mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-30 13:20:30 +00:00
286 lines
7.0 KiB
C++
286 lines
7.0 KiB
C++
// rw.cpp - written and placed in the public domain by Wei Dai
|
|
|
|
#include "pch.h"
|
|
#include "rw.h"
|
|
#include "nbtheory.h"
|
|
#include "asn.h"
|
|
|
|
#ifndef NDEBUG
|
|
# include <cassert>
|
|
#endif
|
|
|
|
#ifndef CRYPTOPP_IMPORTS
|
|
|
|
static const bool CRYPTOPP_RW_USE_OMP = false;
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
void RWFunction::BERDecode(BufferedTransformation &bt)
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
m_n.BERDecode(seq);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
void RWFunction::DEREncode(BufferedTransformation &bt) const
|
|
{
|
|
DERSequenceEncoder seq(bt);
|
|
m_n.DEREncode(seq);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
Integer RWFunction::ApplyFunction(const Integer &in) const
|
|
{
|
|
DoQuickSanityCheck();
|
|
|
|
Integer out = in.Squared()%m_n;
|
|
const word r = 12;
|
|
// this code was written to handle both r = 6 and r = 12,
|
|
// but now only r = 12 is used in P1363
|
|
const word r2 = r/2;
|
|
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13
|
|
const word r3b = (16 + 13 - r) % 16;
|
|
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5
|
|
switch (out % 16)
|
|
{
|
|
case r:
|
|
break;
|
|
case r2:
|
|
case r2+8:
|
|
out <<= 1;
|
|
break;
|
|
case r3a:
|
|
case r3b:
|
|
out.Negate();
|
|
out += m_n;
|
|
break;
|
|
case r4:
|
|
case r4+8:
|
|
out.Negate();
|
|
out += m_n;
|
|
out <<= 1;
|
|
break;
|
|
default:
|
|
out = Integer::Zero();
|
|
}
|
|
return out;
|
|
}
|
|
|
|
bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
bool pass = true;
|
|
pass = pass && m_n > Integer::One() && m_n%8 == 5;
|
|
return pass;
|
|
}
|
|
|
|
bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper(this, name, valueType, pValue).Assignable()
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
|
|
;
|
|
}
|
|
|
|
void RWFunction::AssignFrom(const NameValuePairs &source)
|
|
{
|
|
AssignFromHelper(this, source)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
|
|
;
|
|
}
|
|
|
|
// *****************************************************************************
|
|
// private key operations:
|
|
|
|
// generate a random private key
|
|
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
|
|
{
|
|
int modulusSize = 2048;
|
|
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
|
|
|
|
if (modulusSize < 16)
|
|
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");
|
|
|
|
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
|
|
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
|
|
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));
|
|
|
|
m_n = m_p * m_q;
|
|
m_u = m_q.InverseMod(m_p);
|
|
|
|
Precompute();
|
|
}
|
|
|
|
void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u)
|
|
{
|
|
m_n = n; m_p = p; m_q = q; m_u = u;
|
|
|
|
Precompute();
|
|
}
|
|
|
|
void InvertibleRWFunction::PrecomputeTweakedRoots() const
|
|
{
|
|
ModularArithmetic modp(m_p), modq(m_q);
|
|
|
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
|
|
{
|
|
#pragma omp section
|
|
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8);
|
|
#pragma omp section
|
|
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8);
|
|
#pragma omp section
|
|
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2);
|
|
}
|
|
|
|
m_precompute = true;
|
|
}
|
|
|
|
void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt)
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
m_pre_2_9p.BERDecode(seq);
|
|
m_pre_2_3q.BERDecode(seq);
|
|
m_pre_q_p.BERDecode(seq);
|
|
seq.MessageEnd();
|
|
|
|
m_precompute = true;
|
|
}
|
|
|
|
void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const
|
|
{
|
|
if(!m_precompute)
|
|
Precompute();
|
|
|
|
DERSequenceEncoder seq(bt);
|
|
m_pre_2_9p.DEREncode(seq);
|
|
m_pre_2_3q.DEREncode(seq);
|
|
m_pre_q_p.DEREncode(seq);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
m_n.BERDecode(seq);
|
|
m_p.BERDecode(seq);
|
|
m_q.BERDecode(seq);
|
|
m_u.BERDecode(seq);
|
|
seq.MessageEnd();
|
|
|
|
m_precompute = false;
|
|
}
|
|
|
|
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
|
|
{
|
|
DERSequenceEncoder seq(bt);
|
|
m_n.DEREncode(seq);
|
|
m_p.DEREncode(seq);
|
|
m_q.DEREncode(seq);
|
|
m_u.DEREncode(seq);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
// DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf).
|
|
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
|
|
{
|
|
DoQuickSanityCheck();
|
|
|
|
if(!m_precompute)
|
|
Precompute();
|
|
|
|
ModularArithmetic modn(m_n), modp(m_p), modq(m_q);
|
|
Integer r, rInv;
|
|
|
|
do
|
|
{
|
|
// Do this in a loop for people using small numbers for testing
|
|
r.Randomize(rng, Integer::One(), m_n - Integer::One());
|
|
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
|
|
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Muench.
|
|
r = modn.Square(r);
|
|
rInv = modn.MultiplicativeInverse(r);
|
|
} while (rInv.IsZero());
|
|
|
|
Integer re = modn.Square(r);
|
|
re = modn.Multiply(re, x); // blind
|
|
|
|
const Integer &h = re, &p = m_p, &q = m_q;
|
|
Integer e, f;
|
|
|
|
const Integer U = modq.Exponentiate(h, (q+1)/8);
|
|
if(((modq.Exponentiate(U, 4) - h) % q).IsZero())
|
|
e = Integer::One();
|
|
else
|
|
e = -1;
|
|
|
|
const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8);
|
|
if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero())
|
|
f = Integer::One();
|
|
else
|
|
f = 2;
|
|
|
|
Integer W, X;
|
|
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
|
|
{
|
|
#pragma omp section
|
|
{
|
|
W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U));
|
|
}
|
|
#pragma omp section
|
|
{
|
|
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh);
|
|
X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t));
|
|
}
|
|
}
|
|
const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W));
|
|
|
|
// Signature
|
|
Integer s = modn.Multiply(modn.Square(Y), rInv);
|
|
assert((e * f * s.Squared()) % m_n == x);
|
|
|
|
// IEEE P1363, Section 8.2.8 IFSP-RW, p.44
|
|
s = STDMIN(s, m_n - s);
|
|
if (ApplyFunction(s) != x) // check
|
|
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
|
|
|
|
return s;
|
|
}
|
|
|
|
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
|
|
{
|
|
bool pass = RWFunction::Validate(rng, level);
|
|
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
|
|
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
|
|
pass = pass && m_u.IsPositive() && m_u < m_p;
|
|
if (level >= 1)
|
|
{
|
|
pass = pass && m_p * m_q == m_n;
|
|
pass = pass && m_u * m_q % m_p == 1;
|
|
}
|
|
if (level >= 2)
|
|
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
|
|
return pass;
|
|
}
|
|
|
|
bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
|
|
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
|
;
|
|
}
|
|
|
|
void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
|
|
{
|
|
AssignFromHelper<RWFunction>(this, source)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
|
|
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
|
|
;
|
|
|
|
m_precompute = false;
|
|
}
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|