ext-cryptopp/validat7.cpp

533 lines
16 KiB
C++

// validat7.cpp - originally written and placed in the public domain by Wei Dai
// CryptoPP::Test namespace added by JW in February 2017.
// Source files split in July 2018 to expedite compiles.
#include "pch.h"
#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
#include "cryptlib.h"
#include "cpu.h"
#include "validate.h"
#include "asn.h"
#include "oids.h"
#include "sha.h"
#include "sha3.h"
#include "dh.h"
#include "luc.h"
#include "mqv.h"
#include "xtr.h"
#include "hmqv.h"
#include "pubkey.h"
#include "xtrcrypt.h"
#include "eccrypto.h"
// Curve25519
#include "xed25519.h"
#include "donna.h"
#include "naclite.h"
#include <iostream>
#include <iomanip>
#include <sstream>
// Aggressive stack checking with VS2005 SP1 and above.
#if (_MSC_FULL_VER >= 140050727)
# pragma strict_gs_check (on)
#endif
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4505 4355)
#endif
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Test)
bool ValidateDH()
{
std::cout << "\nDH validation suite running...\n\n";
FileSource f(DataDir("TestData/dh1024.dat").c_str(), true, new HexDecoder);
DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateX25519()
{
std::cout << "\nx25519 validation suite running...\n\n";
FileSource f(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
x25519 dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateMQV()
{
std::cout << "\nMQV validation suite running...\n\n";
FileSource f(DataDir("TestData/mqv1024.dat").c_str(), true, new HexDecoder);
MQV mqv(f);
return AuthenticatedKeyAgreementValidate(mqv);
}
bool ValidateHMQV()
{
std::cout << "\nHMQV validation suite running...\n\n";
bool success = true;
FileSource f256(DataDir("TestData/hmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/hmqv384.dat").c_str(), true, new HexDecoder);
FileSource f512(DataDir("TestData/hmqv512.dat").c_str(), true, new HexDecoder);
/////////////////////////
std::cout << "HMQV with NIST P-256 and SHA-256:" << std::endl;
ECHMQV256 hmqvB256(false);
hmqvB256.AccessGroupParameters().BERDecode(f256);
const OID oid = ASN1::secp256r1();
ECHMQV< ECP >::Domain hmqvA256(oid, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA256, hmqvB256) && success;
/////////////////////////
std::cout << "HMQV with NIST P-384 and SHA-384:" << std::endl;
ECHMQV384 hmqvB384(false);
hmqvB384.AccessGroupParameters().BERDecode(f384);
const OID oid384 = ASN1::secp384r1();
ECHMQV384 hmqvA384(oid384, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA384, hmqvB384) && success;
/////////////////////////
std::cout << "HMQV with NIST P-521 and SHA-512:" << std::endl;
ECHMQV512 hmqvB521(false);
hmqvB521.AccessGroupParameters().BERDecode(f512);
const OID oid521 = ASN1::secp521r1();
ECHMQV512 hmqvA521(oid521, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA521, hmqvB521) && success;
return success;
}
bool ValidateFHMQV()
{
std::cout << "\nFHMQV validation suite running...\n\n";
bool success = true;
FileSource f256(DataDir("TestData/fhmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/fhmqv384.dat").c_str(), true, new HexDecoder);
FileSource f512(DataDir("TestData/fhmqv512.dat").c_str(), true, new HexDecoder);
/////////////////////////
std::cout << "FHMQV with NIST P-256 and SHA-256:" << std::endl;
ECFHMQV256 fhmqvB256(false);
fhmqvB256.AccessGroupParameters().BERDecode(f256);
const OID oid = ASN1::secp256r1();
ECFHMQV< ECP >::Domain fhmqvA256(oid, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA256, fhmqvB256) && success;
/////////////////////////
std::cout << "FHMQV with NIST P-384 and SHA-384:" << std::endl;
ECHMQV384 fhmqvB384(false);
fhmqvB384.AccessGroupParameters().BERDecode(f384);
const OID oid384 = ASN1::secp384r1();
ECHMQV384 fhmqvA384(oid384, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA384, fhmqvB384) && success;
/////////////////////////
std::cout << "FHMQV with NIST P-521 and SHA-512:" << std::endl;
ECHMQV512 fhmqvB521(false);
fhmqvB521.AccessGroupParameters().BERDecode(f512);
const OID oid521 = ASN1::secp521r1();
ECHMQV512 fhmqvA521(oid521, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA521, fhmqvB521) && success;
return success;
}
bool ValidateLUC_DH()
{
std::cout << "\nLUC-DH validation suite running...\n\n";
FileSource f(DataDir("TestData/lucd512.dat").c_str(), true, new HexDecoder);
LUC_DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateXTR_DH()
{
std::cout << "\nXTR-DH validation suite running...\n\n";
FileSource f(DataDir("TestData/xtrdh171.dat").c_str(), true, new HexDecoder);
XTR_DH dh(f);
return SimpleKeyAgreementValidate(dh);
}
bool ValidateECP_Agreement()
{
ECDH<ECP>::Domain ecdhc(ASN1::secp192r1());
ECMQV<ECP>::Domain ecmqvc(ASN1::secp192r1());
bool pass = SimpleKeyAgreementValidate(ecdhc);
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
std::cout << "Turning on point compression..." << std::endl;
ecdhc.AccessGroupParameters().SetPointCompression(true);
ecmqvc.AccessGroupParameters().SetPointCompression(true);
pass = SimpleKeyAgreementValidate(ecdhc) && pass;
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
return pass;
}
bool ValidateEC2N_Agreement()
{
ECDH<EC2N>::Domain ecdhc(ASN1::sect193r1());
ECMQV<EC2N>::Domain ecmqvc(ASN1::sect193r1());
bool pass = SimpleKeyAgreementValidate(ecdhc);
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
std::cout << "Turning on point compression..." << std::endl;
ecdhc.AccessGroupParameters().SetPointCompression(true);
ecmqvc.AccessGroupParameters().SetPointCompression(true);
pass = SimpleKeyAgreementValidate(ecdhc) && pass;
pass = AuthenticatedKeyAgreementValidate(ecmqvc) && pass;
return pass;
}
// TestX25519 is slighty more comprehensive than ValidateX25519
// because it cross-validates against Bernstein's NaCL library.
// TestX25519 called in Debug builds.
bool TestX25519()
{
std::cout << "\nTesting curve25519 Key Agreements...\n\n";
const unsigned int AGREE_COUNT = 64;
bool pass = true;
try {
FileSource f1(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
FileSource f2(DataDir("TestData/x25519v0.dat").c_str(), true, new HexDecoder);
FileSource f3(DataDir("TestData/x25519v1.dat").c_str(), true, new HexDecoder);
x25519 x1(f1);
x25519 x2(f2);
x25519 x3(f3);
FileSource f4(DataDir("TestData/x25519.dat").c_str(), true, new HexDecoder);
FileSource f5(DataDir("TestData/x25519v0.dat").c_str(), true, new HexDecoder);
FileSource f6(DataDir("TestData/x25519v1.dat").c_str(), true, new HexDecoder);
x1.Load(f4);
x2.Load(f5);
x3.Load(f6);
}
catch (const BERDecodeErr&) {
pass = false;
}
SecByteBlock priv1(32), priv2(32), pub1(32), pub2(32), share1(32), share2(32);
for (unsigned int i=0; i<AGREE_COUNT; ++i)
{
GlobalRNG().GenerateBlock(priv1, priv1.size());
GlobalRNG().GenerateBlock(priv2, priv2.size());
priv1[0] &= 248; priv1[31] &= 127; priv1[31] |= 64;
priv2[0] &= 248; priv2[31] &= 127; priv2[31] |= 64;
// Andrew Moon's curve25519-donna
Donna::curve25519_mult(pub1, priv1);
Donna::curve25519_mult(pub2, priv2);
int ret1 = Donna::curve25519_mult(share1, priv1, pub2);
int ret2 = Donna::curve25519_mult(share2, priv2, pub1);
int ret3 = std::memcmp(share1, share2, 32);
#if defined(CRYPTOPP_DISABLE_NACL)
int ret4=0, ret5=0, ret6=0;
#else
// Bernstein's NaCl requires DefaultAutoSeededRNG.
NaCl::crypto_box_keypair(pub2, priv2);
int ret4 = Donna::curve25519_mult(share1, priv1, pub2);
int ret5 = NaCl::crypto_scalarmult(share2, priv2, pub1);
int ret6 = std::memcmp(share1, share2, 32);
#endif
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ret4 != 0 || ret5 != 0 || ret6 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << AGREE_COUNT << " key agreements" << std::endl;
return pass;
}
// TestEd25519 is slighty more comprehensive than ValidateEd25519
// because it cross-validates against Bernstein's NaCL library.
// TestEd25519 called in Debug builds.
bool TestEd25519()
{
std::cout << "\nTesting ed25519 Signatures...\n\n";
bool pass = true;
#ifndef CRYPTOPP_DISABLE_NACL
const unsigned int SIGN_COUNT = 64, MSG_SIZE=128;
const unsigned int NACL_EXTRA=NaCl::crypto_sign_BYTES;
// Test key conversion
byte seed[32], sk1[64], sk2[64], pk1[32], pk2[32];
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
GlobalRNG().GenerateBlock(seed, 32);
std::memcpy(sk1, seed, 32);
std::memcpy(sk2, seed, 32);
int ret1 = NaCl::crypto_sign_sk2pk(pk1, sk1);
int ret2 = Donna::ed25519_publickey(pk2, sk2);
int ret3 = std::memcmp(pk1, pk2, 32);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " public keys" << std::endl;
// Test signature generation
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg[MSG_SIZE], sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg, len, sk1);
int ret2 = Donna::ed25519_sign(msg, len, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0;
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " signatures" << std::endl;
// Test signature verification
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg1[MSG_SIZE+NACL_EXTRA], msg2[MSG_SIZE];
byte sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg1, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
std::memcpy(msg2, msg1, len);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg1, len, sk1);
int ret2 = Donna::ed25519_sign(msg2, len, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool tamper = !!GlobalRNG().GenerateBit();
if (tamper)
{
sig1[1] ^= 1;
sig2[1] ^= 1;
}
// Verify the other's signature using the other's key
word64 mlen = len+NACL_EXTRA;
int ret4 = NaCl::crypto_sign_open(msg1, &mlen, sig1, smlen, pk2);
int ret5 = Donna::ed25519_sign_open(msg2, len, pk1, sig2);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ((ret4 != 0) ^ tamper) || ((ret5 != 0) ^ tamper);
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " verifications" << std::endl;
// Test signature verification using streams
for (unsigned int i = 0; i<SIGN_COUNT; ++i)
{
// Fresh keypair
(void)NaCl::crypto_sign_keypair(pk1, sk1);
std::memcpy(sk2, sk1, 32);
std::memcpy(pk2, pk1, 32);
// Message and signatures
byte msg1[MSG_SIZE+NACL_EXTRA], msg2[MSG_SIZE];
byte sig1[MSG_SIZE+NACL_EXTRA], sig2[64];
GlobalRNG().GenerateBlock(msg1, MSG_SIZE);
size_t len = GlobalRNG().GenerateWord32(0, MSG_SIZE);
std::memcpy(msg2, msg1, len);
// Spike the signatures
sig1[1] = 1; sig2[2] = 2;
// Create a stream
std::string str2((const char*)msg2, len);
std::istringstream iss(str2);
word64 smlen = sizeof(sig1);
int ret1 = NaCl::crypto_sign(sig1, &smlen, msg1, len, sk1);
int ret2 = Donna::ed25519_sign(iss, sk2, pk2, sig2);
int ret3 = std::memcmp(sig1, sig2, 64);
bool tamper = !!GlobalRNG().GenerateBit();
if (tamper)
{
sig1[1] ^= 1;
sig2[1] ^= 1;
}
// Reset stream
iss.clear();
iss.seekg(0);
// Verify the other's signature using the other's key
word64 mlen = len+NACL_EXTRA;
int ret4 = NaCl::crypto_sign_open(msg1, &mlen, sig1, smlen, pk2);
int ret5 = Donna::ed25519_sign_open(iss, pk1, sig2);
bool fail = ret1 != 0 || ret2 != 0 || ret3 != 0 || ((ret4 != 0) ^ tamper) || ((ret5 != 0) ^ tamper);
pass = pass && !fail;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " " << SIGN_COUNT << " streams" << std::endl;
#endif
// RFC 8032 test vector
try
{
// RFC 8032 Ed25519 test vector 3, p. 23
byte sk[] = {
0xc5,0xaa,0x8d,0xf4,0x3f,0x9f,0x83,0x7b,0xed,0xb7,0x44,0x2f,0x31,0xdc,0xb7,0xb1,
0x66,0xd3,0x85,0x35,0x07,0x6f,0x09,0x4b,0x85,0xce,0x3a,0x2e,0x0b,0x44,0x58,0xf7
};
byte pk[] = {
0xfc,0x51,0xcd,0x8e,0x62,0x18,0xa1,0xa3,0x8d,0xa4,0x7e,0xd0,0x02,0x30,0xf0,0x58,
0x08,0x16,0xed,0x13,0xba,0x33,0x03,0xac,0x5d,0xeb,0x91,0x15,0x48,0x90,0x80,0x25
};
const byte exp[] = {
0x62,0x91,0xd6,0x57,0xde,0xec,0x24,0x02,0x48,0x27,0xe6,0x9c,0x3a,0xbe,0x01,0xa3,
0x0c,0xe5,0x48,0xa2,0x84,0x74,0x3a,0x44,0x5e,0x36,0x80,0xd7,0xdb,0x5a,0xc3,0xac,
0x18,0xff,0x9b,0x53,0x8d,0x16,0xf2,0x90,0xae,0x67,0xf7,0x60,0x98,0x4d,0xc6,0x59,
0x4a,0x7c,0x15,0xe9,0x71,0x6e,0xd2,0x8d,0xc0,0x27,0xbe,0xce,0xea,0x1e,0xc4,0x0a
};
const byte msg[2] = {0xaf, 0x82}; byte sig[64];
// Test the filter framework
ed25519Signer signer(pk, sk);
StringSource(msg, sizeof(msg), true, new SignerFilter(NullRNG(), signer, new ArraySink(sig, sizeof(sig))));
if (std::memcmp(exp, sig, 64) != 0)
throw Exception(Exception::OTHER_ERROR, "TestEd25519: SignerFilter");
ed25519Verifier verifier(pk);
int flags = SignatureVerificationFilter::THROW_EXCEPTION | SignatureVerificationFilter::SIGNATURE_AT_END;
std::string msg_sig = std::string((char*)msg, sizeof(msg)) + std::string((char*)sig, sizeof(sig));
StringSource(msg_sig, true, new SignatureVerificationFilter(verifier, NULLPTR, flags));
// No throw is success
}
catch(const Exception&)
{
pass = false;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " RFC 8032 test vectors" << std::endl;
// Test key loads
try {
FileSource f1(DataDir("TestData/ed25519.dat").c_str(), true, new HexDecoder);
FileSource f2(DataDir("TestData/ed25519v0.dat").c_str(), true, new HexDecoder);
FileSource f3(DataDir("TestData/ed25519v1.dat").c_str(), true, new HexDecoder);
ed25519::Signer s1(f1);
ed25519::Signer s2(f2);
ed25519::Signer s3(f3);
FileSource f4(DataDir("TestData/ed25519.dat").c_str(), true, new HexDecoder);
FileSource f5(DataDir("TestData/ed25519v0.dat").c_str(), true, new HexDecoder);
FileSource f6(DataDir("TestData/ed25519v1.dat").c_str(), true, new HexDecoder);
s1.AccessKey().Load(f4);
s2.AccessKey().Load(f5);
s3.AccessKey().Load(f6);
}
catch (const BERDecodeErr&) {
pass = false;
}
if (pass)
std::cout << "passed:";
else
std::cout << "FAILED:";
std::cout << " RFC 5208 and 5958 key loads" << std::endl;
return pass;
}
NAMESPACE_END // Test
NAMESPACE_END // CryptoPP