ext-cryptopp/rijndael-simd.cpp
Jeffrey Walton 37e02f9e0e
Revert AltiVec and Power8 commits
The strategy of "cleanup under-aligned buffers" is not scaling well. Corner cases are still turing up. The library has some corner-case breaks, like old 32-bit Intels. And it still has not solved the AltiVec and Power8 alignment problems.
For now we are backing out the changes and investigating other strategies
2017-09-05 16:28:00 -04:00

738 lines
24 KiB
C++

// rijndael-simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
//
// This source file uses intrinsics to gain access to AES-NI and
// ARMv8a AES instructions. A separate source file is needed
// because additional CXXFLAGS are required to enable the
// appropriate instructions sets in some build configurations.
//
// ARMv8a AES code based on CriticalBlue code from Johannes Schneiders,
// Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping
// mbedTLS under a debugger was helped for us to determine problems
// with our subkey generation and scheduling.
#include "pch.h"
#include "config.h"
#include "misc.h"
// Clang and GCC hoops...
#if !(defined(__ARM_FEATURE_CRYPTO) || defined(_MSC_VER))
# undef CRYPTOPP_ARM_AES_AVAILABLE
#endif
#if (CRYPTOPP_AESNI_AVAILABLE)
// Hack... We are supposed to use <nmmintrin.h>. GCC 4.8, LLVM Clang 3.5
// and Apple Clang 6.0 conflates SSE4.1 and SSE4.2. If we use <nmmintrin.h>
// then compile fails with "SSE4.2 instruction set not enabled". Also see
// https://gcc.gnu.org/ml/gcc-help/2017-08/msg00015.html.
# include "smmintrin.h"
# include "wmmintrin.h"
#endif
#if (CRYPTOPP_ARM_AES_AVAILABLE)
# include "arm_neon.h"
#endif
// Don't include <arm_acle.h> when using Apple Clang. Early Apple compilers
// fail to compile with <arm_acle.h> included. Later Apple compilers compile
// intrinsics without <arm_acle.h> included.
#if (CRYPTOPP_ARM_AES_AVAILABLE) && !defined(CRYPTOPP_APPLE_CLANG_VERSION)
# include "arm_acle.h"
#endif
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif
#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif
// Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224
#if (__SUNPRO_CC >= 0x5130)
# define MAYBE_CONST
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
#else
# define MAYBE_CONST const
# define MAYBE_UNCONST_CAST(T, x) (x)
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
NAMESPACE_BEGIN(CryptoPP)
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
};
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64)
bool CPU_ProbeAES()
{
#if (CRYPTOPP_ARM_AES_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
// AES encrypt and decrypt
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
uint8x16_t r1 = vaeseq_u8(data, key);
uint8x16_t r2 = vaesdq_u8(data, key);
r1 = vaesmcq_u8(r1);
r2 = vaesimcq_u8(r2);
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
# if defined(__APPLE__)
// No SIGILL probes on Apple platforms.
return false;
# endif
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0);
uint8x16_t r1 = vaeseq_u8(data, key);
uint8x16_t r2 = vaesdq_u8(data, key);
r1 = vaesmcq_u8(r1);
r2 = vaesimcq_u8(r2);
// Hack... GCC optimizes away the code and returns true
result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_AES_AVAILABLE
}
#endif // ARM32 or ARM64
#if (CRYPTOPP_ARM_AES_AVAILABLE)
inline void ARMV8_Enc_Block(uint8x16_t &block, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
CRYPTOPP_ASSERT(rounds >= 9);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
// Unroll the loop, profit 0.3 to 0.5 cpb.
block = vaeseq_u8(block, vld1q_u8(keys+0));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+16));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+32));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+48));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+64));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+80));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+96));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+112));
block = vaesmcq_u8(block);
block = vaeseq_u8(block, vld1q_u8(keys+128));
block = vaesmcq_u8(block);
unsigned int i=9;
for ( ; i<rounds-1; ++i)
{
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+i*16));
// AES mix columns
block = vaesmcq_u8(block);
}
// AES single round encryption
block = vaeseq_u8(block, vld1q_u8(keys+i*16));
// Final Add (bitwise Xor)
block = veorq_u8(block, vld1q_u8(keys+(i+1)*16));
}
inline void ARMV8_Enc_4_Blocks(uint8x16_t &block0, uint8x16_t &block1, uint8x16_t &block2,
uint8x16_t &block3, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
unsigned int i=0;
for ( ; i<rounds-1; ++i)
{
// AES single round encryption
block0 = vaeseq_u8(block0, vld1q_u8(keys+i*16));
// AES mix columns
block0 = vaesmcq_u8(block0);
// AES single round encryption
block1 = vaeseq_u8(block1, vld1q_u8(keys+i*16));
// AES mix columns
block1 = vaesmcq_u8(block1);
// AES single round encryption
block2 = vaeseq_u8(block2, vld1q_u8(keys+i*16));
// AES mix columns
block2 = vaesmcq_u8(block2);
// AES single round encryption
block3 = vaeseq_u8(block3, vld1q_u8(keys+i*16));
// AES mix columns
block3 = vaesmcq_u8(block3);
}
// AES single round encryption
block0 = vaeseq_u8(block0, vld1q_u8(keys+i*16));
block1 = vaeseq_u8(block1, vld1q_u8(keys+i*16));
block2 = vaeseq_u8(block2, vld1q_u8(keys+i*16));
block3 = vaeseq_u8(block3, vld1q_u8(keys+i*16));
// Final Add (bitwise Xor)
block0 = veorq_u8(block0, vld1q_u8(keys+(i+1)*16));
block1 = veorq_u8(block1, vld1q_u8(keys+(i+1)*16));
block2 = veorq_u8(block2, vld1q_u8(keys+(i+1)*16));
block3 = veorq_u8(block3, vld1q_u8(keys+(i+1)*16));
}
inline void ARMV8_Dec_Block(uint8x16_t &block, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
CRYPTOPP_ASSERT(rounds >= 9);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
// Unroll the loop, profit 0.3 to 0.5 cpb.
block = vaesdq_u8(block, vld1q_u8(keys+0));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+16));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+32));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+48));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+64));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+80));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+96));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+112));
block = vaesimcq_u8(block);
block = vaesdq_u8(block, vld1q_u8(keys+128));
block = vaesimcq_u8(block);
unsigned int i=9;
for ( ; i<rounds-1; ++i)
{
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+i*16));
// AES inverse mix columns
block = vaesimcq_u8(block);
}
// AES single round decryption
block = vaesdq_u8(block, vld1q_u8(keys+i*16));
// Final Add (bitwise Xor)
block = veorq_u8(block, vld1q_u8(keys+(i+1)*16));
}
inline void ARMV8_Dec_4_Blocks(uint8x16_t &block0, uint8x16_t &block1, uint8x16_t &block2,
uint8x16_t &block3, const word32 *subkeys, unsigned int rounds)
{
CRYPTOPP_ASSERT(subkeys);
const byte *keys = reinterpret_cast<const byte*>(subkeys);
unsigned int i=0;
for ( ; i<rounds-1; ++i)
{
// AES single round decryption
block0 = vaesdq_u8(block0, vld1q_u8(keys+i*16));
// AES inverse mix columns
block0 = vaesimcq_u8(block0);
// AES single round decryption
block1 = vaesdq_u8(block1, vld1q_u8(keys+i*16));
// AES inverse mix columns
block1 = vaesimcq_u8(block1);
// AES single round decryption
block2 = vaesdq_u8(block2, vld1q_u8(keys+i*16));
// AES inverse mix columns
block2 = vaesimcq_u8(block2);
// AES single round decryption
block3 = vaesdq_u8(block3, vld1q_u8(keys+i*16));
// AES inverse mix columns
block3 = vaesimcq_u8(block3);
}
// AES single round decryption
block0 = vaesdq_u8(block0, vld1q_u8(keys+i*16));
block1 = vaesdq_u8(block1, vld1q_u8(keys+i*16));
block2 = vaesdq_u8(block2, vld1q_u8(keys+i*16));
block3 = vaesdq_u8(block3, vld1q_u8(keys+i*16));
// Final Add (bitwise Xor)
block0 = veorq_u8(block0, vld1q_u8(keys+(i+1)*16));
block1 = veorq_u8(block1, vld1q_u8(keys+(i+1)*16));
block2 = veorq_u8(block2, vld1q_u8(keys+(i+1)*16));
block3 = veorq_u8(block3, vld1q_u8(keys+(i+1)*16));
}
const word32 s_one[] = {0, 0, 0, 1<<24};
template <typename F1, typename F4>
size_t Rijndael_AdvancedProcessBlocks_ARMV8(F1 func1, F4 func4, const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 4*blockSize)
{
uint8x16_t block0, block1, block2, block3, temp;
block0 = vld1q_u8(inBlocks);
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
uint32x4_t be = vld1q_u32(s_one);
block1 = vaddq_u8(block0, vreinterpretq_u8_u32(be));
block2 = vaddq_u8(block1, vreinterpretq_u8_u32(be));
block3 = vaddq_u8(block2, vreinterpretq_u8_u32(be));
temp = vaddq_u8(block3, vreinterpretq_u8_u32(be));
vst1q_u8(const_cast<byte*>(inBlocks), temp);
}
else
{
inBlocks += inIncrement;
block1 = vld1q_u8(inBlocks);
inBlocks += inIncrement;
block2 = vld1q_u8(inBlocks);
inBlocks += inIncrement;
block3 = vld1q_u8(inBlocks);
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
block0 = veorq_u8(block0, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block1 = veorq_u8(block1, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block2 = veorq_u8(block2, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block3 = veorq_u8(block3, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
}
func4(block0, block1, block2, block3, subKeys, rounds);
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = veorq_u8(block0, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block1 = veorq_u8(block1, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block2 = veorq_u8(block2, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
block3 = veorq_u8(block3, vld1q_u8(xorBlocks));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, block0);
outBlocks += outIncrement;
vst1q_u8(outBlocks, block1);
outBlocks += outIncrement;
vst1q_u8(outBlocks, block2);
outBlocks += outIncrement;
vst1q_u8(outBlocks, block3);
outBlocks += outIncrement;
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
uint8x16_t block = vld1q_u8(inBlocks);
if (flags & BlockTransformation::BT_XorInput)
block = veorq_u8(block, vld1q_u8(xorBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, rounds);
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
block = veorq_u8(block, vld1q_u8(xorBlocks));
vst1q_u8(outBlocks, block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Enc_Block, ARMV8_Enc_4_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Dec_Block, ARMV8_Dec_4_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_AES_AVAILABLE
#if (CRYPTOPP_AESNI_AVAILABLE)
inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST __m128i *subkeys, unsigned int rounds)
{
block = _mm_xor_si128(block, subkeys[0]);
for (unsigned int i=1; i<rounds-1; i+=2)
{
block = _mm_aesenc_si128(block, subkeys[i]);
block = _mm_aesenc_si128(block, subkeys[i+1]);
}
block = _mm_aesenc_si128(block, subkeys[rounds-1]);
block = _mm_aesenclast_si128(block, subkeys[rounds]);
}
inline void AESNI_Enc_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
MAYBE_CONST __m128i *subkeys, unsigned int rounds)
{
__m128i rk = subkeys[0];
block0 = _mm_xor_si128(block0, rk);
block1 = _mm_xor_si128(block1, rk);
block2 = _mm_xor_si128(block2, rk);
block3 = _mm_xor_si128(block3, rk);
for (unsigned int i=1; i<rounds; i++)
{
rk = subkeys[i];
block0 = _mm_aesenc_si128(block0, rk);
block1 = _mm_aesenc_si128(block1, rk);
block2 = _mm_aesenc_si128(block2, rk);
block3 = _mm_aesenc_si128(block3, rk);
}
rk = subkeys[rounds];
block0 = _mm_aesenclast_si128(block0, rk);
block1 = _mm_aesenclast_si128(block1, rk);
block2 = _mm_aesenclast_si128(block2, rk);
block3 = _mm_aesenclast_si128(block3, rk);
}
inline void AESNI_Dec_Block(__m128i &block, MAYBE_CONST __m128i *subkeys, unsigned int rounds)
{
block = _mm_xor_si128(block, subkeys[0]);
for (unsigned int i=1; i<rounds-1; i+=2)
{
block = _mm_aesdec_si128(block, subkeys[i]);
block = _mm_aesdec_si128(block, subkeys[i+1]);
}
block = _mm_aesdec_si128(block, subkeys[rounds-1]);
block = _mm_aesdeclast_si128(block, subkeys[rounds]);
}
inline void AESNI_Dec_4_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3,
MAYBE_CONST __m128i *subkeys, unsigned int rounds)
{
__m128i rk = subkeys[0];
block0 = _mm_xor_si128(block0, rk);
block1 = _mm_xor_si128(block1, rk);
block2 = _mm_xor_si128(block2, rk);
block3 = _mm_xor_si128(block3, rk);
for (unsigned int i=1; i<rounds; i++)
{
rk = subkeys[i];
block0 = _mm_aesdec_si128(block0, rk);
block1 = _mm_aesdec_si128(block1, rk);
block2 = _mm_aesdec_si128(block2, rk);
block3 = _mm_aesdec_si128(block3, rk);
}
rk = subkeys[rounds];
block0 = _mm_aesdeclast_si128(block0, rk);
block1 = _mm_aesdeclast_si128(block1, rk);
block2 = _mm_aesdeclast_si128(block2, rk);
block3 = _mm_aesdeclast_si128(block3, rk);
}
CRYPTOPP_ALIGN_DATA(16)
static const word32 s_one[] = {0, 0, 0, 1<<24};
template <typename F1, typename F4>
inline size_t Rijndael_AdvancedProcessBlocks_AESNI(F1 func1, F4 func4,
MAYBE_CONST word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize;
MAYBE_CONST __m128i *subkeys = reinterpret_cast<MAYBE_CONST __m128i*>(subKeys);
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 4*blockSize)
{
__m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1, block2, block3;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one);
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1));
}
else
{
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func4(block0, block1, block2, block3, subkeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (flags & BlockTransformation::BT_XorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subkeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
// SunCC workaround
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks,
sk, rounds, ib, xb, outBlocks, length, flags);
}
size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys);
MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks);
MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks);
return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks,
sk, rounds, ib, xb, outBlocks, length, flags);
}
void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk)
{
const unsigned rounds = static_cast<unsigned int>(keyLen/4 + 6);
static const word32 rcLE[] = {
0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80,
0x1B, 0x36, /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */
};
const word32 *ro = rcLE, *rc = rcLE;
CRYPTOPP_UNUSED(ro);
__m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16));
std::memcpy(rk, userKey, keyLen);
// keySize: m_key allocates 4*(rounds+1) word32's.
const size_t keySize = 4*(rounds+1);
const word32* end = rk + keySize;
while (true)
{
CRYPTOPP_ASSERT(rc < ro + COUNTOF(rcLE));
rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++);
rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4];
rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1];
rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2];
if (rk + keyLen/4 + 4 == end)
break;
if (keyLen == 24)
{
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
CRYPTOPP_ASSERT(keySize >= 12);
temp = _mm_insert_epi32(temp, rk[11], 3);
}
else if (keyLen == 32)
{
CRYPTOPP_ASSERT(keySize >= 12);
temp = _mm_insert_epi32(temp, rk[11], 3);
rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
CRYPTOPP_ASSERT(keySize >= 16);
temp = _mm_insert_epi32(temp, rk[15], 3);
}
else
{
CRYPTOPP_ASSERT(keySize >= 8);
temp = _mm_insert_epi32(temp, rk[7], 3);
}
rk += keyLen/4;
}
}
void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds)
{
unsigned int i, j;
__m128i temp;
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
// __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
// SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
vec_swap(*(__m128i *)(key), *(__m128i *)(key+4*rounds));
#else
std::swap(*M128_CAST(key), *M128_CAST(key+4*rounds));
#endif
for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4)
{
temp = _mm_aesimc_si128(*M128_CAST(key+i));
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j));
*M128_CAST(key+j) = temp;
}
*M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i));
}
#endif // CRYPTOPP_AESNI_AVAILABLE
NAMESPACE_END