mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 18:09:48 +00:00
225 lines
10 KiB
C++
225 lines
10 KiB
C++
// xts.h - written and placed in the public domain by Jeffrey Walton
|
|
|
|
/// \file xts.h
|
|
/// \brief Classes for XTS block cipher mode of operation
|
|
/// \details XTS mode is a wide block mode defined by IEEE P1619-2008. NIST
|
|
/// SP-800-38E approves the mode for storage devices citing IEEE 1619-2007.
|
|
/// IEEE 1619-2007 provides both a reference implementation and test vectors.
|
|
/// The IEEE reference implementation fails to arrive at the expected result
|
|
/// for some test vectors.
|
|
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
|
|
/// Operation</A> on the Crypto++ wiki, <A
|
|
/// HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
|
|
/// Blockcipher Modes of Operation</A>, <A
|
|
/// HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
|
|
/// for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
|
|
/// Storage Devices</A>, <A
|
|
/// HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
|
|
/// and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
|
|
/// inconsistent reference implementation and test vectors</A>.
|
|
/// \since Crypto++ 8.3
|
|
|
|
#ifndef CRYPTOPP_XTS_MODE_H
|
|
#define CRYPTOPP_XTS_MODE_H
|
|
|
|
#include "cryptlib.h"
|
|
#include "secblock.h"
|
|
#include "modes.h"
|
|
#include "misc.h"
|
|
|
|
/// \brief Enable XTS for wide block ciphers
|
|
/// \details XTS is only defined for AES. The library can support wide
|
|
/// block ciphers like Kaylna and Threefish since we know the polynomials.
|
|
/// To enable wide block ciphers define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt>
|
|
/// to non-zero. Note this is a library compile time define.
|
|
/// \details There is risk involved with using XTS with wider block ciphers.
|
|
/// According to Phillip Rogaway, "The narrow width of the underlying PRP and
|
|
/// the poor treatment of fractional final blocks are problems."
|
|
/// \sa <A HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf">Evaluation
|
|
/// of Some Blockcipher Modes of Operation</A>
|
|
/// \since Crypto++ 8.3
|
|
#ifndef CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
|
|
# define CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS 0
|
|
#endif // CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
/// \brief XTS block cipher mode of operation default implementation
|
|
/// \since Crypto++ 8.3
|
|
class CRYPTOPP_NO_VTABLE XTS_ModeBase : public BlockOrientedCipherModeBase
|
|
{
|
|
public:
|
|
/// \brief The algorithm name
|
|
/// \return the algorithm name
|
|
/// \details StaticAlgorithmName returns the algorithm's name as a static
|
|
/// member function.
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName()
|
|
{return "XTS";}
|
|
|
|
virtual ~XTS_ModeBase() {}
|
|
|
|
std::string AlgorithmName() const
|
|
{return GetBlockCipher().AlgorithmName() + "/XTS";}
|
|
std::string AlgorithmProvider() const
|
|
{return GetBlockCipher().AlgorithmProvider();}
|
|
|
|
size_t MinKeyLength() const
|
|
{return GetBlockCipher().MinKeyLength()*2;}
|
|
size_t MaxKeyLength() const
|
|
{return GetBlockCipher().MaxKeyLength()*2;}
|
|
size_t DefaultKeyLength() const
|
|
{return GetBlockCipher().DefaultKeyLength()*2;}
|
|
size_t GetValidKeyLength(size_t n) const
|
|
{return 2*GetBlockCipher().GetValidKeyLength((n+1)/2);}
|
|
bool IsValidKeyLength(size_t keylength) const
|
|
{return keylength == GetValidKeyLength(keylength);}
|
|
|
|
/// \brief Validates the key length
|
|
/// \param length the size of the keying material, in bytes
|
|
/// \throw InvalidKeyLength if the key length is invalid
|
|
void ThrowIfInvalidKeyLength(size_t length);
|
|
|
|
/// Provides the block size of the cipher
|
|
/// \return the block size of the cipher, in bytes
|
|
unsigned int BlockSize() const
|
|
{return GetBlockCipher().BlockSize();}
|
|
|
|
/// \brief Provides the input block size most efficient for this cipher
|
|
/// \return The input block size that is most efficient for the cipher
|
|
/// \details The base class implementation returns MandatoryBlockSize().
|
|
/// \note Optimal input length is
|
|
/// <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for
|
|
/// any <tt>n \> 0</tt>.
|
|
unsigned int GetOptimalBlockSize() const
|
|
{return GetBlockCipher().BlockSize()*ParallelBlocks;}
|
|
unsigned int MinLastBlockSize() const
|
|
{return GetBlockCipher().BlockSize()+1;}
|
|
unsigned int OptimalDataAlignment() const
|
|
{return GetBlockCipher().OptimalDataAlignment();}
|
|
|
|
/// \brief Validates the block size
|
|
/// \param length the block size of the cipher, in bytes
|
|
/// \throw InvalidArgument if the block size is invalid
|
|
/// \details If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is 0,
|
|
/// then CIPHER must be a 16-byte block cipher. If
|
|
/// <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is non-zero then
|
|
/// CIPHER can be 16, 32, 64, or 128-byte block cipher.
|
|
void ThrowIfInvalidBlockSize(size_t length);
|
|
|
|
void SetKey(const byte *key, size_t length, const NameValuePairs ¶ms = g_nullNameValuePairs);
|
|
IV_Requirement IVRequirement() const {return UNIQUE_IV;}
|
|
void Resynchronize(const byte *iv, int ivLength=-1);
|
|
void ProcessData(byte *outString, const byte *inString, size_t length);
|
|
size_t ProcessLastBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);
|
|
|
|
/// \brief Resynchronize the cipher
|
|
/// \param sector a 64-bit sector number
|
|
/// \param order the endian order the word should be written
|
|
/// \details The Resynchronize() overload was provided for API
|
|
/// compatibility with the IEEE P1619 paper.
|
|
void Resynchronize(word64 sector, ByteOrder order=BIG_ENDIAN_ORDER);
|
|
|
|
protected:
|
|
virtual void ResizeBuffers();
|
|
|
|
inline size_t ProcessLastPlainBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);
|
|
inline size_t ProcessLastCipherBlock(byte *outString, size_t outLength, const byte *inString, size_t inLength);
|
|
|
|
virtual BlockCipher& AccessBlockCipher() = 0;
|
|
virtual BlockCipher& AccessTweakCipher() = 0;
|
|
|
|
const BlockCipher& GetBlockCipher() const
|
|
{return const_cast<XTS_ModeBase*>(this)->AccessBlockCipher();}
|
|
const BlockCipher& GetTweakCipher() const
|
|
{return const_cast<XTS_ModeBase*>(this)->AccessTweakCipher();}
|
|
|
|
// Buffers are sized based on ParallelBlocks
|
|
AlignedSecByteBlock m_xregister;
|
|
AlignedSecByteBlock m_xworkspace;
|
|
|
|
// Intel lacks the SSE registers to run 8 or 12 parallel blocks.
|
|
// Do not change this value after compiling. It has no effect.
|
|
#if CRYPTOPP_BOOL_X64 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X86
|
|
enum {ParallelBlocks = 4};
|
|
#else
|
|
enum {ParallelBlocks = 12};
|
|
#endif
|
|
};
|
|
|
|
/// \brief XTS block cipher mode of operation implementation
|
|
/// \tparam CIPHER BlockCipher derived class or type
|
|
/// \details XTS_Final() provides access to CIPHER in base class XTS_ModeBase()
|
|
/// through an interface. AccessBlockCipher() and AccessTweakCipher() allow
|
|
/// the XTS_ModeBase() base class to access the user's block cipher without
|
|
/// recompiling the library.
|
|
/// \details If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is 0, then CIPHER must
|
|
/// be a 16-byte block cipher. If <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> is
|
|
/// non-zero then CIPHER can be 16, 32, 64, or 128-byte block cipher.
|
|
/// There is risk involved with using XTS with wider block ciphers.
|
|
/// According to Phillip Rogaway, "The narrow width of the underlying PRP and
|
|
/// the poor treatment of fractional final blocks are problems." To enable
|
|
/// wide block cipher support define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> to
|
|
/// non-zero.
|
|
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
|
|
/// Operation</A> on the Crypto++ wiki, <A
|
|
/// HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
|
|
/// Blockcipher Modes of Operation</A>, <A
|
|
/// HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
|
|
/// for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
|
|
/// Storage Devices</A>, <A
|
|
/// HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
|
|
/// and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
|
|
/// inconsistent reference implementation and test vectors</A>.
|
|
/// \since Crypto++ 8.3
|
|
template <class CIPHER>
|
|
class CRYPTOPP_NO_VTABLE XTS_Final : public XTS_ModeBase
|
|
{
|
|
protected:
|
|
BlockCipher& AccessBlockCipher()
|
|
{return *m_cipher;}
|
|
BlockCipher& AccessTweakCipher()
|
|
{return m_tweaker;}
|
|
|
|
protected:
|
|
typename CIPHER::Encryption m_tweaker;
|
|
};
|
|
|
|
/// \brief XTS block cipher mode of operation
|
|
/// \tparam CIPHER BlockCipher derived class or type
|
|
/// \details XTS mode is a wide block mode defined by IEEE P1619-2008. NIST
|
|
/// SP-800-38E approves the mode for storage devices citing IEEE 1619-2007.
|
|
/// IEEE 1619-2007 provides both a reference implementation and test vectors.
|
|
/// The IEEE reference implementation fails to arrive at the expected result
|
|
/// for some test vectors.
|
|
/// \details XTS is only defined for AES. The library can support wide
|
|
/// block ciphers like Kaylna and Threefish since we know the polynomials.
|
|
/// There is risk involved with using XTS with wider block ciphers.
|
|
/// According to Phillip Rogaway, "The narrow width of the underlying PRP and
|
|
/// the poor treatment of fractional final blocks are problems." To enable
|
|
/// wide block cipher support define <tt>CRYPTOPP_XTS_WIDE_BLOCK_CIPHERS</tt> to
|
|
/// non-zero.
|
|
/// \sa <A HREF="http://www.cryptopp.com/wiki/Modes_of_Operation">Modes of
|
|
/// Operation</A> on the Crypto++ wiki, <A
|
|
/// HREF="https://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf"> Evaluation of Some
|
|
/// Blockcipher Modes of Operation</A>, <A
|
|
/// HREF="https://csrc.nist.gov/publications/detail/sp/800-38e/final">Recommendation
|
|
/// for Block Cipher Modes of Operation: The XTS-AES Mode for Confidentiality on
|
|
/// Storage Devices</A>, <A
|
|
/// HREF="http://libeccio.di.unisa.it/Crypto14/Lab/p1619.pdf">IEEE P1619-2007</A>
|
|
/// and <A HREF="https://crypto.stackexchange.com/q/74925/10496">IEEE P1619/XTS,
|
|
/// inconsistent reference implementation and test vectors</A>.
|
|
/// \since Crypto++ 8.3
|
|
template <class CIPHER>
|
|
struct XTS : public CipherModeDocumentation
|
|
{
|
|
typedef CipherModeFinalTemplate_CipherHolder<typename CIPHER::Encryption, XTS_Final<CIPHER> > Encryption;
|
|
typedef CipherModeFinalTemplate_CipherHolder<typename CIPHER::Decryption, XTS_Final<CIPHER> > Decryption;
|
|
};
|
|
|
|
// C++03 lacks the mechanics to typedef a template
|
|
#define XTS_Mode XTS
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif // CRYPTOPP_XTS_MODE_H
|