ext-cryptopp/adv-simd.h
2018-03-09 06:45:32 -05:00

1411 lines
56 KiB
C++

// adv-simd.h - written and placed in the public domain by Jeffrey Walton
//
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
// have a commom pattern. Namely, they have a specialized implementation of
// AdvancedProcessBlocks which processes multiple block using hardware
// acceleration. After several implementations we noticed a lot of copy and
// paste occuring. adv-simd.h provides a template to avoid the copy and paste.
//
// There are 8 templates provided in this file. The number following the
// function name is the block size of the cipher. The name following that
// is the acceleration and arrangement. For example 4x1_SSE means Intel SSE
// using two encrypt (or decrypt) functions: one that operates on 4 blocks,
// and one that operates on 1 block.
//
// * AdvancedProcessBlocks64_4x1_SSE
// * AdvancedProcessBlocks128_4x1_SSE
// * AdvancedProcessBlocks64_6x2_SSE
// * AdvancedProcessBlocks128_6x2_SSE
// * AdvancedProcessBlocks64_6x2_NEON
// * AdvancedProcessBlocks128_6x2_NEON
// * AdvancedProcessBlocks64_6x2_ALTIVEC
// * AdvancedProcessBlocks128_6x2_ALTIVEC
//
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#define CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#include "config.h"
#include "misc.h"
#include "stdcpp.h"
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <emmintrin.h>
# include <pmmintrin.h>
# include <tmmintrin.h>
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc-simd.h"
#endif
// https://www.spinics.net/lists/gcchelp/msg47735.html and
// https://www.spinics.net/lists/gcchelp/msg47749.html
#if (CRYPTOPP_GCC_VERSION >= 40900)
# define GCC_NO_UBSAN __attribute__ ((no_sanitize_undefined))
#else
# define GCC_NO_UBSAN
#endif
// ************************ All block ciphers *********************** //
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::BlockTransformation;
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput)
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel)
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter)
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection)
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers)
ANONYMOUS_NAMESPACE_END
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks64_6x2_NEON(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
#else
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1};
const word32 s_one32x4_2b[] = {0, 2, 0, 2};
#endif
const ptrdiff_t blockSize = 8;
const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? neonBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
block2 = vaddq_u32(be2, block1);
block3 = vaddq_u32(be2, block2);
block4 = vaddq_u32(be2, block3);
block5 = vaddq_u32(be2, block4);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block5))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block5));
outBlocks += outIncrement;
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block1))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = vld1q_u32(s_zero32x4);
const uint8x8_t v = vld1_u8(inBlocks);
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
if (xorInput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
vst1_u8(const_cast<byte*>(outBlocks),
vget_low_u8(vreinterpretq_u8_u32(block)));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
template <typename F1, typename F6>
inline size_t AdvancedProcessBlocks128_NEON1x6(F1 func1, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
#else
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4[] = {0, 0, 0, 1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks += outIncrement;
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block;
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks128_6x2_NEON(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
#else
const word32 s_one32x4[] = {0, 0, 0, 1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// *************************** Intel SSE ************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
// Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224
#if (__SUNPRO_CC >= 0x5130)
# define MAYBE_CONST
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
#else
# define MAYBE_CONST const
# define MAYBE_UNCONST_CAST(T, x) (x)
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
// GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html
#ifndef DOUBLE_CAST
# define DOUBLE_CAST(x) ((double *)(void *)(x))
#endif
#ifndef CONST_DOUBLE_CAST
# define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x))
#endif
NAMESPACE_BEGIN(CryptoPP)
template <typename F2, typename F6>
inline size_t GCC_NO_UBSAN AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
const ptrdiff_t blockSize = 8;
const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b), _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
block4 = _mm_add_epi32(be2, block3);
block5 = _mm_add_epi32(be2, block4);
// Store the next counter. UBsan false positive; mem_addr can be unaligned.
_mm_store_sd(DOUBLE_CAST(inBlocks),
_mm_castsi128_pd(_mm_add_epi32(be2, block5)));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*xmmBlockSize;
}
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b), _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
// Store the next counter. UBsan false positive; mem_addr can be unaligned.
_mm_store_sd(DOUBLE_CAST(inBlocks),
_mm_castsi128_pd(_mm_add_epi64(be2, block1)));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(inBlocks)));
if (xorInput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(xorBlocks))));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
// UBsan false positive; mem_addr can be unaligned.
_mm_load_sd(CONST_DOUBLE_CAST(xorBlocks))));
}
// UBsan false positive; mem_addr can be unaligned.
_mm_store_sd(DOUBLE_CAST(outBlocks), _mm_castsi128_pd(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const ptrdiff_t blockSize = 16;
// const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
template <typename F1, typename F4>
inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
MAYBE_CONST word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const ptrdiff_t blockSize = 16;
// const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_SSSE3_AVAILABLE
// *********************** Altivec/Power 4 ********************** //
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
template <typename F1, typename F6>
inline size_t AdvancedProcessBlocks128_6x1_ALTIVEC(F1 func1, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_p s_one = {1,0,0,0};
#else
const uint32x4_p s_one = {0,0,0,1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t vexBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint32x4_p block0, block1, block2, block3, block4, block5, temp;
if (flags & BT_InBlockIsCounter)
{
block0 = VectorLoad(inBlocks);
block1 = VectorAdd(block0, s_one);
block2 = VectorAdd(block1, s_one);
block3 = VectorAdd(block2, s_one);
block4 = VectorAdd(block3, s_one);
block5 = VectorAdd(block4, s_one);
temp = VectorAdd(block5, s_one);
VectorStore(temp, const_cast<byte*>(inBlocks));
}
else
{
block0 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block1 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block2 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block3 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block4 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block5 = VectorLoad(inBlocks);
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block1 = VectorXor(block1, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block2 = VectorXor(block2, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block3 = VectorXor(block3, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block4 = VectorXor(block4, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block5 = VectorXor(block5, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, rounds);
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block1 = VectorXor(block1, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block2 = VectorXor(block2, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block3 = VectorXor(block3, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block4 = VectorXor(block4, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block5 = VectorXor(block5, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
}
VectorStore(block0, outBlocks);
outBlocks += outIncrement;
VectorStore(block1, outBlocks);
outBlocks += outIncrement;
VectorStore(block2, outBlocks);
outBlocks += outIncrement;
VectorStore(block3, outBlocks);
outBlocks += outIncrement;
VectorStore(block4, outBlocks);
outBlocks += outIncrement;
VectorStore(block5, outBlocks);
outBlocks += outIncrement;
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint32x4_p block = VectorLoad(inBlocks);
if (xorInput)
block = VectorXor(block, VectorLoad(xorBlocks));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, rounds);
if (xorOutput)
block = VectorXor(block, VectorLoad(xorBlocks));
VectorStore(block, outBlocks);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
#endif // CRYPTOPP_ADVANCED_SIMD_TEMPLATES