx, edi )\
AS2( xor edx, G(i) )/* Ch(E,F,G) = (G^(E&(F^G))) */\
AS2( mov AS_REG_7d, edi )\
AS2( ror edi, 6 )\
AS2( ror AS_REG_7d, 25 )\
RA##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
AS2( xor AS_REG_7d, edi )\
AS2( ror edi, 5 )\
AS2( xor AS_REG_7d, edi )/* S1(E) */\
AS2( add edx, AS_REG_7d )/* T1 = S1(E) + Ch(E,F,G) + H + Wt + Kt */\
RB##r(i, edx, edi )/* H + Wt + Kt + Ch(E,F,G) */\
/* in: ecx = A, eax = B^C, edx = T1 */\
/* unused: edx, temp: ebx, AS_REG_7d, out: eax = A, ecx = B^C, edx = E */\
AS2( mov ebx, ecx )\
AS2( xor ecx, B(i) )/* A^B */\
AS2( and eax, ecx )\
AS2( xor eax, B(i) )/* Maj(A,B,C) = B^((A^B)&(B^C) */\
AS2( mov AS_REG_7d, ebx )\
AS2( ror ebx, 2 )\
AS2( add eax, edx )/* T1 + Maj(A,B,C) */\
AS2( add edx, D(i) )\
AS2( mov D(i), edx )\
AS2( ror AS_REG_7d, 22 )\
AS2( xor AS_REG_7d, ebx )\
AS2( ror ebx, 11 )\
AS2( xor AS_REG_7d, ebx )\
AS2( add eax, AS_REG_7d )/* T1 + S0(A) + Maj(A,B,C) */\
AS2( mov H(i), eax )\
// Unroll the use of CRYPTOPP_BOOL_X64 in assembler math. The GAS assembler on X32 (version 2.25)
// complains "Error: invalid operands (*ABS* and *UND* sections) for `*` and `-`"
#if CRYPTOPP_BOOL_X64
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i*2+1)], WORD_REG(bx))
#else // X86 and X32
#define SWAP_COPY(i) \
AS2( mov WORD_REG(bx), [WORD_REG(dx)+i*WORD_SZ])\
AS1( bswap WORD_REG(bx))\
AS2( mov [Wt(i)], WORD_REG(bx))
#endif
#if defined(__GNUC__)
#if CRYPTOPP_BOOL_X64
FixedSizeAlignedSecBlock<byte, LOCALS_SIZE> workspace;
#endif
__asm__ __volatile__
(
#if CRYPTOPP_BOOL_X64
"lea %4, %%r8;"
#endif
INTEL_NOPREFIX
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8
SHA256_HashMultipleBlocks_SSE2 PROC FRAME
rex_push_reg rsi
push_reg rdi
push_reg rbx
push_reg rbp
alloc_stack(LOCALS_SIZE+8)
.endprolog
mov rdi, r8
lea rsi, [?SHA256_K@CryptoPP@@3QBIB + 48*4]
#endif
#if CRYPTOPP_BOOL_X86
#ifndef __GNUC__
AS2( mov edi, [len])
AS2( lea WORD_REG(si), [SHA256_K+48*4])
#endif
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_PUSH_IF86(bx)
#endif
AS_PUSH_IF86(bp)
AS2( mov ebx, esp)
AS2( and esp, -16)
AS2( sub WORD_REG(sp), LOCALS_SIZE)
AS_PUSH_IF86(bx)
#endif
AS2( mov STATE_SAVE, WORD_REG(cx))
AS2( mov DATA_SAVE, WORD_REG(dx))
AS2( lea WORD_REG(ax), [WORD_REG(di) + WORD_REG(dx)])
AS2( mov DATA_END, WORD_REG(ax))
AS2( mov K_END, WORD_REG(si))
#if CRYPTOPP_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
AS2( test edi, 1)
ASJ( jnz, 2, f)
AS1( dec DWORD PTR K_END)
#endif
AS2( movdqu xmm0, XMMWORD_PTR [WORD_REG(cx)+0*16])
AS2( movdqu xmm1, XMMWORD_PTR [WORD_REG(cx)+1*16])
#endif
#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_SSE2_ASM_AVAILABLE
ASJ( jmp, 0, f)
#endif
ASL(2) // non-SSE2
AS2( mov esi, ecx)
AS2( lea edi, A(0))
AS2( mov ecx, 8)
ATT_NOPREFIX
AS1( rep movsd)
INTEL_NOPREFIX
AS2( mov esi, K_END)
ASJ( jmp, 3, f)
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE
ASL(0)
AS2( movdqu E(0), xmm1)
AS2( movdqu A(0), xmm0)
#endif
#if CRYPTOPP_BOOL_X86
ASL(3)
#endif
AS2( sub WORD_REG(si), 48*4)
SWAP_COPY(0) SWAP_COPY(1) SWAP_COPY(2) SWAP_COPY(3)
SWAP_COPY(4) SWAP_COPY(5) SWAP_COPY(6) SWAP_COPY(7)
#if CRYPTOPP_BOOL_X86
SWAP_COPY(8) SWAP_COPY(9) SWAP_COPY(10) SWAP_COPY(11)
SWAP_COPY(12) SWAP_COPY(13) SWAP_COPY(14) SWAP_COPY(15)
#endif
AS2( mov edi, E(0)) // E
AS2( mov eax, B(0)) // B
AS2( xor eax, C(0)) // B^C
AS2( mov ecx, A(0)) // A
ROUND(0, 0, eax, ecx, edi, edx)
ROUND(1, 0, ecx, eax, edx, edi)
ROUND(2, 0, eax, ecx, edi, edx)
ROUND(3, 0, ecx, eax, edx, edi)
ROUND(4, 0, eax, ecx, edi, edx)
ROUND(5, 0, ecx, eax, edx, edi)
ROUND(6, 0, eax, ecx, edi, edx)
ROUND(7, 0, ecx, eax, edx, edi)
ROUND(8, 0, eax, ecx, edi, edx)
ROUND(9, 0, ecx, eax, edx, edi)
ROUND(10, 0, eax, ecx, edi, edx)
ROUND(11, 0, ecx, eax, edx, edi)
ROUND(12, 0, eax, ecx, edi, edx)
ROUND(13, 0, ecx, eax, edx, edi)
ROUND(14, 0, eax, ecx, edi, edx)
ROUND(15, 0, ecx, eax, edx, edi)
ASL(1)
AS2(add WORD_REG(si), 4*16)
ROUND(0, 1, eax, ecx, edi, edx)
ROUND(1, 1, ecx, eax, edx, edi)
ROUND(2, 1, eax, ecx, edi, edx)
ROUND(3, 1, ecx, eax, edx, edi)
ROUND(4, 1, eax, ecx, edi, edx)
ROUND(5, 1, ecx, eax, edx, edi)
ROUND(6, 1, eax, ecx, edi, edx)
ROUND(7, 1, ecx, eax, edx, edi)
ROUND(8, 1, eax, ecx, edi, edx)
ROUND(9, 1, ecx, eax, edx, edi)
ROUND(10, 1, eax, ecx, edi, edx)
ROUND(11, 1, ecx, eax, edx, edi)
ROUND(12, 1, eax, ecx, edi, edx)
ROUND(13, 1, ecx, eax, edx, edi)
ROUND(14, 1, eax, ecx, edi, edx)
ROUND(15, 1, ecx, eax, edx, edi)
AS2( cmp WORD_REG(si), K_END)
ATT_NOPREFIX
ASJ( jb, 1, b)
INTEL_NOPREFIX
AS2( mov WORD_REG(dx), DATA_SAVE)
AS2( add WORD_REG(dx), 64)
AS2( mov AS_REG_7, STATE_SAVE)
AS2( mov DATA_SAVE, WORD_REG(dx))
#if CRYPTOPP_SSE2_ASM_AVAILABLE
#if CRYPTOPP_BOOL_X86
AS2( test DWORD PTR K_END, 1)
ASJ( jz, 4, f)
#endif
AS2( movdqu xmm1, XMMWORD_PTR [AS_REG_7+1*16])
AS2( movdqu xmm0, XMMWORD_PTR [AS_REG_7+0*16])
AS2( paddd xmm1, E(0))
AS2( paddd xmm0, A(0))
AS2( movdqu [AS_REG_7+1*16], xmm1)
AS2( movdqu [AS_REG_7+0*16], xmm0)
AS2( cmp WORD_REG(dx), DATA_END)
ATT_NOPREFIX
ASJ( jb, 0, b)
INTEL_NOPREFIX
#endif
#if CRYPTOPP_BOOL_X86
#if CRYPTOPP_SSE2_ASM_AVAILABLE
ASJ( jmp, 5, f)
ASL(4) // non-SSE2
#endif
AS2( add [AS_REG_7+0*4], ecx) // A
AS2( add [AS_REG_7+4*4], edi) // E
AS2( mov eax, B(0))
AS2( mov ebx, C(0))
AS2( mov ecx, D(0))
AS2( add [AS_REG_7+1*4], eax)
AS2( add [AS_REG_7+2*4], ebx)
AS2( add [AS_REG_7+3*4], ecx)
AS2( mov eax, F(0))
AS2( mov ebx, G(0))
AS2( mov ecx, H(0))
AS2( add [AS_REG_7+5*4], eax)
AS2( add [AS_REG_7+6*4], ebx)
AS2( add [AS_REG_7+7*4], ecx)
AS2( mov ecx, AS_REG_7d)
AS2( cmp WORD_REG(dx), DATA_END)
ASJ( jb, 2, b)
#if CRYPTOPP_SSE2_ASM_AVAILABLE
ASL(5)
#endif
#endif
AS_POP_IF86(sp)
AS_POP_IF86(bp)
#if !defined(_MSC_VER) || (_MSC_VER < 1400)
AS_POP_IF86(bx)
#endif
#ifdef CRYPTOPP_GENERATE_X64_MASM
add rsp, LOCALS_SIZE+8
pop rbp
pop rbx
pop rdi
pop rsi
ret
SHA256_HashMultipleBlocks_SSE2 ENDP
#endif
#ifdef __GNUC__
ATT_PREFIX
:
: "c" (state), "d" (data), "S" (SHA256_K+48), "D" (len)
#if CRYPTOPP_BOOL_X64
, "m" (workspace[0])
#endif
: "memory", "cc", "%eax"
#if CRYPTOPP_BOOL_X64
, "%rbx", "%r8", "%r10"
#endif
);
#endif
}
ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_X86_ASM_AVAILABLE
#ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void CRYPTOPP_FASTCALL SHA256_HashMultipleBlocks_SSE2(word32 *state, const word32 *data, size_t len);
}
#endif
std::string SHA256::AlgorithmProvider() const
{
return SHA256_AlgorithmProvider();
}
void SHA256::Transform(word32 *state, const word32 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
{
SHA256_HashMultipleBlocks_SHANI(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER);
return;
}
#endif
#if CRYPTOPP_ARM_SHA2_AVAILABLE
if (HasSHA2())
{
SHA256_HashMultipleBlocks_ARMV8(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER);
return;
}
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (HasSHA256())
{
SHA256_HashMultipleBlocks_POWER8(state, data, SHA256::BLOCKSIZE, LITTLE_ENDIAN_ORDER);
return;
}
#endif
SHA256_HashBlock_CXX(state, data);
}
size_t SHA256::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
{
SHA256_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE || CRYPTOPP_X64_MASM_AVAILABLE
if (HasSSE2())
{
const size_t res = length & (SHA256::BLOCKSIZE - 1);
SHA256_HashMultipleBlocks_SSE2(m_state, input, length-res);
return res;
}
#endif
#if CRYPTOPP_ARM_SHA2_AVAILABLE
if (HasSHA2())
{
SHA256_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (HasSHA256())
{
SHA256_HashMultipleBlocks_POWER8(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
SHA256_HashBlock_CXX(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
SHA256_HashBlock_CXX(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
size_t SHA224::HashMultipleBlocks(const word32 *input, size_t length)
{
CRYPTOPP_ASSERT(input);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
#if CRYPTOPP_SHANI_AVAILABLE
if (HasSHA())
{
SHA256_HashMultipleBlocks_SHANI(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE || CRYPTOPP_X64_MASM_AVAILABLE
if (HasSSE2())
{
const size_t res = length & (SHA256::BLOCKSIZE - 1);
SHA256_HashMultipleBlocks_SSE2(m_state, input, length-res);
return res;
}
#endif
#if CRYPTOPP_ARM_SHA2_AVAILABLE
if (HasSHA2())
{
SHA256_HashMultipleBlocks_ARMV8(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (HasSHA256())
{
SHA256_HashMultipleBlocks_POWER8(m_state, input, length, BIG_ENDIAN_ORDER);
return length & (SHA256::BLOCKSIZE - 1);
}
#endif
const bool noReverse = NativeByteOrderIs(this->GetByteOrder());
word32 *dataBuf = this->DataBuf();
do
{
if (noReverse)
{
SHA256_HashBlock_CXX(m_state, input);
}
else
{
ByteReverse(dataBuf, input, SHA256::BLOCKSIZE);
SHA256_HashBlock_CXX(m_state, dataBuf);
}
input += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
while (length >= SHA256::BLOCKSIZE);
return length;
}
// *************************************************************
std::string SHA512_AlgorithmProvider()
{
#if CRYPTOPP_SSE2_ASM_AVAILABLE
if (HasSSE2())
return "SSE2";
#endif
#if (CRYPTOPP_POWER8_SHA_AVAILABLE)
if (HasSHA512())
return "Power8";
#endif
return "C++";
}
std::string SHA384::AlgorithmProvider() const
{
return SHA512_AlgorithmProvider();
}
std::string SHA512::AlgorithmProvider() const
{
return SHA512_AlgorithmProvider();
}
void SHA384::InitState(HashWordType *state)
{
const word64 s[8] = {
W64LIT(0xcbbb9d5dc1059ed8), W64LIT(0x629a292a367cd507),
W64LIT(0x9159015a3070dd17), W64LIT(0x152fecd8f70e5939),
W64LIT(0x67332667ffc00b31), W64LIT(0x8eb44a8768581511),
W64LIT(0xdb0c2e0d64f98fa7), W64LIT(0x47b5481dbefa4fa4)};
memcpy(state, s, sizeof(s));
}
void SHA512::InitState(HashWordType *state)
{
const word64 s[8] = {
W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)};
memcpy(state, s, sizeof(s));
}
// We add extern to export table to sha-simd.cpp, but it
// cleared http://github.com/weidai11/cryptopp/issues/502
CRYPTOPP_ALIGN_DATA(16)
CRYPTOPP_TABLE
const word64 SHA512_K[80] = {
W64LIT(0x428a2f98d728ae22), W64LIT(0x7137449123ef65cd),
W64LIT(0xb5c0fbcfec4d3b2f), W64LIT(0xe9b5dba58189dbbc),
W64LIT(0x3956c25bf348b538), W64LIT(0x59f111f1b605d019),
W64LIT(0x923f82a4af194f9b), W64LIT(0xab1c5ed5da6d8118),
W64LIT(0xd807aa98a3030242), W64LIT(0x12835b0145706fbe),
W64LIT(0x243185be4ee4b28c), W64LIT(0x550c7dc3d5ffb4e2),
W64LIT(0x72be5d74f27b896f), W64LIT(0x80deb1fe3b1696b1),
W64LIT(0x9bdc06a725c71235), W64LIT(0xc19bf174cf692694),
W64LIT(0xe49b69c19ef14ad2), W64LIT(0xefbe4786384f25e3),
W64LIT(0x0fc19dc68b8cd5b5), W64LIT(0x240ca1cc77ac9c65),
W64LIT(0x2de92c6f592b0275), W64LIT(0x4a7484aa6ea6e483),
W64LIT(0x5cb0a9dcbd41fbd4), W64LIT(0x76f988da831153b5),
W64LIT(0x983e5152ee66dfab), W64LIT(0xa831c66d2db43210),
W64LIT(0xb00327c898fb213f), W64LIT(0xbf597fc7beef0ee4),
W64LIT(0xc6e00bf33da88fc2), W64LIT(0xd5a79147930aa725),
W64LIT(0x06ca6351e003826f), W64LIT(0x142929670a0e6e70),
W64LIT(0x27b70a8546d22ffc), W64LIT(0x2e1b21385c26c926),
W64LIT(0x4d2c6dfc5ac42aed), W64LIT(0x53380d139d95b3df),
W64LIT(0x650a73548baf63de), W64LIT(0x766a0abb3c77b2a8),
W64LIT(0x81c2c92e47edaee6), W64LIT(0x92722c851482353b),
W64LIT(0xa2bfe8a14cf10364), W64LIT(0xa81a664bbc423001),
W64LIT(0xc24b8b70d0f89791), W64LIT(0xc76c51a30654be30),
W64LIT(0xd192e819d6ef5218), W64LIT(0xd69906245565a910),
W64LIT(0xf40e35855771202a), W64LIT(0x106aa07032bbd1b8),
W64LIT(0x19a4c116b8d2d0c8), W64LIT(0x1e376c085141ab53),
W64LIT(0x2748774cdf8eeb99), W64LIT(0x34b0bcb5e19b48a8),
W64LIT(0x391c0cb3c5c95a63), W64LIT(0x4ed8aa4ae3418acb),
W64LIT(0x5b9cca4f7763e373), W64LIT(0x682e6ff3d6b2b8a3),
W64LIT(0x748f82ee5defb2fc), W64LIT(0x78a5636f43172f60),
W64LIT(0x84c87814a1f0ab72), W64LIT(0x8cc702081a6439ec),
W64LIT(0x90befffa23631e28), W64LIT(0xa4506cebde82bde9),
W64LIT(0xbef9a3f7b2c67915), W64LIT(0xc67178f2e372532b),
W64LIT(0xca273eceea26619c), W64LIT(0xd186b8c721c0c207),
W64LIT(0xeada7dd6cde0eb1e), W64LIT(0xf57d4f7fee6ed178),
W64LIT(0x06f067aa72176fba), W64LIT(0x0a637dc5a2c898a6),
W64LIT(0x113f9804bef90dae), W64LIT(0x1b710b35131c471b),
W64LIT(0x28db77f523047d84), W64LIT(0x32caab7b40c72493),
W64LIT(0x3c9ebe0a15c9bebc), W64LIT(0x431d67c49c100d4c),
W64LIT(0x4cc5d4becb3e42b6), W64LIT(0x597f299cfc657e2a),
W64LIT(0x5fcb6fab3ad6faec), W64LIT(0x6c44198c4a475817)
};
#if CRYPTOPP_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86)
// Anonymous namespace removed due to a new compile error.
// g++ -DNDEBUG -g2 -O3 -pthread -pipe -c sha.cpp
// sha.cpp: Assembler messages:
// sha.cpp:1155: Error: symbol `SHA512_Round' is already defined
// sha.cpp:1155: Error: symbol `SHA512_Round' is already defined
// ANONYMOUS_NAMESPACE_BEGIN
CRYPTOPP_NAKED void CRYPTOPP_FASTCALL SHA512_HashBlock_SSE2(word64 *state, const word64 *data)
{
#ifdef __GNUC__
__asm__ __volatile__
(
INTEL_NOPREFIX
AS_PUSH_IF86( bx)
AS2( mov ebx, eax)
#else
AS1( push ebx)
AS1( push esi)
AS1( push edi)
AS2( lea ebx, SHA512_K)
#endif
AS2( mov eax, esp)
AS2( and esp, 0xfffffff0)
AS2( sub esp, 27*16) // 17*16 for expanded data, 20*8 for state
AS_PUSH_IF86( ax)
AS2( xor eax, eax)
AS2( lea edi, [esp+4+8*8]) // start at middle of state buffer. will decrement pointer each round to avoid copying
AS2( lea esi, [esp+4+20*8+8]) // 16-byte alignment, then add 8
AS2( movdqu xmm0, [ecx+0*16])
AS2( movdq2q mm4, xmm0)
AS2( movdqu [edi+0*16], xmm0)
AS2( movdqu xmm0, [ecx+1*16])
AS2( movdqu [edi+1*16], xmm0)
AS2( movdqu xmm0, [ecx+2*16])
AS2( movdq2q mm5, xmm0)
AS2( movdqu [edi+2*16], xmm0)
AS2( movdqu xmm0, [ecx+3*16])
AS2( movdqu [edi+3*16], xmm0)
ASJ( jmp, 0, f)
#define SSE2_S0_S1(r, a, b, c) \
AS2( movq mm6, r)\
AS2( psrlq r, a)\
AS2( movq mm7, r)\
AS2( psllq mm6, 64-c)\
AS2( pxor mm7, mm6)\
AS2( psrlq r, b-a)\
AS2( pxor mm7, r)\
AS2( psllq mm6, c-b)\
AS2( pxor mm7, mm6)\
AS2( psrlq r, c-b)\
AS2( pxor r, mm7)\
AS2( psllq mm6, b-a)\
AS2( pxor r, mm6)
#define SSE2_s0(r, a, b, c) \
AS2( movdqu xmm6, r)\
AS2( psrlq r, a)\
AS2( movdqu xmm7, r)\
AS2( psllq xmm6, 64-c)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, b-a)\
AS2( pxor xmm7, r)\
AS2( psrlq r, c-b)\
AS2( pxor r, xmm7)\
AS2( psllq xmm6, c-a)\
AS2( pxor r, xmm6)
#define SSE2_s1(r, a, b, c) \
AS2( movdqu xmm6, r)\
AS2( psrlq r, a)\
AS2( movdqu xmm7, r)\
AS2( psllq xmm6, 64-c)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, b-a)\
AS2( pxor xmm7, r)\
AS2( psllq xmm6, c-b)\
AS2( pxor xmm7, xmm6)\
AS2( psrlq r, c-b)\
AS2( pxor r, xmm7)
ASL(SHA512_Round)
// k + w is in mm0, a is in mm4, e is in mm5
AS2( paddq mm0, [edi+7*8]) // h
AS2( movq mm2, [edi+5*8]) // f
AS2( movq mm3, [edi+6*8]) // g
AS2( pxor mm2, mm3)
AS2( pand mm2, mm5)
SSE2_S0_S1(mm5,14,18,41)
AS2( pxor mm2, mm3)
AS2( paddq mm0, mm2) // h += Ch(e,f,g)
AS2( paddq mm5, mm0) // h += S1(e)
AS2( movq mm2, [edi+1*8]) // b
AS2( movq mm1, mm2)
AS2( por mm2, mm4)
AS2( pand mm2, [edi+2*8]) // c
AS2( pand mm1, mm4)
AS2( por mm1, mm2)
AS2( paddq mm1, mm5) // temp = h + Maj(a,b,c)
AS2( paddq mm5, [edi+3*8]) // e = d + h
AS2( movq [edi+3*8], mm5)
AS2( movq [edi+11*8], mm5)
SSE2_S0_S1(mm4,28,34,39) // S0(a)
AS2( paddq mm4, mm1) // a = temp + S0(a)
AS2( movq [edi-8], mm4)
AS2( movq [edi+7*8], mm4)
AS1( ret)
// first 16 rounds
ASL(0)
AS2( movq mm0, [edx+eax*8])
AS2( movq [esi+eax*8], mm0)
AS2( movq [esi+eax*8+16*8], mm0)
AS2( paddq mm0, [ebx+eax*8])
ASC( call, SHA512_Round)
AS1( inc eax)
AS2( sub edi, 8)
AS2( test eax, 7)
ASJ( jnz, 0, b)
AS2( add edi, 8*8)
AS2( cmp eax, 16)
ASJ( jne, 0, b)
// rest of the rounds
AS2( movdqu xmm0, [esi+(16-2)*8])
ASL(1)
// data expansion, W[i-2] already in xmm0
AS2( movdqu xmm3, [esi])
AS2( paddq xmm3, [esi+(16-7)*8])
AS2( movdqu xmm2, [esi+(16-15)*8])
SSE2_s1(xmm0, 6, 19, 61)
AS2( paddq xmm0, xmm3)
SSE2_s0(xmm2, 1, 7, 8)
AS2( paddq xmm0, xmm2)
AS2( movdq2q mm0, xmm0)
AS2( movhlps xmm1, xmm0)
AS2( paddq mm0, [ebx+eax*8])
AS2( movlps [esi], xmm0)
AS2( movlps [esi+8], xmm1)
AS2( movlps [esi+8*16], xmm0)
AS2( movlps [esi+8*17], xmm1)
// 2 rounds
ASC( call, SHA512_Round)
AS2( sub edi, 8)
AS2( movdq2q mm0, xmm1)
AS2( paddq mm0, [ebx+eax*8+8])
ASC( call, SHA512_Round)
// update indices and loop
AS2( add esi, 16)
AS2( add eax, 2)
AS2( sub edi, 8)
AS2( test eax, 7)
ASJ( jnz, 1, b)
// do housekeeping every 8 rounds
AS2( mov esi, 0xf)
AS2( and esi, eax)
AS2( lea esi, [esp+4+20*8+8+esi*8])
AS2( add edi, 8*8)
AS2( cmp eax, 80)
ASJ( jne, 1, b)
#define SSE2_CombineState(i) \
AS2( movdqu xmm0, [edi+i*16])\
AS2( movdqu xmm1, [ecx+i*16])\
AS2( paddq xmm0, xmm1)\
AS2( movdqu [ecx+i*16], xmm0)
SSE2_CombineState(0)
SSE2_CombineState(1)
SSE2_CombineState(2)
SSE2_CombineState(3)
AS_POP_IF86( sp)
AS1( emms)
#if defined(__GNUC__)
AS_POP_IF86( bx)
ATT_PREFIX
:
: "a" (SHA512_K), "c" (state), "d" (data)
: "%esi", "%edi", "memory", "cc"
);
#else
AS1( pop edi)
AS1( pop esi)
AS1( pop ebx)
AS1( ret)
#endif
}
// ANONYMOUS_NAMESPACE_END
#endif // CRYPTOPP_SSE2_ASM_AVAILABLE
ANONYMOUS_NAMESPACE_BEGIN
#define a(i) T[(0-i)&7]
#define b(i) T[(1-i)&7]
#define c(i) T[(2-i)&7]
#define d(i) T[(3-i)&7]
#define e(i) T[(4-i)&7]
#define f(i) T[(5-i)&7]
#define g(i) T[(6-i)&7]
#define h(i) T[(7-i)&7]
#define blk0(i) (W[i]=data[i])
#define blk2(i) (W[i&15]+=s1(W[(i-2)&15])+W[(i-7)&15]+s0(W[(i-15)&15]))
#define Ch(x,y,z) (z^(x&(y^z)))
#define Maj(x,y,z) (y^((x^y)&(y^z)))
#define s0(x) (rotrConstant<1>(x)^rotrConstant<8>(x)^(x>>7))
#define s1(x) (rotrConstant<19>(x)^rotrConstant<61>(x)^(x>>6))
#define S0(x) (rotrConstant<28>(x)^rotrConstant<34>(x)^rotrConstant<39>(x))
#define S1(x) (rotrConstant<14>(x)^rotrConstant<18>(x)^rotrConstant<41>(x))
#define R(i) h(i)+=S1(e(i))+Ch(e(i),f(i),g(i))+SHA512_K[i+j]+\
(j?blk2(i):blk0(i));d(i)+=h(i);h(i)+=S0(a(i))+Maj(a(i),b(i),c(i));
void SHA512_HashBlock_CXX(word64 *state, const word64 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
word64 W[16]={0}, T[8];
/* Copy context->state[] to working vars */
std::memcpy(T, state, sizeof(T));
/* 80 operations, partially loop unrolled */
for (unsigned int j=0; j<80; j+=16)
{
R( 0); R( 1); R( 2); R( 3);
R( 4); R( 5); R( 6); R( 7);
R( 8); R( 9); R(10); R(11);
R(12); R(13); R(14); R(15);
}
state[0] += a(0);
state[1] += b(0);
state[2] += c(0);
state[3] += d(0);
state[4] += e(0);
state[5] += f(0);
state[6] += g(0);
state[7] += h(0);
}
ANONYMOUS_NAMESPACE_END
void SHA512::Transform(word64 *state, const word64 *data)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
#if CRYPTOPP_SSE2_ASM_AVAILABLE && (CRYPTOPP_BOOL_X86)
if (HasSSE2())
{
SHA512_HashBlock_SSE2(state, data);
return;
}
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
if (HasSHA512())
{
SHA512_HashMultipleBlocks_POWER8(state, data, SHA512::BLOCKSIZE, BIG_ENDIAN_ORDER);
return;
}
#endif
SHA512_HashBlock_CXX(state, data);
}
#undef Ch
#undef Maj
#undef s0
#undef s1
#undef S0
#undef S1
#undef blk0
#undef blk1
#undef blk2
#undef R
#undef a
#undef b
#undef c
#undef d
#undef e
#undef f
#undef g
#undef h
NAMESPACE_END
#endif // Not CRYPTOPP_GENERATE_X64_MASM
#endif // Not CRYPTOPP_IMPORTS