mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 09:59:42 +00:00
4232 lines
91 KiB
C++
4232 lines
91 KiB
C++
// integer.cpp - written and placed in the public domain by Wei Dai
|
|
// contains public domain code contributed by Alister Lee and Leonard Janke
|
|
|
|
#include "pch.h"
|
|
|
|
#ifndef CRYPTOPP_IMPORTS
|
|
|
|
#include "integer.h"
|
|
#include "modarith.h"
|
|
#include "nbtheory.h"
|
|
#include "asn.h"
|
|
#include "oids.h"
|
|
#include "words.h"
|
|
#include "algparam.h"
|
|
#include "pubkey.h" // for P1363_KDF2
|
|
#include "sha.h"
|
|
|
|
#include <iostream>
|
|
|
|
#ifdef _M_X64
|
|
#include <Intrin.h>
|
|
#endif
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
#ifdef __GNUC__
|
|
#include <xmmintrin.h>
|
|
#include <signal.h>
|
|
#include <setjmp.h>
|
|
#ifdef CRYPTOPP_MEMALIGN_AVAILABLE
|
|
#include <malloc.h>
|
|
#else
|
|
#include <stdlib.h>
|
|
#endif
|
|
#else
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#elif defined(_MSC_VER) && defined(_M_IX86)
|
|
#pragma message("You do not seem to have the Visual C++ Processor Pack installed, so use of SSE2 intrinsics will be disabled.")
|
|
#elif defined(__GNUC__) && defined(__i386__)
|
|
#warning "You do not have GCC 3.3 or later, or did not specify -msse2 compiler option, so use of SSE2 intrinsics will be disabled."
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
bool AssignIntToInteger(const std::type_info &valueType, void *pInteger, const void *pInt)
|
|
{
|
|
if (valueType != typeid(Integer))
|
|
return false;
|
|
*reinterpret_cast<Integer *>(pInteger) = *reinterpret_cast<const int *>(pInt);
|
|
return true;
|
|
}
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
template <class T>
|
|
CPP_TYPENAME AlignedAllocator<T>::pointer AlignedAllocator<T>::allocate(size_type n, const void *)
|
|
{
|
|
CheckSize(n);
|
|
if (n == 0)
|
|
return NULL;
|
|
if (n >= 4)
|
|
{
|
|
void *p;
|
|
#ifdef CRYPTOPP_MM_MALLOC_AVAILABLE
|
|
while (!(p = _mm_malloc(sizeof(T)*n, 16)))
|
|
#elif defined(CRYPTOPP_MEMALIGN_AVAILABLE)
|
|
while (!(p = memalign(16, sizeof(T)*n)))
|
|
#elif defined(CRYPTOPP_MALLOC_ALIGNMENT_IS_16)
|
|
while (!(p = malloc(sizeof(T)*n)))
|
|
#else
|
|
while (!(p = (byte *)malloc(sizeof(T)*n + 8))) // assume malloc alignment is at least 8
|
|
#endif
|
|
CallNewHandler();
|
|
|
|
#ifdef CRYPTOPP_NO_ALIGNED_ALLOC
|
|
assert(m_pBlock == NULL);
|
|
m_pBlock = p;
|
|
if (!IsAlignedOn(p, 16))
|
|
{
|
|
assert(IsAlignedOn(p, 8));
|
|
p = (byte *)p + 8;
|
|
}
|
|
#endif
|
|
|
|
assert(IsAlignedOn(p, 16));
|
|
return (T*)p;
|
|
}
|
|
return new T[n];
|
|
}
|
|
|
|
template <class T>
|
|
void AlignedAllocator<T>::deallocate(void *p, size_type n)
|
|
{
|
|
memset(p, 0, n*sizeof(T));
|
|
if (n >= 4)
|
|
{
|
|
#ifdef CRYPTOPP_MM_MALLOC_AVAILABLE
|
|
_mm_free(p);
|
|
#elif defined(CRYPTOPP_NO_ALIGNED_ALLOC)
|
|
assert(m_pBlock == p || (byte *)m_pBlock+8 == p);
|
|
free(m_pBlock);
|
|
m_pBlock = NULL;
|
|
#else
|
|
free(p);
|
|
#endif
|
|
}
|
|
else
|
|
delete [] (T *)p;
|
|
}
|
|
|
|
template class CRYPTOPP_DLL AlignedAllocator<word>;
|
|
#endif
|
|
|
|
static int Compare(const word *A, const word *B, size_t N)
|
|
{
|
|
while (N--)
|
|
if (A[N] > B[N])
|
|
return 1;
|
|
else if (A[N] < B[N])
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int Increment(word *A, size_t N, word B=1)
|
|
{
|
|
assert(N);
|
|
word t = A[0];
|
|
A[0] = t+B;
|
|
if (A[0] >= t)
|
|
return 0;
|
|
for (unsigned i=1; i<N; i++)
|
|
if (++A[i])
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static int Decrement(word *A, size_t N, word B=1)
|
|
{
|
|
assert(N);
|
|
word t = A[0];
|
|
A[0] = t-B;
|
|
if (A[0] <= t)
|
|
return 0;
|
|
for (unsigned i=1; i<N; i++)
|
|
if (A[i]--)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void TwosComplement(word *A, size_t N)
|
|
{
|
|
Decrement(A, N);
|
|
for (unsigned i=0; i<N; i++)
|
|
A[i] = ~A[i];
|
|
}
|
|
|
|
static word AtomicInverseModPower2(word A)
|
|
{
|
|
assert(A%2==1);
|
|
|
|
word R=A%8;
|
|
|
|
for (unsigned i=3; i<WORD_BITS; i*=2)
|
|
R = R*(2-R*A);
|
|
|
|
assert(R*A==1);
|
|
return R;
|
|
}
|
|
|
|
// ********************************************************
|
|
|
|
class DWord
|
|
{
|
|
public:
|
|
DWord() {}
|
|
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
explicit DWord(word low)
|
|
{
|
|
m_whole = low;
|
|
}
|
|
#else
|
|
explicit DWord(word low)
|
|
{
|
|
m_halfs.low = low;
|
|
m_halfs.high = 0;
|
|
}
|
|
#endif
|
|
|
|
DWord(word low, word high)
|
|
{
|
|
m_halfs.low = low;
|
|
m_halfs.high = high;
|
|
}
|
|
|
|
static DWord Multiply(word a, word b)
|
|
{
|
|
DWord r;
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
r.m_whole = (dword)a * b;
|
|
#elif defined(__alpha__)
|
|
r.m_halfs.low = a*b; __asm__("umulh %1,%2,%0" : "=r" (r.m_halfs.high) : "r" (a), "r" (b));
|
|
#elif defined(__ia64__)
|
|
r.m_halfs.low = a*b; __asm__("xmpy.hu %0=%1,%2" : "=f" (r.m_halfs.high) : "f" (a), "f" (b));
|
|
#elif defined(_ARCH_PPC64)
|
|
r.m_halfs.low = a*b; __asm__("mulhdu %0,%1,%2" : "=r" (r.m_halfs.high) : "r" (a), "r" (b) : "cc");
|
|
#elif defined(__x86_64__)
|
|
__asm__("mulq %3" : "=d" (r.m_halfs.high), "=a" (r.m_halfs.low) : "a" (a), "rm" (b) : "cc");
|
|
#elif defined(__mips64)
|
|
__asm__("dmultu %2,%3" : "=h" (r.m_halfs.high), "=l" (r.m_halfs.low) : "r" (a), "r" (b));
|
|
#elif defined(_M_X64)
|
|
r.m_halfs.low = _umul128(a, b, &r.m_halfs.high);
|
|
#elif defined(_M_IX86)
|
|
// for testing
|
|
word64 t = (word64)a * b;
|
|
r.m_halfs.high = ((word32 *)(&t))[1];
|
|
r.m_halfs.low = (word32)t;
|
|
#else
|
|
#error can not implement DWord
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
static DWord MultiplyAndAdd(word a, word b, word c)
|
|
{
|
|
DWord r = Multiply(a, b);
|
|
return r += c;
|
|
}
|
|
|
|
DWord & operator+=(word a)
|
|
{
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
m_whole = m_whole + a;
|
|
#else
|
|
m_halfs.low += a;
|
|
m_halfs.high += (m_halfs.low < a);
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
DWord operator+(word a)
|
|
{
|
|
DWord r;
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
r.m_whole = m_whole + a;
|
|
#else
|
|
r.m_halfs.low = m_halfs.low + a;
|
|
r.m_halfs.high = m_halfs.high + (r.m_halfs.low < a);
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
DWord operator-(DWord a)
|
|
{
|
|
DWord r;
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
r.m_whole = m_whole - a.m_whole;
|
|
#else
|
|
r.m_halfs.low = m_halfs.low - a.m_halfs.low;
|
|
r.m_halfs.high = m_halfs.high - a.m_halfs.high - (r.m_halfs.low > m_halfs.low);
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
DWord operator-(word a)
|
|
{
|
|
DWord r;
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
r.m_whole = m_whole - a;
|
|
#else
|
|
r.m_halfs.low = m_halfs.low - a;
|
|
r.m_halfs.high = m_halfs.high - (r.m_halfs.low > m_halfs.low);
|
|
#endif
|
|
return r;
|
|
}
|
|
|
|
// returns quotient, which must fit in a word
|
|
word operator/(word divisor);
|
|
|
|
word operator%(word a);
|
|
|
|
bool operator!() const
|
|
{
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
return !m_whole;
|
|
#else
|
|
return !m_halfs.high && !m_halfs.low;
|
|
#endif
|
|
}
|
|
|
|
word GetLowHalf() const {return m_halfs.low;}
|
|
word GetHighHalf() const {return m_halfs.high;}
|
|
word GetHighHalfAsBorrow() const {return 0-m_halfs.high;}
|
|
|
|
private:
|
|
union
|
|
{
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
dword m_whole;
|
|
#endif
|
|
struct
|
|
{
|
|
#ifdef IS_LITTLE_ENDIAN
|
|
word low;
|
|
word high;
|
|
#else
|
|
word high;
|
|
word low;
|
|
#endif
|
|
} m_halfs;
|
|
};
|
|
};
|
|
|
|
class Word
|
|
{
|
|
public:
|
|
Word() {}
|
|
|
|
Word(word value)
|
|
{
|
|
m_whole = value;
|
|
}
|
|
|
|
Word(hword low, hword high)
|
|
{
|
|
m_whole = low | (word(high) << (WORD_BITS/2));
|
|
}
|
|
|
|
static Word Multiply(hword a, hword b)
|
|
{
|
|
Word r;
|
|
r.m_whole = (word)a * b;
|
|
return r;
|
|
}
|
|
|
|
Word operator-(Word a)
|
|
{
|
|
Word r;
|
|
r.m_whole = m_whole - a.m_whole;
|
|
return r;
|
|
}
|
|
|
|
Word operator-(hword a)
|
|
{
|
|
Word r;
|
|
r.m_whole = m_whole - a;
|
|
return r;
|
|
}
|
|
|
|
// returns quotient, which must fit in a word
|
|
hword operator/(hword divisor)
|
|
{
|
|
return hword(m_whole / divisor);
|
|
}
|
|
|
|
bool operator!() const
|
|
{
|
|
return !m_whole;
|
|
}
|
|
|
|
word GetWhole() const {return m_whole;}
|
|
hword GetLowHalf() const {return hword(m_whole);}
|
|
hword GetHighHalf() const {return hword(m_whole>>(WORD_BITS/2));}
|
|
hword GetHighHalfAsBorrow() const {return 0-hword(m_whole>>(WORD_BITS/2));}
|
|
|
|
private:
|
|
word m_whole;
|
|
};
|
|
|
|
// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
|
|
template <class S, class D>
|
|
S DivideThreeWordsByTwo(S *A, S B0, S B1, D *dummy=NULL)
|
|
{
|
|
// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a S
|
|
assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
|
|
|
|
// estimate the quotient: do a 2 S by 1 S divide
|
|
S Q;
|
|
if (S(B1+1) == 0)
|
|
Q = A[2];
|
|
else
|
|
Q = D(A[1], A[2]) / S(B1+1);
|
|
|
|
// now subtract Q*B from A
|
|
D p = D::Multiply(B0, Q);
|
|
D u = (D) A[0] - p.GetLowHalf();
|
|
A[0] = u.GetLowHalf();
|
|
u = (D) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - D::Multiply(B1, Q);
|
|
A[1] = u.GetLowHalf();
|
|
A[2] += u.GetHighHalf();
|
|
|
|
// Q <= actual quotient, so fix it
|
|
while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
|
|
{
|
|
u = (D) A[0] - B0;
|
|
A[0] = u.GetLowHalf();
|
|
u = (D) A[1] - B1 - u.GetHighHalfAsBorrow();
|
|
A[1] = u.GetLowHalf();
|
|
A[2] += u.GetHighHalf();
|
|
Q++;
|
|
assert(Q); // shouldn't overflow
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
|
|
template <class S, class D>
|
|
inline D DivideFourWordsByTwo(S *T, const D &Al, const D &Ah, const D &B)
|
|
{
|
|
if (!B) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
|
|
return D(Ah.GetLowHalf(), Ah.GetHighHalf());
|
|
else
|
|
{
|
|
S Q[2];
|
|
T[0] = Al.GetLowHalf();
|
|
T[1] = Al.GetHighHalf();
|
|
T[2] = Ah.GetLowHalf();
|
|
T[3] = Ah.GetHighHalf();
|
|
Q[1] = DivideThreeWordsByTwo<S, D>(T+1, B.GetLowHalf(), B.GetHighHalf());
|
|
Q[0] = DivideThreeWordsByTwo<S, D>(T, B.GetLowHalf(), B.GetHighHalf());
|
|
return D(Q[0], Q[1]);
|
|
}
|
|
}
|
|
|
|
// returns quotient, which must fit in a word
|
|
inline word DWord::operator/(word a)
|
|
{
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
return word(m_whole / a);
|
|
#else
|
|
hword r[4];
|
|
return DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a).GetWhole();
|
|
#endif
|
|
}
|
|
|
|
inline word DWord::operator%(word a)
|
|
{
|
|
#ifdef CRYPTOPP_NATIVE_DWORD_AVAILABLE
|
|
return word(m_whole % a);
|
|
#else
|
|
if (a < (word(1) << (WORD_BITS/2)))
|
|
{
|
|
hword h = hword(a);
|
|
word r = m_halfs.high % h;
|
|
r = ((m_halfs.low >> (WORD_BITS/2)) + (r << (WORD_BITS/2))) % h;
|
|
return hword((hword(m_halfs.low) + (r << (WORD_BITS/2))) % h);
|
|
}
|
|
else
|
|
{
|
|
hword r[4];
|
|
DivideFourWordsByTwo<hword, Word>(r, m_halfs.low, m_halfs.high, a);
|
|
return Word(r[0], r[1]).GetWhole();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// ********************************************************
|
|
|
|
class Portable
|
|
{
|
|
public:
|
|
static int Add(word *C, const word *A, const word *B, size_t N);
|
|
static int Subtract(word *C, const word *A, const word *B, size_t N);
|
|
|
|
static inline void Multiply2(word *C, const word *A, const word *B);
|
|
static inline word Multiply2Add(word *C, const word *A, const word *B);
|
|
static void Multiply4(word *C, const word *A, const word *B);
|
|
static void Multiply8(word *C, const word *A, const word *B);
|
|
static inline unsigned int MultiplyRecursionLimit() {return 8;}
|
|
|
|
static inline void Multiply2Bottom(word *C, const word *A, const word *B);
|
|
static void Multiply4Bottom(word *C, const word *A, const word *B);
|
|
static void Multiply8Bottom(word *C, const word *A, const word *B);
|
|
static inline unsigned int MultiplyBottomRecursionLimit() {return 8;}
|
|
|
|
static void Square2(word *R, const word *A);
|
|
static void Square4(word *R, const word *A);
|
|
static void Square8(word *R, const word *A) {assert(false);}
|
|
static inline unsigned int SquareRecursionLimit() {return 4;}
|
|
};
|
|
|
|
int Portable::Add(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
assert (N%2 == 0);
|
|
|
|
DWord u(0, 0);
|
|
for (unsigned int i = 0; i < N; i+=2)
|
|
{
|
|
u = DWord(A[i]) + B[i] + u.GetHighHalf();
|
|
C[i] = u.GetLowHalf();
|
|
u = DWord(A[i+1]) + B[i+1] + u.GetHighHalf();
|
|
C[i+1] = u.GetLowHalf();
|
|
}
|
|
return int(u.GetHighHalf());
|
|
}
|
|
|
|
int Portable::Subtract(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
assert (N%2 == 0);
|
|
|
|
DWord u(0, 0);
|
|
for (unsigned int i = 0; i < N; i+=2)
|
|
{
|
|
u = (DWord) A[i] - B[i] - u.GetHighHalfAsBorrow();
|
|
C[i] = u.GetLowHalf();
|
|
u = (DWord) A[i+1] - B[i+1] - u.GetHighHalfAsBorrow();
|
|
C[i+1] = u.GetLowHalf();
|
|
}
|
|
return int(0-u.GetHighHalf());
|
|
}
|
|
|
|
void Portable::Multiply2(word *C, const word *A, const word *B)
|
|
{
|
|
/*
|
|
word s;
|
|
dword d;
|
|
|
|
if (A1 >= A0)
|
|
if (B0 >= B1)
|
|
{
|
|
s = 0;
|
|
d = (dword)(A1-A0)*(B0-B1);
|
|
}
|
|
else
|
|
{
|
|
s = (A1-A0);
|
|
d = (dword)s*(word)(B0-B1);
|
|
}
|
|
else
|
|
if (B0 > B1)
|
|
{
|
|
s = (B0-B1);
|
|
d = (word)(A1-A0)*(dword)s;
|
|
}
|
|
else
|
|
{
|
|
s = 0;
|
|
d = (dword)(A0-A1)*(B1-B0);
|
|
}
|
|
*/
|
|
// this segment is the branchless equivalent of above
|
|
word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
|
|
unsigned int ai = A[1] < A[0];
|
|
unsigned int bi = B[0] < B[1];
|
|
unsigned int di = ai & bi;
|
|
DWord d = DWord::Multiply(D[di], D[di+2]);
|
|
D[1] = D[3] = 0;
|
|
unsigned int si = ai + !bi;
|
|
word s = D[si];
|
|
|
|
DWord A0B0 = DWord::Multiply(A[0], B[0]);
|
|
C[0] = A0B0.GetLowHalf();
|
|
|
|
DWord A1B1 = DWord::Multiply(A[1], B[1]);
|
|
DWord t = (DWord) A0B0.GetHighHalf() + A0B0.GetLowHalf() + d.GetLowHalf() + A1B1.GetLowHalf();
|
|
C[1] = t.GetLowHalf();
|
|
|
|
t = A1B1 + t.GetHighHalf() + A0B0.GetHighHalf() + d.GetHighHalf() + A1B1.GetHighHalf() - s;
|
|
C[2] = t.GetLowHalf();
|
|
C[3] = t.GetHighHalf();
|
|
}
|
|
|
|
inline void Portable::Multiply2Bottom(word *C, const word *A, const word *B)
|
|
{
|
|
DWord t = DWord::Multiply(A[0], B[0]);
|
|
C[0] = t.GetLowHalf();
|
|
C[1] = t.GetHighHalf() + A[0]*B[1] + A[1]*B[0];
|
|
}
|
|
|
|
word Portable::Multiply2Add(word *C, const word *A, const word *B)
|
|
{
|
|
word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
|
|
unsigned int ai = A[1] < A[0];
|
|
unsigned int bi = B[0] < B[1];
|
|
unsigned int di = ai & bi;
|
|
DWord d = DWord::Multiply(D[di], D[di+2]);
|
|
D[1] = D[3] = 0;
|
|
unsigned int si = ai + !bi;
|
|
word s = D[si];
|
|
|
|
DWord A0B0 = DWord::Multiply(A[0], B[0]);
|
|
DWord t = A0B0 + C[0];
|
|
C[0] = t.GetLowHalf();
|
|
|
|
DWord A1B1 = DWord::Multiply(A[1], B[1]);
|
|
t = (DWord) t.GetHighHalf() + A0B0.GetLowHalf() + d.GetLowHalf() + A1B1.GetLowHalf() + C[1];
|
|
C[1] = t.GetLowHalf();
|
|
|
|
t = (DWord) t.GetHighHalf() + A1B1.GetLowHalf() + A0B0.GetHighHalf() + d.GetHighHalf() + A1B1.GetHighHalf() - s + C[2];
|
|
C[2] = t.GetLowHalf();
|
|
|
|
t = (DWord) t.GetHighHalf() + A1B1.GetHighHalf() + C[3];
|
|
C[3] = t.GetLowHalf();
|
|
return t.GetHighHalf();
|
|
}
|
|
|
|
#define MulAcc(x, y) \
|
|
p = DWord::MultiplyAndAdd(A[x], B[y], c); \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) d + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e += p.GetHighHalf();
|
|
|
|
#define SaveMulAcc(s, x, y) \
|
|
R[s] = c; \
|
|
p = DWord::MultiplyAndAdd(A[x], B[y], d); \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) e + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e = p.GetHighHalf();
|
|
|
|
#define SquAcc(x, y) \
|
|
q = DWord::Multiply(A[x], A[y]); \
|
|
p = q + c; \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) d + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e += p.GetHighHalf(); \
|
|
p = q + c; \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) d + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e += p.GetHighHalf();
|
|
|
|
#define SaveSquAcc(s, x, y) \
|
|
R[s] = c; \
|
|
q = DWord::Multiply(A[x], A[y]); \
|
|
p = q + d; \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) e + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e = p.GetHighHalf(); \
|
|
p = q + c; \
|
|
c = p.GetLowHalf(); \
|
|
p = (DWord) d + p.GetHighHalf(); \
|
|
d = p.GetLowHalf(); \
|
|
e += p.GetHighHalf();
|
|
|
|
void Portable::Multiply4(word *R, const word *A, const word *B)
|
|
{
|
|
DWord p;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], B[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
MulAcc(0, 1);
|
|
MulAcc(1, 0);
|
|
|
|
SaveMulAcc(1, 2, 0);
|
|
MulAcc(1, 1);
|
|
MulAcc(0, 2);
|
|
|
|
SaveMulAcc(2, 0, 3);
|
|
MulAcc(1, 2);
|
|
MulAcc(2, 1);
|
|
MulAcc(3, 0);
|
|
|
|
SaveMulAcc(3, 3, 1);
|
|
MulAcc(2, 2);
|
|
MulAcc(1, 3);
|
|
|
|
SaveMulAcc(4, 2, 3);
|
|
MulAcc(3, 2);
|
|
|
|
R[5] = c;
|
|
p = DWord::MultiplyAndAdd(A[3], B[3], d);
|
|
R[6] = p.GetLowHalf();
|
|
R[7] = e + p.GetHighHalf();
|
|
}
|
|
|
|
void Portable::Square2(word *R, const word *A)
|
|
{
|
|
DWord p, q;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], A[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
SquAcc(0, 1);
|
|
|
|
R[1] = c;
|
|
p = DWord::MultiplyAndAdd(A[1], A[1], d);
|
|
R[2] = p.GetLowHalf();
|
|
R[3] = e + p.GetHighHalf();
|
|
}
|
|
|
|
void Portable::Square4(word *R, const word *A)
|
|
{
|
|
#ifdef _MSC_VER
|
|
// VC60 workaround: MSVC 6.0 has an optimization bug that makes
|
|
// (dword)A*B where either A or B has been cast to a dword before
|
|
// very expensive. Revisit this function when this
|
|
// bug is fixed.
|
|
Multiply4(R, A, A);
|
|
#else
|
|
const word *B = A;
|
|
DWord p, q;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], A[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
SquAcc(0, 1);
|
|
|
|
SaveSquAcc(1, 2, 0);
|
|
MulAcc(1, 1);
|
|
|
|
SaveSquAcc(2, 0, 3);
|
|
SquAcc(1, 2);
|
|
|
|
SaveSquAcc(3, 3, 1);
|
|
MulAcc(2, 2);
|
|
|
|
SaveSquAcc(4, 2, 3);
|
|
|
|
R[5] = c;
|
|
p = DWord::MultiplyAndAdd(A[3], A[3], d);
|
|
R[6] = p.GetLowHalf();
|
|
R[7] = e + p.GetHighHalf();
|
|
#endif
|
|
}
|
|
|
|
void Portable::Multiply8(word *R, const word *A, const word *B)
|
|
{
|
|
DWord p;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], B[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
MulAcc(0, 1);
|
|
MulAcc(1, 0);
|
|
|
|
SaveMulAcc(1, 2, 0);
|
|
MulAcc(1, 1);
|
|
MulAcc(0, 2);
|
|
|
|
SaveMulAcc(2, 0, 3);
|
|
MulAcc(1, 2);
|
|
MulAcc(2, 1);
|
|
MulAcc(3, 0);
|
|
|
|
SaveMulAcc(3, 0, 4);
|
|
MulAcc(1, 3);
|
|
MulAcc(2, 2);
|
|
MulAcc(3, 1);
|
|
MulAcc(4, 0);
|
|
|
|
SaveMulAcc(4, 0, 5);
|
|
MulAcc(1, 4);
|
|
MulAcc(2, 3);
|
|
MulAcc(3, 2);
|
|
MulAcc(4, 1);
|
|
MulAcc(5, 0);
|
|
|
|
SaveMulAcc(5, 0, 6);
|
|
MulAcc(1, 5);
|
|
MulAcc(2, 4);
|
|
MulAcc(3, 3);
|
|
MulAcc(4, 2);
|
|
MulAcc(5, 1);
|
|
MulAcc(6, 0);
|
|
|
|
SaveMulAcc(6, 0, 7);
|
|
MulAcc(1, 6);
|
|
MulAcc(2, 5);
|
|
MulAcc(3, 4);
|
|
MulAcc(4, 3);
|
|
MulAcc(5, 2);
|
|
MulAcc(6, 1);
|
|
MulAcc(7, 0);
|
|
|
|
SaveMulAcc(7, 1, 7);
|
|
MulAcc(2, 6);
|
|
MulAcc(3, 5);
|
|
MulAcc(4, 4);
|
|
MulAcc(5, 3);
|
|
MulAcc(6, 2);
|
|
MulAcc(7, 1);
|
|
|
|
SaveMulAcc(8, 2, 7);
|
|
MulAcc(3, 6);
|
|
MulAcc(4, 5);
|
|
MulAcc(5, 4);
|
|
MulAcc(6, 3);
|
|
MulAcc(7, 2);
|
|
|
|
SaveMulAcc(9, 3, 7);
|
|
MulAcc(4, 6);
|
|
MulAcc(5, 5);
|
|
MulAcc(6, 4);
|
|
MulAcc(7, 3);
|
|
|
|
SaveMulAcc(10, 4, 7);
|
|
MulAcc(5, 6);
|
|
MulAcc(6, 5);
|
|
MulAcc(7, 4);
|
|
|
|
SaveMulAcc(11, 5, 7);
|
|
MulAcc(6, 6);
|
|
MulAcc(7, 5);
|
|
|
|
SaveMulAcc(12, 6, 7);
|
|
MulAcc(7, 6);
|
|
|
|
R[13] = c;
|
|
p = DWord::MultiplyAndAdd(A[7], B[7], d);
|
|
R[14] = p.GetLowHalf();
|
|
R[15] = e + p.GetHighHalf();
|
|
}
|
|
|
|
void Portable::Multiply4Bottom(word *R, const word *A, const word *B)
|
|
{
|
|
DWord p;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], B[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
MulAcc(0, 1);
|
|
MulAcc(1, 0);
|
|
|
|
SaveMulAcc(1, 2, 0);
|
|
MulAcc(1, 1);
|
|
MulAcc(0, 2);
|
|
|
|
R[2] = c;
|
|
R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0];
|
|
}
|
|
|
|
void Portable::Multiply8Bottom(word *R, const word *A, const word *B)
|
|
{
|
|
DWord p;
|
|
word c, d, e;
|
|
|
|
p = DWord::Multiply(A[0], B[0]);
|
|
R[0] = p.GetLowHalf();
|
|
c = p.GetHighHalf();
|
|
d = e = 0;
|
|
|
|
MulAcc(0, 1);
|
|
MulAcc(1, 0);
|
|
|
|
SaveMulAcc(1, 2, 0);
|
|
MulAcc(1, 1);
|
|
MulAcc(0, 2);
|
|
|
|
SaveMulAcc(2, 0, 3);
|
|
MulAcc(1, 2);
|
|
MulAcc(2, 1);
|
|
MulAcc(3, 0);
|
|
|
|
SaveMulAcc(3, 0, 4);
|
|
MulAcc(1, 3);
|
|
MulAcc(2, 2);
|
|
MulAcc(3, 1);
|
|
MulAcc(4, 0);
|
|
|
|
SaveMulAcc(4, 0, 5);
|
|
MulAcc(1, 4);
|
|
MulAcc(2, 3);
|
|
MulAcc(3, 2);
|
|
MulAcc(4, 1);
|
|
MulAcc(5, 0);
|
|
|
|
SaveMulAcc(5, 0, 6);
|
|
MulAcc(1, 5);
|
|
MulAcc(2, 4);
|
|
MulAcc(3, 3);
|
|
MulAcc(4, 2);
|
|
MulAcc(5, 1);
|
|
MulAcc(6, 0);
|
|
|
|
R[6] = c;
|
|
R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] +
|
|
A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0];
|
|
}
|
|
|
|
#undef MulAcc
|
|
#undef SaveMulAcc
|
|
#undef SquAcc
|
|
#undef SaveSquAcc
|
|
|
|
#ifdef CRYPTOPP_X86ASM_AVAILABLE
|
|
|
|
// ************** x86 feature detection ***************
|
|
|
|
static bool s_sse2Enabled = true;
|
|
|
|
static void CpuId(word32 input, word32 *output)
|
|
{
|
|
#ifdef __GNUC__
|
|
__asm__
|
|
(
|
|
// save ebx in case -fPIC is being used
|
|
"push %%ebx; cpuid; mov %%ebx, %%edi; pop %%ebx"
|
|
: "=a" (output[0]), "=D" (output[1]), "=c" (output[2]), "=d" (output[3])
|
|
: "a" (input)
|
|
);
|
|
#else
|
|
__asm
|
|
{
|
|
mov eax, input
|
|
cpuid
|
|
mov edi, output
|
|
mov [edi], eax
|
|
mov [edi+4], ebx
|
|
mov [edi+8], ecx
|
|
mov [edi+12], edx
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
#ifndef _MSC_VER
|
|
static jmp_buf s_env;
|
|
static void SigIllHandler(int)
|
|
{
|
|
longjmp(s_env, 1);
|
|
}
|
|
#endif
|
|
|
|
static bool HasSSE2()
|
|
{
|
|
if (!s_sse2Enabled)
|
|
return false;
|
|
|
|
word32 cpuid[4];
|
|
CpuId(1, cpuid);
|
|
if ((cpuid[3] & (1 << 26)) == 0)
|
|
return false;
|
|
|
|
#ifdef _MSC_VER
|
|
__try
|
|
{
|
|
__asm xorpd xmm0, xmm0 // executing SSE2 instruction
|
|
}
|
|
__except (1)
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
#else
|
|
typedef void (*SigHandler)(int);
|
|
|
|
SigHandler oldHandler = signal(SIGILL, SigIllHandler);
|
|
if (oldHandler == SIG_ERR)
|
|
return false;
|
|
|
|
bool result = true;
|
|
if (setjmp(s_env))
|
|
result = false;
|
|
else
|
|
__asm __volatile ("xorps %xmm0, %xmm0");
|
|
|
|
signal(SIGILL, oldHandler);
|
|
return result;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static bool IsP4()
|
|
{
|
|
word32 cpuid[4];
|
|
|
|
CpuId(0, cpuid);
|
|
std::swap(cpuid[2], cpuid[3]);
|
|
if (memcmp(cpuid+1, "GenuineIntel", 12) != 0)
|
|
return false;
|
|
|
|
CpuId(1, cpuid);
|
|
return ((cpuid[0] >> 8) & 0xf) == 0xf;
|
|
}
|
|
|
|
// ************** Pentium/P4 optimizations ***************
|
|
|
|
class PentiumOptimized : public Portable
|
|
{
|
|
public:
|
|
static int Add(word *C, const word *A, const word *B, size_t N);
|
|
static int Subtract(word *C, const word *A, const word *B, size_t N);
|
|
static void Multiply4(word *C, const word *A, const word *B);
|
|
static void Multiply8(word *C, const word *A, const word *B);
|
|
static void Multiply8Bottom(word *C, const word *A, const word *B);
|
|
};
|
|
|
|
class P4Optimized
|
|
{
|
|
public:
|
|
static int Add(word *C, const word *A, const word *B, size_t N);
|
|
static int Subtract(word *C, const word *A, const word *B, size_t N);
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
static void Multiply4(word *C, const word *A, const word *B);
|
|
static void Multiply8(word *C, const word *A, const word *B);
|
|
static void Multiply8Bottom(word *C, const word *A, const word *B);
|
|
#endif
|
|
};
|
|
|
|
typedef int (* PAddSub)(word *C, const word *A, const word *B, size_t N);
|
|
typedef void (* PMul)(word *C, const word *A, const word *B);
|
|
|
|
static PAddSub s_pAdd, s_pSub;
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
static PMul s_pMul4, s_pMul8, s_pMul8B;
|
|
#endif
|
|
|
|
static void SetPentiumFunctionPointers()
|
|
{
|
|
if (IsP4())
|
|
{
|
|
s_pAdd = &P4Optimized::Add;
|
|
s_pSub = &P4Optimized::Subtract;
|
|
}
|
|
else
|
|
{
|
|
s_pAdd = &PentiumOptimized::Add;
|
|
s_pSub = &PentiumOptimized::Subtract;
|
|
}
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
if (HasSSE2())
|
|
{
|
|
s_pMul4 = &P4Optimized::Multiply4;
|
|
s_pMul8 = &P4Optimized::Multiply8;
|
|
s_pMul8B = &P4Optimized::Multiply8Bottom;
|
|
}
|
|
else
|
|
{
|
|
s_pMul4 = &PentiumOptimized::Multiply4;
|
|
s_pMul8 = &PentiumOptimized::Multiply8;
|
|
s_pMul8B = &PentiumOptimized::Multiply8Bottom;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void DisableSSE2()
|
|
{
|
|
s_sse2Enabled = false;
|
|
SetPentiumFunctionPointers();
|
|
}
|
|
|
|
class LowLevel : public PentiumOptimized
|
|
{
|
|
public:
|
|
inline static int Add(word *C, const word *A, const word *B, size_t N)
|
|
{return s_pAdd(C, A, B, N);}
|
|
inline static int Subtract(word *C, const word *A, const word *B, size_t N)
|
|
{return s_pSub(C, A, B, N);}
|
|
inline static void Square4(word *R, const word *A)
|
|
{Multiply4(R, A, A);}
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
inline static void Multiply4(word *C, const word *A, const word *B)
|
|
{s_pMul4(C, A, B);}
|
|
inline static void Multiply8(word *C, const word *A, const word *B)
|
|
{s_pMul8(C, A, B);}
|
|
inline static void Multiply8Bottom(word *C, const word *A, const word *B)
|
|
{s_pMul8B(C, A, B);}
|
|
#endif
|
|
};
|
|
|
|
// use some tricks to share assembly code between MSVC and GCC
|
|
#ifdef _MSC_VER
|
|
#define CRYPTOPP_NAKED __declspec(naked)
|
|
#define AS1(x) __asm x
|
|
#define AS2(x, y) __asm x, y
|
|
#define AddPrologue \
|
|
__asm push ebp \
|
|
__asm push ebx \
|
|
__asm push esi \
|
|
__asm push edi \
|
|
__asm mov ecx, [esp+20] \
|
|
__asm mov edx, [esp+24] \
|
|
__asm mov ebx, [esp+28] \
|
|
__asm mov esi, [esp+32]
|
|
#define AddEpilogue \
|
|
__asm pop edi \
|
|
__asm pop esi \
|
|
__asm pop ebx \
|
|
__asm pop ebp \
|
|
__asm ret
|
|
#define MulPrologue \
|
|
__asm push ebp \
|
|
__asm push ebx \
|
|
__asm push esi \
|
|
__asm push edi \
|
|
__asm mov ecx, [esp+28] \
|
|
__asm mov esi, [esp+24] \
|
|
__asm push [esp+20]
|
|
#define MulEpilogue \
|
|
__asm add esp, 4 \
|
|
__asm pop edi \
|
|
__asm pop esi \
|
|
__asm pop ebx \
|
|
__asm pop ebp \
|
|
__asm ret
|
|
#else
|
|
#define CRYPTOPP_NAKED
|
|
#define AS1(x) #x ";"
|
|
#define AS2(x, y) #x ", " #y ";"
|
|
#define AddPrologue \
|
|
__asm__ __volatile__ \
|
|
( \
|
|
"push %%ebx;" /* save this manually, in case of -fPIC */ \
|
|
"mov %2, %%ebx;" \
|
|
".intel_syntax noprefix;" \
|
|
"push ebp;"
|
|
#define AddEpilogue \
|
|
"pop ebp;" \
|
|
".att_syntax prefix;" \
|
|
"pop %%ebx;" \
|
|
: \
|
|
: "c" (C), "d" (A), "m" (B), "S" (N) \
|
|
: "%edi", "memory", "cc" \
|
|
);
|
|
#define MulPrologue \
|
|
__asm__ __volatile__ \
|
|
( \
|
|
"push %%ebx;" /* save this manually, in case of -fPIC */ \
|
|
"push %%ebp;" \
|
|
"push %0;" \
|
|
".intel_syntax noprefix;"
|
|
#define MulEpilogue \
|
|
"add esp, 4;" \
|
|
"pop ebp;" \
|
|
"pop ebx;" \
|
|
".att_syntax prefix;" \
|
|
: \
|
|
: "rm" (Z), "S" (X), "c" (Y) \
|
|
: "%eax", "%edx", "%edi", "memory", "cc" \
|
|
);
|
|
#endif
|
|
|
|
CRYPTOPP_NAKED int PentiumOptimized::Add(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
AddPrologue
|
|
|
|
// now: ebx = B, ecx = C, edx = A, esi = N
|
|
AS2( sub ecx, edx) // hold the distance between C & A so we can add this to A to get C
|
|
AS2( xor eax, eax) // clear eax
|
|
|
|
AS2( sub eax, esi) // eax is a negative index from end of B
|
|
AS2( lea ebx, [ebx+4*esi]) // ebx is end of B
|
|
|
|
AS2( sar eax, 1) // unit of eax is now dwords; this also clears the carry flag
|
|
AS1( jz loopendAdd) // if no dwords then nothing to do
|
|
|
|
AS1(loopstartAdd:)
|
|
AS2( mov esi,[edx]) // load lower word of A
|
|
AS2( mov ebp,[edx+4]) // load higher word of A
|
|
|
|
AS2( mov edi,[ebx+8*eax]) // load lower word of B
|
|
AS2( lea edx,[edx+8]) // advance A and C
|
|
|
|
AS2( adc esi,edi) // add lower words
|
|
AS2( mov edi,[ebx+8*eax+4]) // load higher word of B
|
|
|
|
AS2( adc ebp,edi) // add higher words
|
|
AS1( inc eax) // advance B
|
|
|
|
AS2( mov [edx+ecx-8],esi) // store lower word result
|
|
AS2( mov [edx+ecx-4],ebp) // store higher word result
|
|
|
|
AS1( jnz loopstartAdd) // loop until eax overflows and becomes zero
|
|
|
|
AS1(loopendAdd:)
|
|
AS2( adc eax, 0) // store carry into eax (return result register)
|
|
|
|
AddEpilogue
|
|
}
|
|
|
|
CRYPTOPP_NAKED int PentiumOptimized::Subtract(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
AddPrologue
|
|
|
|
// now: ebx = B, ecx = C, edx = A, esi = N
|
|
AS2( sub ecx, edx) // hold the distance between C & A so we can add this to A to get C
|
|
AS2( xor eax, eax) // clear eax
|
|
|
|
AS2( sub eax, esi) // eax is a negative index from end of B
|
|
AS2( lea ebx, [ebx+4*esi]) // ebx is end of B
|
|
|
|
AS2( sar eax, 1) // unit of eax is now dwords; this also clears the carry flag
|
|
AS1( jz loopendSub) // if no dwords then nothing to do
|
|
|
|
AS1(loopstartSub:)
|
|
AS2( mov esi,[edx]) // load lower word of A
|
|
AS2( mov ebp,[edx+4]) // load higher word of A
|
|
|
|
AS2( mov edi,[ebx+8*eax]) // load lower word of B
|
|
AS2( lea edx,[edx+8]) // advance A and C
|
|
|
|
AS2( sbb esi,edi) // subtract lower words
|
|
AS2( mov edi,[ebx+8*eax+4]) // load higher word of B
|
|
|
|
AS2( sbb ebp,edi) // subtract higher words
|
|
AS1( inc eax) // advance B
|
|
|
|
AS2( mov [edx+ecx-8],esi) // store lower word result
|
|
AS2( mov [edx+ecx-4],ebp) // store higher word result
|
|
|
|
AS1( jnz loopstartSub) // loop until eax overflows and becomes zero
|
|
|
|
AS1(loopendSub:)
|
|
AS2( adc eax, 0) // store carry into eax (return result register)
|
|
|
|
AddEpilogue
|
|
}
|
|
|
|
// On Pentium 4, the adc and sbb instructions are very expensive, so avoid them.
|
|
|
|
CRYPTOPP_NAKED int P4Optimized::Add(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
AddPrologue
|
|
|
|
// now: ebx = B, ecx = C, edx = A, esi = N
|
|
AS2( xor eax, eax)
|
|
AS1( neg esi)
|
|
AS1( jz loopendAddP4) // if no dwords then nothing to do
|
|
|
|
AS2( mov edi, [edx])
|
|
AS2( mov ebp, [ebx])
|
|
AS1( jmp carry1AddP4)
|
|
|
|
AS1(loopstartAddP4:)
|
|
AS2( mov edi, [edx+8])
|
|
AS2( add ecx, 8)
|
|
AS2( add edx, 8)
|
|
AS2( mov ebp, [ebx])
|
|
AS2( add edi, eax)
|
|
AS1( jc carry1AddP4)
|
|
AS2( xor eax, eax)
|
|
|
|
AS1(carry1AddP4:)
|
|
AS2( add edi, ebp)
|
|
AS2( mov ebp, 1)
|
|
AS2( mov [ecx], edi)
|
|
AS2( mov edi, [edx+4])
|
|
AS2( cmovc eax, ebp)
|
|
AS2( mov ebp, [ebx+4])
|
|
AS2( add ebx, 8)
|
|
AS2( add edi, eax)
|
|
AS1( jc carry2AddP4)
|
|
AS2( xor eax, eax)
|
|
|
|
AS1(carry2AddP4:)
|
|
AS2( add edi, ebp)
|
|
AS2( mov ebp, 1)
|
|
AS2( cmovc eax, ebp)
|
|
AS2( mov [ecx+4], edi)
|
|
AS2( add esi, 2)
|
|
AS1( jnz loopstartAddP4)
|
|
|
|
AS1(loopendAddP4:)
|
|
|
|
AddEpilogue
|
|
}
|
|
|
|
CRYPTOPP_NAKED int P4Optimized::Subtract(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
AddPrologue
|
|
|
|
// now: ebx = B, ecx = C, edx = A, esi = N
|
|
AS2( xor eax, eax)
|
|
AS1( neg esi)
|
|
AS1( jz loopendSubP4) // if no dwords then nothing to do
|
|
|
|
AS2( mov edi, [edx])
|
|
AS2( mov ebp, [ebx])
|
|
AS1( jmp carry1SubP4)
|
|
|
|
AS1(loopstartSubP4:)
|
|
AS2( mov edi, [edx+8])
|
|
AS2( add edx, 8)
|
|
AS2( add ecx, 8)
|
|
AS2( mov ebp, [ebx])
|
|
AS2( sub edi, eax)
|
|
AS1( jc carry1SubP4)
|
|
AS2( xor eax, eax)
|
|
|
|
AS1(carry1SubP4:)
|
|
AS2( sub edi, ebp)
|
|
AS2( mov ebp, 1)
|
|
AS2( mov [ecx], edi)
|
|
AS2( mov edi, [edx+4])
|
|
AS2( cmovc eax, ebp)
|
|
AS2( mov ebp, [ebx+4])
|
|
AS2( add ebx, 8)
|
|
AS2( sub edi, eax)
|
|
AS1( jc carry2SubP4)
|
|
AS2( xor eax, eax)
|
|
|
|
AS1(carry2SubP4:)
|
|
AS2( sub edi, ebp)
|
|
AS2( mov ebp, 1)
|
|
AS2( cmovc eax, ebp)
|
|
AS2( mov [ecx+4], edi)
|
|
AS2( add esi, 2)
|
|
AS1( jnz loopstartSubP4)
|
|
|
|
AS1(loopendSubP4:)
|
|
|
|
AddEpilogue
|
|
}
|
|
|
|
// multiply assembly code originally contributed by Leonard Janke
|
|
|
|
#define MulStartup \
|
|
AS2(xor ebp, ebp) \
|
|
AS2(xor edi, edi) \
|
|
AS2(xor ebx, ebx)
|
|
|
|
#define MulShiftCarry \
|
|
AS2(mov ebp, edx) \
|
|
AS2(mov edi, ebx) \
|
|
AS2(xor ebx, ebx)
|
|
|
|
#define MulAccumulateBottom(i,j) \
|
|
AS2(mov eax, [ecx+4*j]) \
|
|
AS2(imul eax, dword ptr [esi+4*i]) \
|
|
AS2(add ebp, eax)
|
|
|
|
#define MulAccumulate(i,j) \
|
|
AS2(mov eax, [ecx+4*j]) \
|
|
AS1(mul dword ptr [esi+4*i]) \
|
|
AS2(add ebp, eax) \
|
|
AS2(adc edi, edx) \
|
|
AS2(adc bl, bh)
|
|
|
|
#define MulStoreDigit(i) \
|
|
AS2(mov edx, edi) \
|
|
AS2(mov edi, [esp]) \
|
|
AS2(mov [edi+4*i], ebp)
|
|
|
|
#define MulLastDiagonal(digits) \
|
|
AS2(mov eax, [ecx+4*(digits-1)]) \
|
|
AS1(mul dword ptr [esi+4*(digits-1)]) \
|
|
AS2(add ebp, eax) \
|
|
AS2(adc edx, edi) \
|
|
AS2(mov edi, [esp]) \
|
|
AS2(mov [edi+4*(2*digits-2)], ebp) \
|
|
AS2(mov [edi+4*(2*digits-1)], edx)
|
|
|
|
CRYPTOPP_NAKED void PentiumOptimized::Multiply4(word* Z, const word* X, const word* Y)
|
|
{
|
|
MulPrologue
|
|
// now: [esp] = Z, esi = X, ecx = Y
|
|
MulStartup
|
|
MulAccumulate(0,0)
|
|
MulStoreDigit(0)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(1,0)
|
|
MulAccumulate(0,1)
|
|
MulStoreDigit(1)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(2,0)
|
|
MulAccumulate(1,1)
|
|
MulAccumulate(0,2)
|
|
MulStoreDigit(2)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(3,0)
|
|
MulAccumulate(2,1)
|
|
MulAccumulate(1,2)
|
|
MulAccumulate(0,3)
|
|
MulStoreDigit(3)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(3,1)
|
|
MulAccumulate(2,2)
|
|
MulAccumulate(1,3)
|
|
MulStoreDigit(4)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(3,2)
|
|
MulAccumulate(2,3)
|
|
MulStoreDigit(5)
|
|
MulShiftCarry
|
|
|
|
MulLastDiagonal(4)
|
|
MulEpilogue
|
|
}
|
|
|
|
CRYPTOPP_NAKED void PentiumOptimized::Multiply8(word* Z, const word* X, const word* Y)
|
|
{
|
|
MulPrologue
|
|
// now: [esp] = Z, esi = X, ecx = Y
|
|
MulStartup
|
|
MulAccumulate(0,0)
|
|
MulStoreDigit(0)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(1,0)
|
|
MulAccumulate(0,1)
|
|
MulStoreDigit(1)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(2,0)
|
|
MulAccumulate(1,1)
|
|
MulAccumulate(0,2)
|
|
MulStoreDigit(2)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(3,0)
|
|
MulAccumulate(2,1)
|
|
MulAccumulate(1,2)
|
|
MulAccumulate(0,3)
|
|
MulStoreDigit(3)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(4,0)
|
|
MulAccumulate(3,1)
|
|
MulAccumulate(2,2)
|
|
MulAccumulate(1,3)
|
|
MulAccumulate(0,4)
|
|
MulStoreDigit(4)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(5,0)
|
|
MulAccumulate(4,1)
|
|
MulAccumulate(3,2)
|
|
MulAccumulate(2,3)
|
|
MulAccumulate(1,4)
|
|
MulAccumulate(0,5)
|
|
MulStoreDigit(5)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(6,0)
|
|
MulAccumulate(5,1)
|
|
MulAccumulate(4,2)
|
|
MulAccumulate(3,3)
|
|
MulAccumulate(2,4)
|
|
MulAccumulate(1,5)
|
|
MulAccumulate(0,6)
|
|
MulStoreDigit(6)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,0)
|
|
MulAccumulate(6,1)
|
|
MulAccumulate(5,2)
|
|
MulAccumulate(4,3)
|
|
MulAccumulate(3,4)
|
|
MulAccumulate(2,5)
|
|
MulAccumulate(1,6)
|
|
MulAccumulate(0,7)
|
|
MulStoreDigit(7)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,1)
|
|
MulAccumulate(6,2)
|
|
MulAccumulate(5,3)
|
|
MulAccumulate(4,4)
|
|
MulAccumulate(3,5)
|
|
MulAccumulate(2,6)
|
|
MulAccumulate(1,7)
|
|
MulStoreDigit(8)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,2)
|
|
MulAccumulate(6,3)
|
|
MulAccumulate(5,4)
|
|
MulAccumulate(4,5)
|
|
MulAccumulate(3,6)
|
|
MulAccumulate(2,7)
|
|
MulStoreDigit(9)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,3)
|
|
MulAccumulate(6,4)
|
|
MulAccumulate(5,5)
|
|
MulAccumulate(4,6)
|
|
MulAccumulate(3,7)
|
|
MulStoreDigit(10)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,4)
|
|
MulAccumulate(6,5)
|
|
MulAccumulate(5,6)
|
|
MulAccumulate(4,7)
|
|
MulStoreDigit(11)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,5)
|
|
MulAccumulate(6,6)
|
|
MulAccumulate(5,7)
|
|
MulStoreDigit(12)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(7,6)
|
|
MulAccumulate(6,7)
|
|
MulStoreDigit(13)
|
|
MulShiftCarry
|
|
|
|
MulLastDiagonal(8)
|
|
MulEpilogue
|
|
}
|
|
|
|
CRYPTOPP_NAKED void PentiumOptimized::Multiply8Bottom(word* Z, const word* X, const word* Y)
|
|
{
|
|
MulPrologue
|
|
// now: [esp] = Z, esi = X, ecx = Y
|
|
MulStartup
|
|
MulAccumulate(0,0)
|
|
MulStoreDigit(0)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(1,0)
|
|
MulAccumulate(0,1)
|
|
MulStoreDigit(1)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(2,0)
|
|
MulAccumulate(1,1)
|
|
MulAccumulate(0,2)
|
|
MulStoreDigit(2)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(3,0)
|
|
MulAccumulate(2,1)
|
|
MulAccumulate(1,2)
|
|
MulAccumulate(0,3)
|
|
MulStoreDigit(3)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(4,0)
|
|
MulAccumulate(3,1)
|
|
MulAccumulate(2,2)
|
|
MulAccumulate(1,3)
|
|
MulAccumulate(0,4)
|
|
MulStoreDigit(4)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(5,0)
|
|
MulAccumulate(4,1)
|
|
MulAccumulate(3,2)
|
|
MulAccumulate(2,3)
|
|
MulAccumulate(1,4)
|
|
MulAccumulate(0,5)
|
|
MulStoreDigit(5)
|
|
MulShiftCarry
|
|
|
|
MulAccumulate(6,0)
|
|
MulAccumulate(5,1)
|
|
MulAccumulate(4,2)
|
|
MulAccumulate(3,3)
|
|
MulAccumulate(2,4)
|
|
MulAccumulate(1,5)
|
|
MulAccumulate(0,6)
|
|
MulStoreDigit(6)
|
|
MulShiftCarry
|
|
|
|
MulAccumulateBottom(7,0)
|
|
MulAccumulateBottom(6,1)
|
|
MulAccumulateBottom(5,2)
|
|
MulAccumulateBottom(4,3)
|
|
MulAccumulateBottom(3,4)
|
|
MulAccumulateBottom(2,5)
|
|
MulAccumulateBottom(1,6)
|
|
MulAccumulateBottom(0,7)
|
|
MulStoreDigit(7)
|
|
MulEpilogue
|
|
}
|
|
|
|
#undef AS1
|
|
#undef AS2
|
|
|
|
#else // not x86 - no processor specific code at this layer
|
|
|
|
typedef Portable LowLevel;
|
|
|
|
#endif
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
|
|
#ifdef __GNUC__
|
|
#define CRYPTOPP_FASTCALL
|
|
#else
|
|
#define CRYPTOPP_FASTCALL __fastcall
|
|
#endif
|
|
|
|
static void CRYPTOPP_FASTCALL P4_Mul(__m128i *C, const __m128i *A, const __m128i *B)
|
|
{
|
|
__m128i a3210 = _mm_load_si128(A);
|
|
__m128i b3210 = _mm_load_si128(B);
|
|
|
|
__m128i sum;
|
|
|
|
__m128i z = _mm_setzero_si128();
|
|
__m128i a2b2_a0b0 = _mm_mul_epu32(a3210, b3210);
|
|
C[0] = a2b2_a0b0;
|
|
|
|
__m128i a3120 = _mm_shuffle_epi32(a3210, _MM_SHUFFLE(3, 1, 2, 0));
|
|
__m128i b3021 = _mm_shuffle_epi32(b3210, _MM_SHUFFLE(3, 0, 2, 1));
|
|
__m128i a1b0_a0b1 = _mm_mul_epu32(a3120, b3021);
|
|
__m128i a1b0 = _mm_unpackhi_epi32(a1b0_a0b1, z);
|
|
__m128i a0b1 = _mm_unpacklo_epi32(a1b0_a0b1, z);
|
|
C[1] = _mm_add_epi64(a1b0, a0b1);
|
|
|
|
__m128i a31 = _mm_srli_epi64(a3210, 32);
|
|
__m128i b31 = _mm_srli_epi64(b3210, 32);
|
|
__m128i a3b3_a1b1 = _mm_mul_epu32(a31, b31);
|
|
C[6] = a3b3_a1b1;
|
|
|
|
__m128i a1b1 = _mm_unpacklo_epi32(a3b3_a1b1, z);
|
|
__m128i b3012 = _mm_shuffle_epi32(b3210, _MM_SHUFFLE(3, 0, 1, 2));
|
|
__m128i a2b0_a0b2 = _mm_mul_epu32(a3210, b3012);
|
|
__m128i a0b2 = _mm_unpacklo_epi32(a2b0_a0b2, z);
|
|
__m128i a2b0 = _mm_unpackhi_epi32(a2b0_a0b2, z);
|
|
sum = _mm_add_epi64(a1b1, a0b2);
|
|
C[2] = _mm_add_epi64(sum, a2b0);
|
|
|
|
__m128i a2301 = _mm_shuffle_epi32(a3210, _MM_SHUFFLE(2, 3, 0, 1));
|
|
__m128i b2103 = _mm_shuffle_epi32(b3210, _MM_SHUFFLE(2, 1, 0, 3));
|
|
__m128i a3b0_a1b2 = _mm_mul_epu32(a2301, b3012);
|
|
__m128i a2b1_a0b3 = _mm_mul_epu32(a3210, b2103);
|
|
__m128i a3b0 = _mm_unpackhi_epi32(a3b0_a1b2, z);
|
|
__m128i a1b2 = _mm_unpacklo_epi32(a3b0_a1b2, z);
|
|
__m128i a2b1 = _mm_unpackhi_epi32(a2b1_a0b3, z);
|
|
__m128i a0b3 = _mm_unpacklo_epi32(a2b1_a0b3, z);
|
|
__m128i sum1 = _mm_add_epi64(a3b0, a1b2);
|
|
sum = _mm_add_epi64(a2b1, a0b3);
|
|
C[3] = _mm_add_epi64(sum, sum1);
|
|
|
|
__m128i a3b1_a1b3 = _mm_mul_epu32(a2301, b2103);
|
|
__m128i a2b2 = _mm_unpackhi_epi32(a2b2_a0b0, z);
|
|
__m128i a3b1 = _mm_unpackhi_epi32(a3b1_a1b3, z);
|
|
__m128i a1b3 = _mm_unpacklo_epi32(a3b1_a1b3, z);
|
|
sum = _mm_add_epi64(a2b2, a3b1);
|
|
C[4] = _mm_add_epi64(sum, a1b3);
|
|
|
|
__m128i a1302 = _mm_shuffle_epi32(a3210, _MM_SHUFFLE(1, 3, 0, 2));
|
|
__m128i b1203 = _mm_shuffle_epi32(b3210, _MM_SHUFFLE(1, 2, 0, 3));
|
|
__m128i a3b2_a2b3 = _mm_mul_epu32(a1302, b1203);
|
|
__m128i a3b2 = _mm_unpackhi_epi32(a3b2_a2b3, z);
|
|
__m128i a2b3 = _mm_unpacklo_epi32(a3b2_a2b3, z);
|
|
C[5] = _mm_add_epi64(a3b2, a2b3);
|
|
}
|
|
|
|
void P4Optimized::Multiply4(word *C, const word *A, const word *B)
|
|
{
|
|
__m128i temp[7];
|
|
const word *w = (word *)temp;
|
|
const __m64 *mw = (__m64 *)w;
|
|
|
|
P4_Mul(temp, (__m128i *)A, (__m128i *)B);
|
|
|
|
C[0] = w[0];
|
|
|
|
__m64 s1, s2;
|
|
|
|
__m64 w1 = _mm_cvtsi32_si64(w[1]);
|
|
__m64 w4 = mw[2];
|
|
__m64 w6 = mw[3];
|
|
__m64 w8 = mw[4];
|
|
__m64 w10 = mw[5];
|
|
__m64 w12 = mw[6];
|
|
__m64 w14 = mw[7];
|
|
__m64 w16 = mw[8];
|
|
__m64 w18 = mw[9];
|
|
__m64 w20 = mw[10];
|
|
__m64 w22 = mw[11];
|
|
__m64 w26 = _mm_cvtsi32_si64(w[26]);
|
|
|
|
s1 = _mm_add_si64(w1, w4);
|
|
C[1] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w6, w8);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[2] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w10, w12);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[3] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w14, w16);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[4] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w18, w20);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[5] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w22, w26);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[6] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
C[7] = _mm_cvtsi64_si32(s1) + w[27];
|
|
_mm_empty();
|
|
}
|
|
|
|
void P4Optimized::Multiply8(word *C, const word *A, const word *B)
|
|
{
|
|
__m128i temp[28];
|
|
const word *w = (word *)temp;
|
|
const __m64 *mw = (__m64 *)w;
|
|
const word *x = (word *)temp+7*4;
|
|
const __m64 *mx = (__m64 *)x;
|
|
const word *y = (word *)temp+7*4*2;
|
|
const __m64 *my = (__m64 *)y;
|
|
const word *z = (word *)temp+7*4*3;
|
|
const __m64 *mz = (__m64 *)z;
|
|
|
|
P4_Mul(temp, (__m128i *)A, (__m128i *)B);
|
|
|
|
P4_Mul(temp+7, (__m128i *)A+1, (__m128i *)B);
|
|
|
|
P4_Mul(temp+14, (__m128i *)A, (__m128i *)B+1);
|
|
|
|
P4_Mul(temp+21, (__m128i *)A+1, (__m128i *)B+1);
|
|
|
|
C[0] = w[0];
|
|
|
|
__m64 s1, s2, s3, s4;
|
|
|
|
__m64 w1 = _mm_cvtsi32_si64(w[1]);
|
|
__m64 w4 = mw[2];
|
|
__m64 w6 = mw[3];
|
|
__m64 w8 = mw[4];
|
|
__m64 w10 = mw[5];
|
|
__m64 w12 = mw[6];
|
|
__m64 w14 = mw[7];
|
|
__m64 w16 = mw[8];
|
|
__m64 w18 = mw[9];
|
|
__m64 w20 = mw[10];
|
|
__m64 w22 = mw[11];
|
|
__m64 w26 = _mm_cvtsi32_si64(w[26]);
|
|
__m64 w27 = _mm_cvtsi32_si64(w[27]);
|
|
|
|
__m64 x0 = _mm_cvtsi32_si64(x[0]);
|
|
__m64 x1 = _mm_cvtsi32_si64(x[1]);
|
|
__m64 x4 = mx[2];
|
|
__m64 x6 = mx[3];
|
|
__m64 x8 = mx[4];
|
|
__m64 x10 = mx[5];
|
|
__m64 x12 = mx[6];
|
|
__m64 x14 = mx[7];
|
|
__m64 x16 = mx[8];
|
|
__m64 x18 = mx[9];
|
|
__m64 x20 = mx[10];
|
|
__m64 x22 = mx[11];
|
|
__m64 x26 = _mm_cvtsi32_si64(x[26]);
|
|
__m64 x27 = _mm_cvtsi32_si64(x[27]);
|
|
|
|
__m64 y0 = _mm_cvtsi32_si64(y[0]);
|
|
__m64 y1 = _mm_cvtsi32_si64(y[1]);
|
|
__m64 y4 = my[2];
|
|
__m64 y6 = my[3];
|
|
__m64 y8 = my[4];
|
|
__m64 y10 = my[5];
|
|
__m64 y12 = my[6];
|
|
__m64 y14 = my[7];
|
|
__m64 y16 = my[8];
|
|
__m64 y18 = my[9];
|
|
__m64 y20 = my[10];
|
|
__m64 y22 = my[11];
|
|
__m64 y26 = _mm_cvtsi32_si64(y[26]);
|
|
__m64 y27 = _mm_cvtsi32_si64(y[27]);
|
|
|
|
__m64 z0 = _mm_cvtsi32_si64(z[0]);
|
|
__m64 z1 = _mm_cvtsi32_si64(z[1]);
|
|
__m64 z4 = mz[2];
|
|
__m64 z6 = mz[3];
|
|
__m64 z8 = mz[4];
|
|
__m64 z10 = mz[5];
|
|
__m64 z12 = mz[6];
|
|
__m64 z14 = mz[7];
|
|
__m64 z16 = mz[8];
|
|
__m64 z18 = mz[9];
|
|
__m64 z20 = mz[10];
|
|
__m64 z22 = mz[11];
|
|
__m64 z26 = _mm_cvtsi32_si64(z[26]);
|
|
|
|
s1 = _mm_add_si64(w1, w4);
|
|
C[1] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w6, w8);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[2] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w10, w12);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[3] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x0, y0);
|
|
s2 = _mm_add_si64(w14, w16);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[4] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x1, y1);
|
|
s4 = _mm_add_si64(x4, y4);
|
|
s1 = _mm_add_si64(s1, w18);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, w20);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[5] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x6, y6);
|
|
s4 = _mm_add_si64(x8, y8);
|
|
s1 = _mm_add_si64(s1, w22);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, w26);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[6] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x10, y10);
|
|
s4 = _mm_add_si64(x12, y12);
|
|
s1 = _mm_add_si64(s1, w27);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[7] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x14, y14);
|
|
s4 = _mm_add_si64(x16, y16);
|
|
s1 = _mm_add_si64(s1, z0);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[8] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x18, y18);
|
|
s4 = _mm_add_si64(x20, y20);
|
|
s1 = _mm_add_si64(s1, z1);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, z4);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[9] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x22, y22);
|
|
s4 = _mm_add_si64(x26, y26);
|
|
s1 = _mm_add_si64(s1, z6);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, z8);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[10] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x27, y27);
|
|
s1 = _mm_add_si64(s1, z10);
|
|
s1 = _mm_add_si64(s1, z12);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[11] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(z14, z16);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[12] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(z18, z20);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[13] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(z22, z26);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[14] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
C[15] = z[27] + _mm_cvtsi64_si32(s1);
|
|
_mm_empty();
|
|
}
|
|
|
|
void P4Optimized::Multiply8Bottom(word *C, const word *A, const word *B)
|
|
{
|
|
__m128i temp[21];
|
|
const word *w = (word *)temp;
|
|
const __m64 *mw = (__m64 *)w;
|
|
const word *x = (word *)temp+7*4;
|
|
const __m64 *mx = (__m64 *)x;
|
|
const word *y = (word *)temp+7*4*2;
|
|
const __m64 *my = (__m64 *)y;
|
|
|
|
P4_Mul(temp, (__m128i *)A, (__m128i *)B);
|
|
|
|
P4_Mul(temp+7, (__m128i *)A+1, (__m128i *)B);
|
|
|
|
P4_Mul(temp+14, (__m128i *)A, (__m128i *)B+1);
|
|
|
|
C[0] = w[0];
|
|
|
|
__m64 s1, s2, s3, s4;
|
|
|
|
__m64 w1 = _mm_cvtsi32_si64(w[1]);
|
|
__m64 w4 = mw[2];
|
|
__m64 w6 = mw[3];
|
|
__m64 w8 = mw[4];
|
|
__m64 w10 = mw[5];
|
|
__m64 w12 = mw[6];
|
|
__m64 w14 = mw[7];
|
|
__m64 w16 = mw[8];
|
|
__m64 w18 = mw[9];
|
|
__m64 w20 = mw[10];
|
|
__m64 w22 = mw[11];
|
|
__m64 w26 = _mm_cvtsi32_si64(w[26]);
|
|
|
|
__m64 x0 = _mm_cvtsi32_si64(x[0]);
|
|
__m64 x1 = _mm_cvtsi32_si64(x[1]);
|
|
__m64 x4 = mx[2];
|
|
__m64 x6 = mx[3];
|
|
__m64 x8 = mx[4];
|
|
|
|
__m64 y0 = _mm_cvtsi32_si64(y[0]);
|
|
__m64 y1 = _mm_cvtsi32_si64(y[1]);
|
|
__m64 y4 = my[2];
|
|
__m64 y6 = my[3];
|
|
__m64 y8 = my[4];
|
|
|
|
s1 = _mm_add_si64(w1, w4);
|
|
C[1] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w6, w8);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[2] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s2 = _mm_add_si64(w10, w12);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[3] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x0, y0);
|
|
s2 = _mm_add_si64(w14, w16);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
s1 = _mm_add_si64(s1, s2);
|
|
C[4] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x1, y1);
|
|
s4 = _mm_add_si64(x4, y4);
|
|
s1 = _mm_add_si64(s1, w18);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, w20);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[5] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
s3 = _mm_add_si64(x6, y6);
|
|
s4 = _mm_add_si64(x8, y8);
|
|
s1 = _mm_add_si64(s1, w22);
|
|
s3 = _mm_add_si64(s3, s4);
|
|
s1 = _mm_add_si64(s1, w26);
|
|
s1 = _mm_add_si64(s1, s3);
|
|
C[6] = _mm_cvtsi64_si32(s1);
|
|
s1 = _mm_srli_si64(s1, 32);
|
|
|
|
C[7] = _mm_cvtsi64_si32(s1) + w[27] + x[10] + y[10] + x[12] + y[12];
|
|
_mm_empty();
|
|
}
|
|
|
|
#endif // #ifdef SSE2_INTRINSICS_AVAILABLE
|
|
|
|
// ********************************************************
|
|
|
|
#define A0 A
|
|
#define A1 (A+N2)
|
|
#define B0 B
|
|
#define B1 (B+N2)
|
|
|
|
#define T0 T
|
|
#define T1 (T+N2)
|
|
#define T2 (T+N)
|
|
#define T3 (T+N+N2)
|
|
|
|
#define R0 R
|
|
#define R1 (R+N2)
|
|
#define R2 (R+N)
|
|
#define R3 (R+N+N2)
|
|
|
|
// R[2*N] - result = A*B
|
|
// T[2*N] - temporary work space
|
|
// A[N] --- multiplier
|
|
// B[N] --- multiplicant
|
|
|
|
void RecursiveMultiply(word *R, word *T, const word *A, const word *B, size_t N)
|
|
{
|
|
assert(N>=2 && N%2==0);
|
|
|
|
if (LowLevel::MultiplyRecursionLimit() >= 8 && N==8)
|
|
LowLevel::Multiply8(R, A, B);
|
|
else if (LowLevel::MultiplyRecursionLimit() >= 4 && N==4)
|
|
LowLevel::Multiply4(R, A, B);
|
|
else if (N==2)
|
|
LowLevel::Multiply2(R, A, B);
|
|
else
|
|
{
|
|
const size_t N2 = N/2;
|
|
int carry;
|
|
|
|
int aComp = Compare(A0, A1, N2);
|
|
int bComp = Compare(B0, B1, N2);
|
|
|
|
switch (2*aComp + aComp + bComp)
|
|
{
|
|
case -4:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
LowLevel::Subtract(T1, T1, R0, N2);
|
|
carry = -1;
|
|
break;
|
|
case -2:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
carry = 0;
|
|
break;
|
|
case 2:
|
|
LowLevel::Subtract(R0, A0, A1, N2);
|
|
LowLevel::Subtract(R1, B1, B0, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
carry = 0;
|
|
break;
|
|
case 4:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
LowLevel::Subtract(T1, T1, R1, N2);
|
|
carry = -1;
|
|
break;
|
|
default:
|
|
SetWords(T0, 0, N);
|
|
carry = 0;
|
|
}
|
|
|
|
RecursiveMultiply(R0, T2, A0, B0, N2);
|
|
RecursiveMultiply(R2, T2, A1, B1, N2);
|
|
|
|
// now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1
|
|
|
|
carry += LowLevel::Add(T0, T0, R0, N);
|
|
carry += LowLevel::Add(T0, T0, R2, N);
|
|
carry += LowLevel::Add(R1, R1, T0, N);
|
|
|
|
assert (carry >= 0 && carry <= 2);
|
|
Increment(R3, N2, carry);
|
|
}
|
|
}
|
|
|
|
// R[2*N] - result = A*A
|
|
// T[2*N] - temporary work space
|
|
// A[N] --- number to be squared
|
|
|
|
void RecursiveSquare(word *R, word *T, const word *A, size_t N)
|
|
{
|
|
assert(N && N%2==0);
|
|
if (LowLevel::SquareRecursionLimit() >= 8 && N==8)
|
|
LowLevel::Square8(R, A);
|
|
if (LowLevel::SquareRecursionLimit() >= 4 && N==4)
|
|
LowLevel::Square4(R, A);
|
|
else if (N==2)
|
|
LowLevel::Square2(R, A);
|
|
else
|
|
{
|
|
const size_t N2 = N/2;
|
|
|
|
RecursiveSquare(R0, T2, A0, N2);
|
|
RecursiveSquare(R2, T2, A1, N2);
|
|
RecursiveMultiply(T0, T2, A0, A1, N2);
|
|
|
|
int carry = LowLevel::Add(R1, R1, T0, N);
|
|
carry += LowLevel::Add(R1, R1, T0, N);
|
|
Increment(R3, N2, carry);
|
|
}
|
|
}
|
|
|
|
// R[N] - bottom half of A*B
|
|
// T[N] - temporary work space
|
|
// A[N] - multiplier
|
|
// B[N] - multiplicant
|
|
|
|
void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N)
|
|
{
|
|
assert(N>=2 && N%2==0);
|
|
if (LowLevel::MultiplyBottomRecursionLimit() >= 8 && N==8)
|
|
LowLevel::Multiply8Bottom(R, A, B);
|
|
else if (LowLevel::MultiplyBottomRecursionLimit() >= 4 && N==4)
|
|
LowLevel::Multiply4Bottom(R, A, B);
|
|
else if (N==2)
|
|
LowLevel::Multiply2Bottom(R, A, B);
|
|
else
|
|
{
|
|
const size_t N2 = N/2;
|
|
|
|
RecursiveMultiply(R, T, A0, B0, N2);
|
|
RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
|
|
LowLevel::Add(R1, R1, T0, N2);
|
|
RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
|
|
LowLevel::Add(R1, R1, T0, N2);
|
|
}
|
|
}
|
|
|
|
// R[N] --- upper half of A*B
|
|
// T[2*N] - temporary work space
|
|
// L[N] --- lower half of A*B
|
|
// A[N] --- multiplier
|
|
// B[N] --- multiplicant
|
|
|
|
void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, size_t N)
|
|
{
|
|
assert(N>=2 && N%2==0);
|
|
|
|
if (N==4)
|
|
{
|
|
LowLevel::Multiply4(T, A, B);
|
|
memcpy(R, T+4, 4*WORD_SIZE);
|
|
}
|
|
else if (N==2)
|
|
{
|
|
LowLevel::Multiply2(T, A, B);
|
|
memcpy(R, T+2, 2*WORD_SIZE);
|
|
}
|
|
else
|
|
{
|
|
const size_t N2 = N/2;
|
|
int carry;
|
|
|
|
int aComp = Compare(A0, A1, N2);
|
|
int bComp = Compare(B0, B1, N2);
|
|
|
|
switch (2*aComp + aComp + bComp)
|
|
{
|
|
case -4:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
LowLevel::Subtract(T1, T1, R0, N2);
|
|
carry = -1;
|
|
break;
|
|
case -2:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
carry = 0;
|
|
break;
|
|
case 2:
|
|
LowLevel::Subtract(R0, A0, A1, N2);
|
|
LowLevel::Subtract(R1, B1, B0, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
carry = 0;
|
|
break;
|
|
case 4:
|
|
LowLevel::Subtract(R0, A1, A0, N2);
|
|
LowLevel::Subtract(R1, B0, B1, N2);
|
|
RecursiveMultiply(T0, T2, R0, R1, N2);
|
|
LowLevel::Subtract(T1, T1, R1, N2);
|
|
carry = -1;
|
|
break;
|
|
default:
|
|
SetWords(T0, 0, N);
|
|
carry = 0;
|
|
}
|
|
|
|
RecursiveMultiply(T2, R0, A1, B1, N2);
|
|
|
|
// now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1
|
|
|
|
int c2 = LowLevel::Subtract(R0, L+N2, L, N2);
|
|
c2 += LowLevel::Subtract(R0, R0, T0, N2);
|
|
int t = (Compare(R0, T2, N2) == -1);
|
|
|
|
carry += t;
|
|
carry += Increment(R0, N2, c2+t);
|
|
carry += LowLevel::Add(R0, R0, T1, N2);
|
|
carry += LowLevel::Add(R0, R0, T3, N2);
|
|
assert (carry >= 0 && carry <= 2);
|
|
|
|
CopyWords(R1, T3, N2);
|
|
Increment(R1, N2, carry);
|
|
}
|
|
}
|
|
|
|
inline int Add(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
return LowLevel::Add(C, A, B, N);
|
|
}
|
|
|
|
inline int Subtract(word *C, const word *A, const word *B, size_t N)
|
|
{
|
|
return LowLevel::Subtract(C, A, B, N);
|
|
}
|
|
|
|
inline void Multiply(word *R, word *T, const word *A, const word *B, size_t N)
|
|
{
|
|
RecursiveMultiply(R, T, A, B, N);
|
|
}
|
|
|
|
inline void Square(word *R, word *T, const word *A, size_t N)
|
|
{
|
|
RecursiveSquare(R, T, A, N);
|
|
}
|
|
|
|
inline void MultiplyBottom(word *R, word *T, const word *A, const word *B, size_t N)
|
|
{
|
|
RecursiveMultiplyBottom(R, T, A, B, N);
|
|
}
|
|
|
|
inline void MultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, size_t N)
|
|
{
|
|
RecursiveMultiplyTop(R, T, L, A, B, N);
|
|
}
|
|
|
|
static word LinearMultiply(word *C, const word *A, word B, size_t N)
|
|
{
|
|
word carry=0;
|
|
for(unsigned i=0; i<N; i++)
|
|
{
|
|
DWord p = DWord::MultiplyAndAdd(A[i], B, carry);
|
|
C[i] = p.GetLowHalf();
|
|
carry = p.GetHighHalf();
|
|
}
|
|
return carry;
|
|
}
|
|
|
|
// R[NA+NB] - result = A*B
|
|
// T[NA+NB] - temporary work space
|
|
// A[NA] ---- multiplier
|
|
// B[NB] ---- multiplicant
|
|
|
|
void AsymmetricMultiply(word *R, word *T, const word *A, size_t NA, const word *B, size_t NB)
|
|
{
|
|
if (NA == NB)
|
|
{
|
|
if (A == B)
|
|
Square(R, T, A, NA);
|
|
else
|
|
Multiply(R, T, A, B, NA);
|
|
|
|
return;
|
|
}
|
|
|
|
if (NA > NB)
|
|
{
|
|
std::swap(A, B);
|
|
std::swap(NA, NB);
|
|
}
|
|
|
|
assert(NB % NA == 0);
|
|
assert((NB/NA)%2 == 0); // NB is an even multiple of NA
|
|
|
|
if (NA==2 && !A[1])
|
|
{
|
|
switch (A[0])
|
|
{
|
|
case 0:
|
|
SetWords(R, 0, NB+2);
|
|
return;
|
|
case 1:
|
|
CopyWords(R, B, NB);
|
|
R[NB] = R[NB+1] = 0;
|
|
return;
|
|
default:
|
|
R[NB] = LinearMultiply(R, B, A[0], NB);
|
|
R[NB+1] = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
Multiply(R, T, A, B, NA);
|
|
CopyWords(T+2*NA, R+NA, NA);
|
|
|
|
size_t i;
|
|
|
|
for (i=2*NA; i<NB; i+=2*NA)
|
|
Multiply(T+NA+i, T, A, B+i, NA);
|
|
for (i=NA; i<NB; i+=2*NA)
|
|
Multiply(R+i, T, A, B+i, NA);
|
|
|
|
if (Add(R+NA, R+NA, T+2*NA, NB-NA))
|
|
Increment(R+NB, NA);
|
|
}
|
|
|
|
// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
|
|
// T[3*N/2] - temporary work space
|
|
// A[N] ----- an odd number as input
|
|
|
|
void RecursiveInverseModPower2(word *R, word *T, const word *A, size_t N)
|
|
{
|
|
if (N==2)
|
|
{
|
|
T[0] = AtomicInverseModPower2(A[0]);
|
|
T[1] = 0;
|
|
LowLevel::Multiply2Bottom(T+2, T, A);
|
|
TwosComplement(T+2, 2);
|
|
Increment(T+2, 2, 2);
|
|
LowLevel::Multiply2Bottom(R, T, T+2);
|
|
}
|
|
else
|
|
{
|
|
const size_t N2 = N/2;
|
|
RecursiveInverseModPower2(R0, T0, A0, N2);
|
|
T0[0] = 1;
|
|
SetWords(T0+1, 0, N2-1);
|
|
MultiplyTop(R1, T1, T0, R0, A0, N2);
|
|
MultiplyBottom(T0, T1, R0, A1, N2);
|
|
Add(T0, R1, T0, N2);
|
|
TwosComplement(T0, N2);
|
|
MultiplyBottom(R1, T1, R0, T0, N2);
|
|
}
|
|
}
|
|
|
|
// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
|
|
// T[3*N] - temporary work space
|
|
// X[2*N] - number to be reduced
|
|
// M[N] --- modulus
|
|
// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)
|
|
|
|
void MontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, size_t N)
|
|
{
|
|
MultiplyBottom(R, T, X, U, N);
|
|
MultiplyTop(T, T+N, X, R, M, N);
|
|
word borrow = Subtract(T, X+N, T, N);
|
|
// defend against timing attack by doing this Add even when not needed
|
|
word carry = Add(T+N, T, M, N);
|
|
assert(carry || !borrow);
|
|
CopyWords(R, T + (borrow ? N : 0), N);
|
|
}
|
|
|
|
// R[N] --- result = X/(2**(WORD_BITS*N/2)) mod M
|
|
// T[2*N] - temporary work space
|
|
// X[2*N] - number to be reduced
|
|
// M[N] --- modulus
|
|
// U[N/2] - multiplicative inverse of M mod 2**(WORD_BITS*N/2)
|
|
// V[N] --- 2**(WORD_BITS*3*N/2) mod M
|
|
|
|
void HalfMontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, const word *V, size_t N)
|
|
{
|
|
assert(N%2==0 && N>=4);
|
|
|
|
#define M0 M
|
|
#define M1 (M+N2)
|
|
#define V0 V
|
|
#define V1 (V+N2)
|
|
|
|
#define X0 X
|
|
#define X1 (X+N2)
|
|
#define X2 (X+N)
|
|
#define X3 (X+N+N2)
|
|
|
|
const size_t N2 = N/2;
|
|
Multiply(T0, T2, V0, X3, N2);
|
|
int c2 = Add(T0, T0, X0, N);
|
|
MultiplyBottom(T3, T2, T0, U, N2);
|
|
MultiplyTop(T2, R, T0, T3, M0, N2);
|
|
c2 -= Subtract(T2, T1, T2, N2);
|
|
Multiply(T0, R, T3, M1, N2);
|
|
c2 -= Subtract(T0, T2, T0, N2);
|
|
int c3 = -(int)Subtract(T1, X2, T1, N2);
|
|
Multiply(R0, T2, V1, X3, N2);
|
|
c3 += Add(R, R, T, N);
|
|
|
|
if (c2>0)
|
|
c3 += Increment(R1, N2);
|
|
else if (c2<0)
|
|
c3 -= Decrement(R1, N2, -c2);
|
|
|
|
assert(c3>=-1 && c3<=1);
|
|
if (c3>0)
|
|
Subtract(R, R, M, N);
|
|
else if (c3<0)
|
|
Add(R, R, M, N);
|
|
|
|
#undef M0
|
|
#undef M1
|
|
#undef V0
|
|
#undef V1
|
|
|
|
#undef X0
|
|
#undef X1
|
|
#undef X2
|
|
#undef X3
|
|
}
|
|
|
|
#undef A0
|
|
#undef A1
|
|
#undef B0
|
|
#undef B1
|
|
|
|
#undef T0
|
|
#undef T1
|
|
#undef T2
|
|
#undef T3
|
|
|
|
#undef R0
|
|
#undef R1
|
|
#undef R2
|
|
#undef R3
|
|
|
|
/*
|
|
// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
|
|
static word SubatomicDivide(word *A, word B0, word B1)
|
|
{
|
|
// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
|
|
assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
|
|
|
|
// estimate the quotient: do a 2 word by 1 word divide
|
|
word Q;
|
|
if (B1+1 == 0)
|
|
Q = A[2];
|
|
else
|
|
Q = DWord(A[1], A[2]).DividedBy(B1+1);
|
|
|
|
// now subtract Q*B from A
|
|
DWord p = DWord::Multiply(B0, Q);
|
|
DWord u = (DWord) A[0] - p.GetLowHalf();
|
|
A[0] = u.GetLowHalf();
|
|
u = (DWord) A[1] - p.GetHighHalf() - u.GetHighHalfAsBorrow() - DWord::Multiply(B1, Q);
|
|
A[1] = u.GetLowHalf();
|
|
A[2] += u.GetHighHalf();
|
|
|
|
// Q <= actual quotient, so fix it
|
|
while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
|
|
{
|
|
u = (DWord) A[0] - B0;
|
|
A[0] = u.GetLowHalf();
|
|
u = (DWord) A[1] - B1 - u.GetHighHalfAsBorrow();
|
|
A[1] = u.GetLowHalf();
|
|
A[2] += u.GetHighHalf();
|
|
Q++;
|
|
assert(Q); // shouldn't overflow
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
|
|
static inline void AtomicDivide(word *Q, const word *A, const word *B)
|
|
{
|
|
if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
|
|
{
|
|
Q[0] = A[2];
|
|
Q[1] = A[3];
|
|
}
|
|
else
|
|
{
|
|
word T[4];
|
|
T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
|
|
Q[1] = SubatomicDivide(T+1, B[0], B[1]);
|
|
Q[0] = SubatomicDivide(T, B[0], B[1]);
|
|
|
|
#ifndef NDEBUG
|
|
// multiply quotient and divisor and add remainder, make sure it equals dividend
|
|
assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
|
|
word P[4];
|
|
LowLevel::Multiply2(P, Q, B);
|
|
Add(P, P, T, 4);
|
|
assert(memcmp(P, A, 4*WORD_SIZE)==0);
|
|
#endif
|
|
}
|
|
}
|
|
*/
|
|
|
|
static inline void AtomicDivide(word *Q, const word *A, const word *B)
|
|
{
|
|
word T[4];
|
|
DWord q = DivideFourWordsByTwo<word, DWord>(T, DWord(A[0], A[1]), DWord(A[2], A[3]), DWord(B[0], B[1]));
|
|
Q[0] = q.GetLowHalf();
|
|
Q[1] = q.GetHighHalf();
|
|
|
|
#ifndef NDEBUG
|
|
if (B[0] || B[1])
|
|
{
|
|
// multiply quotient and divisor and add remainder, make sure it equals dividend
|
|
assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
|
|
word P[4];
|
|
Portable::Multiply2(P, Q, B);
|
|
Add(P, P, T, 4);
|
|
assert(memcmp(P, A, 4*WORD_SIZE)==0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
|
|
static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, size_t N)
|
|
{
|
|
assert(N && N%2==0);
|
|
|
|
if (Q[1])
|
|
{
|
|
T[N] = T[N+1] = 0;
|
|
unsigned i;
|
|
for (i=0; i<N; i+=4)
|
|
LowLevel::Multiply2(T+i, Q, B+i);
|
|
for (i=2; i<N; i+=4)
|
|
if (LowLevel::Multiply2Add(T+i, Q, B+i))
|
|
T[i+5] += (++T[i+4]==0);
|
|
}
|
|
else
|
|
{
|
|
T[N] = LinearMultiply(T, B, Q[0], N);
|
|
T[N+1] = 0;
|
|
}
|
|
|
|
word borrow = Subtract(R, R, T, N+2);
|
|
assert(!borrow && !R[N+1]);
|
|
|
|
while (R[N] || Compare(R, B, N) >= 0)
|
|
{
|
|
R[N] -= Subtract(R, R, B, N);
|
|
Q[1] += (++Q[0]==0);
|
|
assert(Q[0] || Q[1]); // no overflow
|
|
}
|
|
}
|
|
|
|
// R[NB] -------- remainder = A%B
|
|
// Q[NA-NB+2] --- quotient = A/B
|
|
// T[NA+2*NB+4] - temp work space
|
|
// A[NA] -------- dividend
|
|
// B[NB] -------- divisor
|
|
|
|
void Divide(word *R, word *Q, word *T, const word *A, size_t NA, const word *B, size_t NB)
|
|
{
|
|
assert(NA && NB && NA%2==0 && NB%2==0);
|
|
assert(B[NB-1] || B[NB-2]);
|
|
assert(NB <= NA);
|
|
|
|
// set up temporary work space
|
|
word *const TA=T;
|
|
word *const TB=T+NA+2;
|
|
word *const TP=T+NA+2+NB;
|
|
|
|
// copy B into TB and normalize it so that TB has highest bit set to 1
|
|
unsigned shiftWords = (B[NB-1]==0);
|
|
TB[0] = TB[NB-1] = 0;
|
|
CopyWords(TB+shiftWords, B, NB-shiftWords);
|
|
unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
|
|
assert(shiftBits < WORD_BITS);
|
|
ShiftWordsLeftByBits(TB, NB, shiftBits);
|
|
|
|
// copy A into TA and normalize it
|
|
TA[0] = TA[NA] = TA[NA+1] = 0;
|
|
CopyWords(TA+shiftWords, A, NA);
|
|
ShiftWordsLeftByBits(TA, NA+2, shiftBits);
|
|
|
|
if (TA[NA+1]==0 && TA[NA] <= 1)
|
|
{
|
|
Q[NA-NB+1] = Q[NA-NB] = 0;
|
|
while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
|
|
{
|
|
TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
|
|
++Q[NA-NB];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
NA+=2;
|
|
assert(Compare(TA+NA-NB, TB, NB) < 0);
|
|
}
|
|
|
|
word BT[2];
|
|
BT[0] = TB[NB-2] + 1;
|
|
BT[1] = TB[NB-1] + (BT[0]==0);
|
|
|
|
// start reducing TA mod TB, 2 words at a time
|
|
for (size_t i=NA-2; i>=NB; i-=2)
|
|
{
|
|
AtomicDivide(Q+i-NB, TA+i-2, BT);
|
|
CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
|
|
}
|
|
|
|
// copy TA into R, and denormalize it
|
|
CopyWords(R, TA+shiftWords, NB);
|
|
ShiftWordsRightByBits(R, NB, shiftBits);
|
|
}
|
|
|
|
static inline size_t EvenWordCount(const word *X, size_t N)
|
|
{
|
|
while (N && X[N-2]==0 && X[N-1]==0)
|
|
N-=2;
|
|
return N;
|
|
}
|
|
|
|
// return k
|
|
// R[N] --- result = A^(-1) * 2^k mod M
|
|
// T[4*N] - temporary work space
|
|
// A[NA] -- number to take inverse of
|
|
// M[N] --- modulus
|
|
|
|
unsigned int AlmostInverse(word *R, word *T, const word *A, size_t NA, const word *M, size_t N)
|
|
{
|
|
assert(NA<=N && N && N%2==0);
|
|
|
|
word *b = T;
|
|
word *c = T+N;
|
|
word *f = T+2*N;
|
|
word *g = T+3*N;
|
|
size_t bcLen=2, fgLen=EvenWordCount(M, N);
|
|
unsigned int k=0, s=0;
|
|
|
|
SetWords(T, 0, 3*N);
|
|
b[0]=1;
|
|
CopyWords(f, A, NA);
|
|
CopyWords(g, M, N);
|
|
|
|
while (1)
|
|
{
|
|
word t=f[0];
|
|
while (!t)
|
|
{
|
|
if (EvenWordCount(f, fgLen)==0)
|
|
{
|
|
SetWords(R, 0, N);
|
|
return 0;
|
|
}
|
|
|
|
ShiftWordsRightByWords(f, fgLen, 1);
|
|
if (c[bcLen-1]) bcLen+=2;
|
|
assert(bcLen <= N);
|
|
ShiftWordsLeftByWords(c, bcLen, 1);
|
|
k+=WORD_BITS;
|
|
t=f[0];
|
|
}
|
|
|
|
unsigned int i=0;
|
|
while (t%2 == 0)
|
|
{
|
|
t>>=1;
|
|
i++;
|
|
}
|
|
k+=i;
|
|
|
|
if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
|
|
{
|
|
if (s%2==0)
|
|
CopyWords(R, b, N);
|
|
else
|
|
Subtract(R, M, b, N);
|
|
return k;
|
|
}
|
|
|
|
ShiftWordsRightByBits(f, fgLen, i);
|
|
t=ShiftWordsLeftByBits(c, bcLen, i);
|
|
if (t)
|
|
{
|
|
c[bcLen] = t;
|
|
bcLen+=2;
|
|
assert(bcLen <= N);
|
|
}
|
|
|
|
if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
|
|
fgLen-=2;
|
|
|
|
if (Compare(f, g, fgLen)==-1)
|
|
{
|
|
std::swap(f, g);
|
|
std::swap(b, c);
|
|
s++;
|
|
}
|
|
|
|
Subtract(f, f, g, fgLen);
|
|
|
|
if (Add(b, b, c, bcLen))
|
|
{
|
|
b[bcLen] = 1;
|
|
bcLen+=2;
|
|
assert(bcLen <= N);
|
|
}
|
|
}
|
|
}
|
|
|
|
// R[N] - result = A/(2^k) mod M
|
|
// A[N] - input
|
|
// M[N] - modulus
|
|
|
|
void DivideByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N)
|
|
{
|
|
CopyWords(R, A, N);
|
|
|
|
while (k--)
|
|
{
|
|
if (R[0]%2==0)
|
|
ShiftWordsRightByBits(R, N, 1);
|
|
else
|
|
{
|
|
word carry = Add(R, R, M, N);
|
|
ShiftWordsRightByBits(R, N, 1);
|
|
R[N-1] += carry<<(WORD_BITS-1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// R[N] - result = A*(2^k) mod M
|
|
// A[N] - input
|
|
// M[N] - modulus
|
|
|
|
void MultiplyByPower2Mod(word *R, const word *A, size_t k, const word *M, size_t N)
|
|
{
|
|
CopyWords(R, A, N);
|
|
|
|
while (k--)
|
|
if (ShiftWordsLeftByBits(R, N, 1) || Compare(R, M, N)>=0)
|
|
Subtract(R, R, M, N);
|
|
}
|
|
|
|
// ******************************************************************
|
|
|
|
InitializeInteger::InitializeInteger()
|
|
{
|
|
if (!g_pAssignIntToInteger)
|
|
{
|
|
#ifdef CRYPTOPP_X86ASM_AVAILABLE
|
|
SetPentiumFunctionPointers();
|
|
#endif
|
|
g_pAssignIntToInteger = AssignIntToInteger;
|
|
}
|
|
}
|
|
|
|
static const unsigned int RoundupSizeTable[] = {2, 2, 2, 4, 4, 8, 8, 8, 8};
|
|
|
|
static inline size_t RoundupSize(size_t n)
|
|
{
|
|
if (n<=8)
|
|
return RoundupSizeTable[n];
|
|
else if (n<=16)
|
|
return 16;
|
|
else if (n<=32)
|
|
return 32;
|
|
else if (n<=64)
|
|
return 64;
|
|
else return size_t(1) << BitPrecision(n-1);
|
|
}
|
|
|
|
Integer::Integer()
|
|
: reg(2), sign(POSITIVE)
|
|
{
|
|
reg[0] = reg[1] = 0;
|
|
}
|
|
|
|
Integer::Integer(const Integer& t)
|
|
: reg(RoundupSize(t.WordCount())), sign(t.sign)
|
|
{
|
|
CopyWords(reg, t.reg, reg.size());
|
|
}
|
|
|
|
Integer::Integer(Sign s, lword value)
|
|
: reg(2), sign(s)
|
|
{
|
|
reg[0] = word(value);
|
|
reg[1] = word(SafeRightShift<WORD_BITS>(value));
|
|
}
|
|
|
|
Integer::Integer(signed long value)
|
|
: reg(2)
|
|
{
|
|
if (value >= 0)
|
|
sign = POSITIVE;
|
|
else
|
|
{
|
|
sign = NEGATIVE;
|
|
value = -value;
|
|
}
|
|
reg[0] = word(value);
|
|
reg[1] = word(SafeRightShift<WORD_BITS>((unsigned long)value));
|
|
}
|
|
|
|
Integer::Integer(Sign s, word high, word low)
|
|
: reg(2), sign(s)
|
|
{
|
|
reg[0] = low;
|
|
reg[1] = high;
|
|
}
|
|
|
|
bool Integer::IsConvertableToLong() const
|
|
{
|
|
if (ByteCount() > sizeof(long))
|
|
return false;
|
|
|
|
unsigned long value = (unsigned long)reg[0];
|
|
value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]);
|
|
|
|
if (sign==POSITIVE)
|
|
return (signed long)value >= 0;
|
|
else
|
|
return -(signed long)value < 0;
|
|
}
|
|
|
|
signed long Integer::ConvertToLong() const
|
|
{
|
|
assert(IsConvertableToLong());
|
|
|
|
unsigned long value = (unsigned long)reg[0];
|
|
value += SafeLeftShift<WORD_BITS, unsigned long>((unsigned long)reg[1]);
|
|
return sign==POSITIVE ? value : -(signed long)value;
|
|
}
|
|
|
|
Integer::Integer(BufferedTransformation &encodedInteger, size_t byteCount, Signedness s)
|
|
{
|
|
Decode(encodedInteger, byteCount, s);
|
|
}
|
|
|
|
Integer::Integer(const byte *encodedInteger, size_t byteCount, Signedness s)
|
|
{
|
|
Decode(encodedInteger, byteCount, s);
|
|
}
|
|
|
|
Integer::Integer(BufferedTransformation &bt)
|
|
{
|
|
BERDecode(bt);
|
|
}
|
|
|
|
Integer::Integer(RandomNumberGenerator &rng, size_t bitcount)
|
|
{
|
|
Randomize(rng, bitcount);
|
|
}
|
|
|
|
Integer::Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
|
|
{
|
|
if (!Randomize(rng, min, max, rnType, equiv, mod))
|
|
throw Integer::RandomNumberNotFound();
|
|
}
|
|
|
|
Integer Integer::Power2(size_t e)
|
|
{
|
|
Integer r((word)0, BitsToWords(e+1));
|
|
r.SetBit(e);
|
|
return r;
|
|
}
|
|
|
|
template <long i>
|
|
struct NewInteger
|
|
{
|
|
Integer * operator()() const
|
|
{
|
|
return new Integer(i);
|
|
}
|
|
};
|
|
|
|
const Integer &Integer::Zero()
|
|
{
|
|
return Singleton<Integer>().Ref();
|
|
}
|
|
|
|
const Integer &Integer::One()
|
|
{
|
|
return Singleton<Integer, NewInteger<1> >().Ref();
|
|
}
|
|
|
|
const Integer &Integer::Two()
|
|
{
|
|
return Singleton<Integer, NewInteger<2> >().Ref();
|
|
}
|
|
|
|
bool Integer::operator!() const
|
|
{
|
|
return IsNegative() ? false : (reg[0]==0 && WordCount()==0);
|
|
}
|
|
|
|
Integer& Integer::operator=(const Integer& t)
|
|
{
|
|
if (this != &t)
|
|
{
|
|
reg.New(RoundupSize(t.WordCount()));
|
|
CopyWords(reg, t.reg, reg.size());
|
|
sign = t.sign;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
bool Integer::GetBit(size_t n) const
|
|
{
|
|
if (n/WORD_BITS >= reg.size())
|
|
return 0;
|
|
else
|
|
return bool((reg[n/WORD_BITS] >> (n % WORD_BITS)) & 1);
|
|
}
|
|
|
|
void Integer::SetBit(size_t n, bool value)
|
|
{
|
|
if (value)
|
|
{
|
|
reg.CleanGrow(RoundupSize(BitsToWords(n+1)));
|
|
reg[n/WORD_BITS] |= (word(1) << (n%WORD_BITS));
|
|
}
|
|
else
|
|
{
|
|
if (n/WORD_BITS < reg.size())
|
|
reg[n/WORD_BITS] &= ~(word(1) << (n%WORD_BITS));
|
|
}
|
|
}
|
|
|
|
byte Integer::GetByte(size_t n) const
|
|
{
|
|
if (n/WORD_SIZE >= reg.size())
|
|
return 0;
|
|
else
|
|
return byte(reg[n/WORD_SIZE] >> ((n%WORD_SIZE)*8));
|
|
}
|
|
|
|
void Integer::SetByte(size_t n, byte value)
|
|
{
|
|
reg.CleanGrow(RoundupSize(BytesToWords(n+1)));
|
|
reg[n/WORD_SIZE] &= ~(word(0xff) << 8*(n%WORD_SIZE));
|
|
reg[n/WORD_SIZE] |= (word(value) << 8*(n%WORD_SIZE));
|
|
}
|
|
|
|
lword Integer::GetBits(size_t i, size_t n) const
|
|
{
|
|
lword v = 0;
|
|
assert(n <= sizeof(v)*8);
|
|
for (unsigned int j=0; j<n; j++)
|
|
v |= lword(GetBit(i+j)) << j;
|
|
return v;
|
|
}
|
|
|
|
Integer Integer::operator-() const
|
|
{
|
|
Integer result(*this);
|
|
result.Negate();
|
|
return result;
|
|
}
|
|
|
|
Integer Integer::AbsoluteValue() const
|
|
{
|
|
Integer result(*this);
|
|
result.sign = POSITIVE;
|
|
return result;
|
|
}
|
|
|
|
void Integer::swap(Integer &a)
|
|
{
|
|
reg.swap(a.reg);
|
|
std::swap(sign, a.sign);
|
|
}
|
|
|
|
Integer::Integer(word value, size_t length)
|
|
: reg(RoundupSize(length)), sign(POSITIVE)
|
|
{
|
|
reg[0] = value;
|
|
SetWords(reg+1, 0, reg.size()-1);
|
|
}
|
|
|
|
template <class T>
|
|
static Integer StringToInteger(const T *str)
|
|
{
|
|
int radix;
|
|
// GCC workaround
|
|
// std::char_traits<wchar_t>::length() not defined in GCC 3.2 and STLport 4.5.3
|
|
unsigned int length;
|
|
for (length = 0; str[length] != 0; length++) {}
|
|
|
|
Integer v;
|
|
|
|
if (length == 0)
|
|
return v;
|
|
|
|
switch (str[length-1])
|
|
{
|
|
case 'h':
|
|
case 'H':
|
|
radix=16;
|
|
break;
|
|
case 'o':
|
|
case 'O':
|
|
radix=8;
|
|
break;
|
|
case 'b':
|
|
case 'B':
|
|
radix=2;
|
|
break;
|
|
default:
|
|
radix=10;
|
|
}
|
|
|
|
if (length > 2 && str[0] == '0' && str[1] == 'x')
|
|
radix = 16;
|
|
|
|
for (unsigned i=0; i<length; i++)
|
|
{
|
|
int digit;
|
|
|
|
if (str[i] >= '0' && str[i] <= '9')
|
|
digit = str[i] - '0';
|
|
else if (str[i] >= 'A' && str[i] <= 'F')
|
|
digit = str[i] - 'A' + 10;
|
|
else if (str[i] >= 'a' && str[i] <= 'f')
|
|
digit = str[i] - 'a' + 10;
|
|
else
|
|
digit = radix;
|
|
|
|
if (digit < radix)
|
|
{
|
|
v *= radix;
|
|
v += digit;
|
|
}
|
|
}
|
|
|
|
if (str[0] == '-')
|
|
v.Negate();
|
|
|
|
return v;
|
|
}
|
|
|
|
Integer::Integer(const char *str)
|
|
: reg(2), sign(POSITIVE)
|
|
{
|
|
*this = StringToInteger(str);
|
|
}
|
|
|
|
Integer::Integer(const wchar_t *str)
|
|
: reg(2), sign(POSITIVE)
|
|
{
|
|
*this = StringToInteger(str);
|
|
}
|
|
|
|
unsigned int Integer::WordCount() const
|
|
{
|
|
return (unsigned int)CountWords(reg, reg.size());
|
|
}
|
|
|
|
unsigned int Integer::ByteCount() const
|
|
{
|
|
unsigned wordCount = WordCount();
|
|
if (wordCount)
|
|
return (wordCount-1)*WORD_SIZE + BytePrecision(reg[wordCount-1]);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
unsigned int Integer::BitCount() const
|
|
{
|
|
unsigned wordCount = WordCount();
|
|
if (wordCount)
|
|
return (wordCount-1)*WORD_BITS + BitPrecision(reg[wordCount-1]);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void Integer::Decode(const byte *input, size_t inputLen, Signedness s)
|
|
{
|
|
StringStore store(input, inputLen);
|
|
Decode(store, inputLen, s);
|
|
}
|
|
|
|
void Integer::Decode(BufferedTransformation &bt, size_t inputLen, Signedness s)
|
|
{
|
|
assert(bt.MaxRetrievable() >= inputLen);
|
|
|
|
byte b;
|
|
bt.Peek(b);
|
|
sign = ((s==SIGNED) && (b & 0x80)) ? NEGATIVE : POSITIVE;
|
|
|
|
while (inputLen>0 && (sign==POSITIVE ? b==0 : b==0xff))
|
|
{
|
|
bt.Skip(1);
|
|
inputLen--;
|
|
bt.Peek(b);
|
|
}
|
|
|
|
reg.CleanNew(RoundupSize(BytesToWords(inputLen)));
|
|
|
|
for (size_t i=inputLen; i > 0; i--)
|
|
{
|
|
bt.Get(b);
|
|
reg[(i-1)/WORD_SIZE] |= word(b) << ((i-1)%WORD_SIZE)*8;
|
|
}
|
|
|
|
if (sign == NEGATIVE)
|
|
{
|
|
for (size_t i=inputLen; i<reg.size()*WORD_SIZE; i++)
|
|
reg[i/WORD_SIZE] |= word(0xff) << (i%WORD_SIZE)*8;
|
|
TwosComplement(reg, reg.size());
|
|
}
|
|
}
|
|
|
|
size_t Integer::MinEncodedSize(Signedness signedness) const
|
|
{
|
|
unsigned int outputLen = STDMAX(1U, ByteCount());
|
|
if (signedness == UNSIGNED)
|
|
return outputLen;
|
|
if (NotNegative() && (GetByte(outputLen-1) & 0x80))
|
|
outputLen++;
|
|
if (IsNegative() && *this < -Power2(outputLen*8-1))
|
|
outputLen++;
|
|
return outputLen;
|
|
}
|
|
|
|
void Integer::Encode(byte *output, size_t outputLen, Signedness signedness) const
|
|
{
|
|
ArraySink sink(output, outputLen);
|
|
Encode(sink, outputLen, signedness);
|
|
}
|
|
|
|
void Integer::Encode(BufferedTransformation &bt, size_t outputLen, Signedness signedness) const
|
|
{
|
|
if (signedness == UNSIGNED || NotNegative())
|
|
{
|
|
for (size_t i=outputLen; i > 0; i--)
|
|
bt.Put(GetByte(i-1));
|
|
}
|
|
else
|
|
{
|
|
// take two's complement of *this
|
|
Integer temp = Integer::Power2(8*STDMAX((size_t)ByteCount(), outputLen)) + *this;
|
|
temp.Encode(bt, outputLen, UNSIGNED);
|
|
}
|
|
}
|
|
|
|
void Integer::DEREncode(BufferedTransformation &bt) const
|
|
{
|
|
DERGeneralEncoder enc(bt, INTEGER);
|
|
Encode(enc, MinEncodedSize(SIGNED), SIGNED);
|
|
enc.MessageEnd();
|
|
}
|
|
|
|
void Integer::BERDecode(const byte *input, size_t len)
|
|
{
|
|
StringStore store(input, len);
|
|
BERDecode(store);
|
|
}
|
|
|
|
void Integer::BERDecode(BufferedTransformation &bt)
|
|
{
|
|
BERGeneralDecoder dec(bt, INTEGER);
|
|
if (!dec.IsDefiniteLength() || dec.MaxRetrievable() < dec.RemainingLength())
|
|
BERDecodeError();
|
|
Decode(dec, (size_t)dec.RemainingLength(), SIGNED);
|
|
dec.MessageEnd();
|
|
}
|
|
|
|
void Integer::DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const
|
|
{
|
|
DERGeneralEncoder enc(bt, OCTET_STRING);
|
|
Encode(enc, length);
|
|
enc.MessageEnd();
|
|
}
|
|
|
|
void Integer::BERDecodeAsOctetString(BufferedTransformation &bt, size_t length)
|
|
{
|
|
BERGeneralDecoder dec(bt, OCTET_STRING);
|
|
if (!dec.IsDefiniteLength() || dec.RemainingLength() != length)
|
|
BERDecodeError();
|
|
Decode(dec, length);
|
|
dec.MessageEnd();
|
|
}
|
|
|
|
size_t Integer::OpenPGPEncode(byte *output, size_t len) const
|
|
{
|
|
ArraySink sink(output, len);
|
|
return OpenPGPEncode(sink);
|
|
}
|
|
|
|
size_t Integer::OpenPGPEncode(BufferedTransformation &bt) const
|
|
{
|
|
word16 bitCount = BitCount();
|
|
bt.PutWord16(bitCount);
|
|
size_t byteCount = BitsToBytes(bitCount);
|
|
Encode(bt, byteCount);
|
|
return 2 + byteCount;
|
|
}
|
|
|
|
void Integer::OpenPGPDecode(const byte *input, size_t len)
|
|
{
|
|
StringStore store(input, len);
|
|
OpenPGPDecode(store);
|
|
}
|
|
|
|
void Integer::OpenPGPDecode(BufferedTransformation &bt)
|
|
{
|
|
word16 bitCount;
|
|
if (bt.GetWord16(bitCount) != 2 || bt.MaxRetrievable() < BitsToBytes(bitCount))
|
|
throw OpenPGPDecodeErr();
|
|
Decode(bt, BitsToBytes(bitCount));
|
|
}
|
|
|
|
void Integer::Randomize(RandomNumberGenerator &rng, size_t nbits)
|
|
{
|
|
const size_t nbytes = nbits/8 + 1;
|
|
SecByteBlock buf(nbytes);
|
|
rng.GenerateBlock(buf, nbytes);
|
|
if (nbytes)
|
|
buf[0] = (byte)Crop(buf[0], nbits % 8);
|
|
Decode(buf, nbytes, UNSIGNED);
|
|
}
|
|
|
|
void Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max)
|
|
{
|
|
if (min > max)
|
|
throw InvalidArgument("Integer: Min must be no greater than Max");
|
|
|
|
Integer range = max - min;
|
|
const unsigned int nbits = range.BitCount();
|
|
|
|
do
|
|
{
|
|
Randomize(rng, nbits);
|
|
}
|
|
while (*this > range);
|
|
|
|
*this += min;
|
|
}
|
|
|
|
bool Integer::Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv, const Integer &mod)
|
|
{
|
|
return GenerateRandomNoThrow(rng, MakeParameters("Min", min)("Max", max)("RandomNumberType", rnType)("EquivalentTo", equiv)("Mod", mod));
|
|
}
|
|
|
|
class KDF2_RNG : public RandomNumberGenerator
|
|
{
|
|
public:
|
|
KDF2_RNG(const byte *seed, size_t seedSize)
|
|
: m_counter(0), m_counterAndSeed(seedSize + 4)
|
|
{
|
|
memcpy(m_counterAndSeed + 4, seed, seedSize);
|
|
}
|
|
|
|
byte GenerateByte()
|
|
{
|
|
byte b;
|
|
GenerateBlock(&b, 1);
|
|
return b;
|
|
}
|
|
|
|
void GenerateBlock(byte *output, unsigned int size)
|
|
{
|
|
UnalignedPutWord(BIG_ENDIAN_ORDER, m_counterAndSeed, m_counter);
|
|
++m_counter;
|
|
P1363_KDF2<SHA1>::DeriveKey(output, size, m_counterAndSeed, m_counterAndSeed.size(), NULL, 0);
|
|
}
|
|
|
|
private:
|
|
word32 m_counter;
|
|
SecByteBlock m_counterAndSeed;
|
|
};
|
|
|
|
bool Integer::GenerateRandomNoThrow(RandomNumberGenerator &i_rng, const NameValuePairs ¶ms)
|
|
{
|
|
Integer min = params.GetValueWithDefault("Min", Integer::Zero());
|
|
Integer max;
|
|
if (!params.GetValue("Max", max))
|
|
{
|
|
int bitLength;
|
|
if (params.GetIntValue("BitLength", bitLength))
|
|
max = Integer::Power2(bitLength);
|
|
else
|
|
throw InvalidArgument("Integer: missing Max argument");
|
|
}
|
|
if (min > max)
|
|
throw InvalidArgument("Integer: Min must be no greater than Max");
|
|
|
|
Integer equiv = params.GetValueWithDefault("EquivalentTo", Integer::Zero());
|
|
Integer mod = params.GetValueWithDefault("Mod", Integer::One());
|
|
|
|
if (equiv.IsNegative() || equiv >= mod)
|
|
throw InvalidArgument("Integer: invalid EquivalentTo and/or Mod argument");
|
|
|
|
Integer::RandomNumberType rnType = params.GetValueWithDefault("RandomNumberType", Integer::ANY);
|
|
|
|
member_ptr<KDF2_RNG> kdf2Rng;
|
|
ConstByteArrayParameter seed;
|
|
if (params.GetValue("Seed", seed))
|
|
{
|
|
ByteQueue bq;
|
|
DERSequenceEncoder seq(bq);
|
|
min.DEREncode(seq);
|
|
max.DEREncode(seq);
|
|
equiv.DEREncode(seq);
|
|
mod.DEREncode(seq);
|
|
DEREncodeUnsigned(seq, rnType);
|
|
DEREncodeOctetString(seq, seed.begin(), seed.size());
|
|
seq.MessageEnd();
|
|
|
|
SecByteBlock finalSeed((size_t)bq.MaxRetrievable());
|
|
bq.Get(finalSeed, finalSeed.size());
|
|
kdf2Rng.reset(new KDF2_RNG(finalSeed.begin(), finalSeed.size()));
|
|
}
|
|
RandomNumberGenerator &rng = kdf2Rng.get() ? (RandomNumberGenerator &)*kdf2Rng : i_rng;
|
|
|
|
switch (rnType)
|
|
{
|
|
case ANY:
|
|
if (mod == One())
|
|
Randomize(rng, min, max);
|
|
else
|
|
{
|
|
Integer min1 = min + (equiv-min)%mod;
|
|
if (max < min1)
|
|
return false;
|
|
Randomize(rng, Zero(), (max - min1) / mod);
|
|
*this *= mod;
|
|
*this += min1;
|
|
}
|
|
return true;
|
|
|
|
case PRIME:
|
|
{
|
|
const PrimeSelector *pSelector = params.GetValueWithDefault(Name::PointerToPrimeSelector(), (const PrimeSelector *)NULL);
|
|
|
|
int i;
|
|
i = 0;
|
|
while (1)
|
|
{
|
|
if (++i==16)
|
|
{
|
|
// check if there are any suitable primes in [min, max]
|
|
Integer first = min;
|
|
if (FirstPrime(first, max, equiv, mod, pSelector))
|
|
{
|
|
// if there is only one suitable prime, we're done
|
|
*this = first;
|
|
if (!FirstPrime(first, max, equiv, mod, pSelector))
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
Randomize(rng, min, max);
|
|
if (FirstPrime(*this, STDMIN(*this+mod*PrimeSearchInterval(max), max), equiv, mod, pSelector))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
default:
|
|
throw InvalidArgument("Integer: invalid RandomNumberType argument");
|
|
}
|
|
}
|
|
|
|
std::istream& operator>>(std::istream& in, Integer &a)
|
|
{
|
|
char c;
|
|
unsigned int length = 0;
|
|
SecBlock<char> str(length + 16);
|
|
|
|
std::ws(in);
|
|
|
|
do
|
|
{
|
|
in.read(&c, 1);
|
|
str[length++] = c;
|
|
if (length >= str.size())
|
|
str.Grow(length + 16);
|
|
}
|
|
while (in && (c=='-' || c=='x' || (c>='0' && c<='9') || (c>='a' && c<='f') || (c>='A' && c<='F') || c=='h' || c=='H' || c=='o' || c=='O' || c==',' || c=='.'));
|
|
|
|
if (in.gcount())
|
|
in.putback(c);
|
|
str[length-1] = '\0';
|
|
a = Integer(str);
|
|
|
|
return in;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Integer &a)
|
|
{
|
|
// Get relevant conversion specifications from ostream.
|
|
long f = out.flags() & std::ios::basefield; // Get base digits.
|
|
int base, block;
|
|
char suffix;
|
|
switch(f)
|
|
{
|
|
case std::ios::oct :
|
|
base = 8;
|
|
block = 8;
|
|
suffix = 'o';
|
|
break;
|
|
case std::ios::hex :
|
|
base = 16;
|
|
block = 4;
|
|
suffix = 'h';
|
|
break;
|
|
default :
|
|
base = 10;
|
|
block = 3;
|
|
suffix = '.';
|
|
}
|
|
|
|
SecBlock<char> s(a.BitCount() / (BitPrecision(base)-1) + 1);
|
|
Integer temp1=a, temp2;
|
|
unsigned i=0;
|
|
const char vec[]="0123456789ABCDEF";
|
|
|
|
if (a.IsNegative())
|
|
{
|
|
out << '-';
|
|
temp1.Negate();
|
|
}
|
|
|
|
if (!a)
|
|
out << '0';
|
|
|
|
while (!!temp1)
|
|
{
|
|
word digit;
|
|
Integer::Divide(digit, temp2, temp1, base);
|
|
s[i++]=vec[digit];
|
|
temp1=temp2;
|
|
}
|
|
|
|
while (i--)
|
|
{
|
|
out << s[i];
|
|
// if (i && !(i%block))
|
|
// out << ",";
|
|
}
|
|
return out << suffix;
|
|
}
|
|
|
|
Integer& Integer::operator++()
|
|
{
|
|
if (NotNegative())
|
|
{
|
|
if (Increment(reg, reg.size()))
|
|
{
|
|
reg.CleanGrow(2*reg.size());
|
|
reg[reg.size()/2]=1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
word borrow = Decrement(reg, reg.size());
|
|
assert(!borrow);
|
|
if (WordCount()==0)
|
|
*this = Zero();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Integer& Integer::operator--()
|
|
{
|
|
if (IsNegative())
|
|
{
|
|
if (Increment(reg, reg.size()))
|
|
{
|
|
reg.CleanGrow(2*reg.size());
|
|
reg[reg.size()/2]=1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (Decrement(reg, reg.size()))
|
|
*this = -One();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
void PositiveAdd(Integer &sum, const Integer &a, const Integer& b)
|
|
{
|
|
int carry;
|
|
if (a.reg.size() == b.reg.size())
|
|
carry = Add(sum.reg, a.reg, b.reg, a.reg.size());
|
|
else if (a.reg.size() > b.reg.size())
|
|
{
|
|
carry = Add(sum.reg, a.reg, b.reg, b.reg.size());
|
|
CopyWords(sum.reg+b.reg.size(), a.reg+b.reg.size(), a.reg.size()-b.reg.size());
|
|
carry = Increment(sum.reg+b.reg.size(), a.reg.size()-b.reg.size(), carry);
|
|
}
|
|
else
|
|
{
|
|
carry = Add(sum.reg, a.reg, b.reg, a.reg.size());
|
|
CopyWords(sum.reg+a.reg.size(), b.reg+a.reg.size(), b.reg.size()-a.reg.size());
|
|
carry = Increment(sum.reg+a.reg.size(), b.reg.size()-a.reg.size(), carry);
|
|
}
|
|
|
|
if (carry)
|
|
{
|
|
sum.reg.CleanGrow(2*sum.reg.size());
|
|
sum.reg[sum.reg.size()/2] = 1;
|
|
}
|
|
sum.sign = Integer::POSITIVE;
|
|
}
|
|
|
|
void PositiveSubtract(Integer &diff, const Integer &a, const Integer& b)
|
|
{
|
|
unsigned aSize = a.WordCount();
|
|
aSize += aSize%2;
|
|
unsigned bSize = b.WordCount();
|
|
bSize += bSize%2;
|
|
|
|
if (aSize == bSize)
|
|
{
|
|
if (Compare(a.reg, b.reg, aSize) >= 0)
|
|
{
|
|
Subtract(diff.reg, a.reg, b.reg, aSize);
|
|
diff.sign = Integer::POSITIVE;
|
|
}
|
|
else
|
|
{
|
|
Subtract(diff.reg, b.reg, a.reg, aSize);
|
|
diff.sign = Integer::NEGATIVE;
|
|
}
|
|
}
|
|
else if (aSize > bSize)
|
|
{
|
|
word borrow = Subtract(diff.reg, a.reg, b.reg, bSize);
|
|
CopyWords(diff.reg+bSize, a.reg+bSize, aSize-bSize);
|
|
borrow = Decrement(diff.reg+bSize, aSize-bSize, borrow);
|
|
assert(!borrow);
|
|
diff.sign = Integer::POSITIVE;
|
|
}
|
|
else
|
|
{
|
|
word borrow = Subtract(diff.reg, b.reg, a.reg, aSize);
|
|
CopyWords(diff.reg+aSize, b.reg+aSize, bSize-aSize);
|
|
borrow = Decrement(diff.reg+aSize, bSize-aSize, borrow);
|
|
assert(!borrow);
|
|
diff.sign = Integer::NEGATIVE;
|
|
}
|
|
}
|
|
|
|
// MSVC .NET 2003 workaround
|
|
template <class T> inline const T& STDMAX2(const T& a, const T& b)
|
|
{
|
|
return a < b ? b : a;
|
|
}
|
|
|
|
Integer Integer::Plus(const Integer& b) const
|
|
{
|
|
Integer sum((word)0, STDMAX2(reg.size(), b.reg.size()));
|
|
if (NotNegative())
|
|
{
|
|
if (b.NotNegative())
|
|
PositiveAdd(sum, *this, b);
|
|
else
|
|
PositiveSubtract(sum, *this, b);
|
|
}
|
|
else
|
|
{
|
|
if (b.NotNegative())
|
|
PositiveSubtract(sum, b, *this);
|
|
else
|
|
{
|
|
PositiveAdd(sum, *this, b);
|
|
sum.sign = Integer::NEGATIVE;
|
|
}
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
Integer& Integer::operator+=(const Integer& t)
|
|
{
|
|
reg.CleanGrow(t.reg.size());
|
|
if (NotNegative())
|
|
{
|
|
if (t.NotNegative())
|
|
PositiveAdd(*this, *this, t);
|
|
else
|
|
PositiveSubtract(*this, *this, t);
|
|
}
|
|
else
|
|
{
|
|
if (t.NotNegative())
|
|
PositiveSubtract(*this, t, *this);
|
|
else
|
|
{
|
|
PositiveAdd(*this, *this, t);
|
|
sign = Integer::NEGATIVE;
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Integer Integer::Minus(const Integer& b) const
|
|
{
|
|
Integer diff((word)0, STDMAX2(reg.size(), b.reg.size()));
|
|
if (NotNegative())
|
|
{
|
|
if (b.NotNegative())
|
|
PositiveSubtract(diff, *this, b);
|
|
else
|
|
PositiveAdd(diff, *this, b);
|
|
}
|
|
else
|
|
{
|
|
if (b.NotNegative())
|
|
{
|
|
PositiveAdd(diff, *this, b);
|
|
diff.sign = Integer::NEGATIVE;
|
|
}
|
|
else
|
|
PositiveSubtract(diff, b, *this);
|
|
}
|
|
return diff;
|
|
}
|
|
|
|
Integer& Integer::operator-=(const Integer& t)
|
|
{
|
|
reg.CleanGrow(t.reg.size());
|
|
if (NotNegative())
|
|
{
|
|
if (t.NotNegative())
|
|
PositiveSubtract(*this, *this, t);
|
|
else
|
|
PositiveAdd(*this, *this, t);
|
|
}
|
|
else
|
|
{
|
|
if (t.NotNegative())
|
|
{
|
|
PositiveAdd(*this, *this, t);
|
|
sign = Integer::NEGATIVE;
|
|
}
|
|
else
|
|
PositiveSubtract(*this, t, *this);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Integer& Integer::operator<<=(size_t n)
|
|
{
|
|
const size_t wordCount = WordCount();
|
|
const size_t shiftWords = n / WORD_BITS;
|
|
const unsigned int shiftBits = (unsigned int)(n % WORD_BITS);
|
|
|
|
reg.CleanGrow(RoundupSize(wordCount+BitsToWords(n)));
|
|
ShiftWordsLeftByWords(reg, wordCount + shiftWords, shiftWords);
|
|
ShiftWordsLeftByBits(reg+shiftWords, wordCount+BitsToWords(shiftBits), shiftBits);
|
|
return *this;
|
|
}
|
|
|
|
Integer& Integer::operator>>=(size_t n)
|
|
{
|
|
const size_t wordCount = WordCount();
|
|
const size_t shiftWords = n / WORD_BITS;
|
|
const unsigned int shiftBits = (unsigned int)(n % WORD_BITS);
|
|
|
|
ShiftWordsRightByWords(reg, wordCount, shiftWords);
|
|
if (wordCount > shiftWords)
|
|
ShiftWordsRightByBits(reg, wordCount-shiftWords, shiftBits);
|
|
if (IsNegative() && WordCount()==0) // avoid -0
|
|
*this = Zero();
|
|
return *this;
|
|
}
|
|
|
|
void PositiveMultiply(Integer &product, const Integer &a, const Integer &b)
|
|
{
|
|
size_t aSize = RoundupSize(a.WordCount());
|
|
size_t bSize = RoundupSize(b.WordCount());
|
|
|
|
product.reg.CleanNew(RoundupSize(aSize+bSize));
|
|
product.sign = Integer::POSITIVE;
|
|
|
|
SecAlignedWordBlock workspace(aSize + bSize);
|
|
AsymmetricMultiply(product.reg, workspace, a.reg, aSize, b.reg, bSize);
|
|
}
|
|
|
|
void Multiply(Integer &product, const Integer &a, const Integer &b)
|
|
{
|
|
PositiveMultiply(product, a, b);
|
|
|
|
if (a.NotNegative() != b.NotNegative())
|
|
product.Negate();
|
|
}
|
|
|
|
Integer Integer::Times(const Integer &b) const
|
|
{
|
|
Integer product;
|
|
Multiply(product, *this, b);
|
|
return product;
|
|
}
|
|
|
|
/*
|
|
void PositiveDivide(Integer &remainder, Integer "ient,
|
|
const Integer ÷nd, const Integer &divisor)
|
|
{
|
|
remainder.reg.CleanNew(divisor.reg.size());
|
|
remainder.sign = Integer::POSITIVE;
|
|
quotient.reg.New(0);
|
|
quotient.sign = Integer::POSITIVE;
|
|
unsigned i=dividend.BitCount();
|
|
while (i--)
|
|
{
|
|
word overflow = ShiftWordsLeftByBits(remainder.reg, remainder.reg.size(), 1);
|
|
remainder.reg[0] |= dividend[i];
|
|
if (overflow || remainder >= divisor)
|
|
{
|
|
Subtract(remainder.reg, remainder.reg, divisor.reg, remainder.reg.size());
|
|
quotient.SetBit(i);
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
void PositiveDivide(Integer &remainder, Integer "ient,
|
|
const Integer &a, const Integer &b)
|
|
{
|
|
unsigned aSize = a.WordCount();
|
|
unsigned bSize = b.WordCount();
|
|
|
|
if (!bSize)
|
|
throw Integer::DivideByZero();
|
|
|
|
if (a.PositiveCompare(b) == -1)
|
|
{
|
|
remainder = a;
|
|
remainder.sign = Integer::POSITIVE;
|
|
quotient = Integer::Zero();
|
|
return;
|
|
}
|
|
|
|
aSize += aSize%2; // round up to next even number
|
|
bSize += bSize%2;
|
|
|
|
remainder.reg.CleanNew(RoundupSize(bSize));
|
|
remainder.sign = Integer::POSITIVE;
|
|
quotient.reg.CleanNew(RoundupSize(aSize-bSize+2));
|
|
quotient.sign = Integer::POSITIVE;
|
|
|
|
SecAlignedWordBlock T(aSize+2*bSize+4);
|
|
Divide(remainder.reg, quotient.reg, T, a.reg, aSize, b.reg, bSize);
|
|
}
|
|
|
|
void Integer::Divide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor)
|
|
{
|
|
PositiveDivide(remainder, quotient, dividend, divisor);
|
|
|
|
if (dividend.IsNegative())
|
|
{
|
|
quotient.Negate();
|
|
if (remainder.NotZero())
|
|
{
|
|
--quotient;
|
|
remainder = divisor.AbsoluteValue() - remainder;
|
|
}
|
|
}
|
|
|
|
if (divisor.IsNegative())
|
|
quotient.Negate();
|
|
}
|
|
|
|
void Integer::DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n)
|
|
{
|
|
q = a;
|
|
q >>= n;
|
|
|
|
const size_t wordCount = BitsToWords(n);
|
|
if (wordCount <= a.WordCount())
|
|
{
|
|
r.reg.resize(RoundupSize(wordCount));
|
|
CopyWords(r.reg, a.reg, wordCount);
|
|
SetWords(r.reg+wordCount, 0, r.reg.size()-wordCount);
|
|
if (n % WORD_BITS != 0)
|
|
r.reg[wordCount-1] %= (word(1) << (n % WORD_BITS));
|
|
}
|
|
else
|
|
{
|
|
r.reg.resize(RoundupSize(a.WordCount()));
|
|
CopyWords(r.reg, a.reg, r.reg.size());
|
|
}
|
|
r.sign = POSITIVE;
|
|
|
|
if (a.IsNegative() && r.NotZero())
|
|
{
|
|
--q;
|
|
r = Power2(n) - r;
|
|
}
|
|
}
|
|
|
|
Integer Integer::DividedBy(const Integer &b) const
|
|
{
|
|
Integer remainder, quotient;
|
|
Integer::Divide(remainder, quotient, *this, b);
|
|
return quotient;
|
|
}
|
|
|
|
Integer Integer::Modulo(const Integer &b) const
|
|
{
|
|
Integer remainder, quotient;
|
|
Integer::Divide(remainder, quotient, *this, b);
|
|
return remainder;
|
|
}
|
|
|
|
void Integer::Divide(word &remainder, Integer "ient, const Integer ÷nd, word divisor)
|
|
{
|
|
if (!divisor)
|
|
throw Integer::DivideByZero();
|
|
|
|
assert(divisor);
|
|
|
|
if ((divisor & (divisor-1)) == 0) // divisor is a power of 2
|
|
{
|
|
quotient = dividend >> (BitPrecision(divisor)-1);
|
|
remainder = dividend.reg[0] & (divisor-1);
|
|
return;
|
|
}
|
|
|
|
unsigned int i = dividend.WordCount();
|
|
quotient.reg.CleanNew(RoundupSize(i));
|
|
remainder = 0;
|
|
while (i--)
|
|
{
|
|
quotient.reg[i] = DWord(dividend.reg[i], remainder) / divisor;
|
|
remainder = DWord(dividend.reg[i], remainder) % divisor;
|
|
}
|
|
|
|
if (dividend.NotNegative())
|
|
quotient.sign = POSITIVE;
|
|
else
|
|
{
|
|
quotient.sign = NEGATIVE;
|
|
if (remainder)
|
|
{
|
|
--quotient;
|
|
remainder = divisor - remainder;
|
|
}
|
|
}
|
|
}
|
|
|
|
Integer Integer::DividedBy(word b) const
|
|
{
|
|
word remainder;
|
|
Integer quotient;
|
|
Integer::Divide(remainder, quotient, *this, b);
|
|
return quotient;
|
|
}
|
|
|
|
word Integer::Modulo(word divisor) const
|
|
{
|
|
if (!divisor)
|
|
throw Integer::DivideByZero();
|
|
|
|
assert(divisor);
|
|
|
|
word remainder;
|
|
|
|
if ((divisor & (divisor-1)) == 0) // divisor is a power of 2
|
|
remainder = reg[0] & (divisor-1);
|
|
else
|
|
{
|
|
unsigned int i = WordCount();
|
|
|
|
if (divisor <= 5)
|
|
{
|
|
DWord sum(0, 0);
|
|
while (i--)
|
|
sum += reg[i];
|
|
remainder = sum % divisor;
|
|
}
|
|
else
|
|
{
|
|
remainder = 0;
|
|
while (i--)
|
|
remainder = DWord(reg[i], remainder) % divisor;
|
|
}
|
|
}
|
|
|
|
if (IsNegative() && remainder)
|
|
remainder = divisor - remainder;
|
|
|
|
return remainder;
|
|
}
|
|
|
|
void Integer::Negate()
|
|
{
|
|
if (!!(*this)) // don't flip sign if *this==0
|
|
sign = Sign(1-sign);
|
|
}
|
|
|
|
int Integer::PositiveCompare(const Integer& t) const
|
|
{
|
|
unsigned size = WordCount(), tSize = t.WordCount();
|
|
|
|
if (size == tSize)
|
|
return CryptoPP::Compare(reg, t.reg, size);
|
|
else
|
|
return size > tSize ? 1 : -1;
|
|
}
|
|
|
|
int Integer::Compare(const Integer& t) const
|
|
{
|
|
if (NotNegative())
|
|
{
|
|
if (t.NotNegative())
|
|
return PositiveCompare(t);
|
|
else
|
|
return 1;
|
|
}
|
|
else
|
|
{
|
|
if (t.NotNegative())
|
|
return -1;
|
|
else
|
|
return -PositiveCompare(t);
|
|
}
|
|
}
|
|
|
|
Integer Integer::SquareRoot() const
|
|
{
|
|
if (!IsPositive())
|
|
return Zero();
|
|
|
|
// overestimate square root
|
|
Integer x, y = Power2((BitCount()+1)/2);
|
|
assert(y*y >= *this);
|
|
|
|
do
|
|
{
|
|
x = y;
|
|
y = (x + *this/x) >> 1;
|
|
} while (y<x);
|
|
|
|
return x;
|
|
}
|
|
|
|
bool Integer::IsSquare() const
|
|
{
|
|
Integer r = SquareRoot();
|
|
return *this == r.Squared();
|
|
}
|
|
|
|
bool Integer::IsUnit() const
|
|
{
|
|
return (WordCount() == 1) && (reg[0] == 1);
|
|
}
|
|
|
|
Integer Integer::MultiplicativeInverse() const
|
|
{
|
|
return IsUnit() ? *this : Zero();
|
|
}
|
|
|
|
Integer a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m)
|
|
{
|
|
return x*y%m;
|
|
}
|
|
|
|
Integer a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m)
|
|
{
|
|
ModularArithmetic mr(m);
|
|
return mr.Exponentiate(x, e);
|
|
}
|
|
|
|
Integer Integer::Gcd(const Integer &a, const Integer &b)
|
|
{
|
|
return EuclideanDomainOf<Integer>().Gcd(a, b);
|
|
}
|
|
|
|
Integer Integer::InverseMod(const Integer &m) const
|
|
{
|
|
assert(m.NotNegative());
|
|
|
|
if (IsNegative() || *this>=m)
|
|
return (*this%m).InverseMod(m);
|
|
|
|
if (m.IsEven())
|
|
{
|
|
if (!m || IsEven())
|
|
return Zero(); // no inverse
|
|
if (*this == One())
|
|
return One();
|
|
|
|
Integer u = m.InverseMod(*this);
|
|
return !u ? Zero() : (m*(*this-u)+1)/(*this);
|
|
}
|
|
|
|
SecBlock<word> T(m.reg.size() * 4);
|
|
Integer r((word)0, m.reg.size());
|
|
unsigned k = AlmostInverse(r.reg, T, reg, reg.size(), m.reg, m.reg.size());
|
|
DivideByPower2Mod(r.reg, r.reg, k, m.reg, m.reg.size());
|
|
return r;
|
|
}
|
|
|
|
word Integer::InverseMod(word mod) const
|
|
{
|
|
word g0 = mod, g1 = *this % mod;
|
|
word v0 = 0, v1 = 1;
|
|
word y;
|
|
|
|
while (g1)
|
|
{
|
|
if (g1 == 1)
|
|
return v1;
|
|
y = g0 / g1;
|
|
g0 = g0 % g1;
|
|
v0 += y * v1;
|
|
|
|
if (!g0)
|
|
break;
|
|
if (g0 == 1)
|
|
return mod-v0;
|
|
y = g1 / g0;
|
|
g1 = g1 % g0;
|
|
v1 += y * v0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// ********************************************************
|
|
|
|
ModularArithmetic::ModularArithmetic(BufferedTransformation &bt)
|
|
{
|
|
BERSequenceDecoder seq(bt);
|
|
OID oid(seq);
|
|
if (oid != ASN1::prime_field())
|
|
BERDecodeError();
|
|
m_modulus.BERDecode(seq);
|
|
seq.MessageEnd();
|
|
m_result.reg.resize(m_modulus.reg.size());
|
|
}
|
|
|
|
void ModularArithmetic::DEREncode(BufferedTransformation &bt) const
|
|
{
|
|
DERSequenceEncoder seq(bt);
|
|
ASN1::prime_field().DEREncode(seq);
|
|
m_modulus.DEREncode(seq);
|
|
seq.MessageEnd();
|
|
}
|
|
|
|
void ModularArithmetic::DEREncodeElement(BufferedTransformation &out, const Element &a) const
|
|
{
|
|
a.DEREncodeAsOctetString(out, MaxElementByteLength());
|
|
}
|
|
|
|
void ModularArithmetic::BERDecodeElement(BufferedTransformation &in, Element &a) const
|
|
{
|
|
a.BERDecodeAsOctetString(in, MaxElementByteLength());
|
|
}
|
|
|
|
const Integer& ModularArithmetic::Half(const Integer &a) const
|
|
{
|
|
if (a.reg.size()==m_modulus.reg.size())
|
|
{
|
|
CryptoPP::DivideByPower2Mod(m_result.reg.begin(), a.reg, 1, m_modulus.reg, a.reg.size());
|
|
return m_result;
|
|
}
|
|
else
|
|
return m_result1 = (a.IsEven() ? (a >> 1) : ((a+m_modulus) >> 1));
|
|
}
|
|
|
|
const Integer& ModularArithmetic::Add(const Integer &a, const Integer &b) const
|
|
{
|
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
|
|
{
|
|
if (CryptoPP::Add(m_result.reg.begin(), a.reg, b.reg, a.reg.size())
|
|
|| Compare(m_result.reg, m_modulus.reg, a.reg.size()) >= 0)
|
|
{
|
|
CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size());
|
|
}
|
|
return m_result;
|
|
}
|
|
else
|
|
{
|
|
m_result1 = a+b;
|
|
if (m_result1 >= m_modulus)
|
|
m_result1 -= m_modulus;
|
|
return m_result1;
|
|
}
|
|
}
|
|
|
|
Integer& ModularArithmetic::Accumulate(Integer &a, const Integer &b) const
|
|
{
|
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
|
|
{
|
|
if (CryptoPP::Add(a.reg, a.reg, b.reg, a.reg.size())
|
|
|| Compare(a.reg, m_modulus.reg, a.reg.size()) >= 0)
|
|
{
|
|
CryptoPP::Subtract(a.reg, a.reg, m_modulus.reg, a.reg.size());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
a+=b;
|
|
if (a>=m_modulus)
|
|
a-=m_modulus;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
const Integer& ModularArithmetic::Subtract(const Integer &a, const Integer &b) const
|
|
{
|
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
|
|
{
|
|
if (CryptoPP::Subtract(m_result.reg.begin(), a.reg, b.reg, a.reg.size()))
|
|
CryptoPP::Add(m_result.reg.begin(), m_result.reg, m_modulus.reg, a.reg.size());
|
|
return m_result;
|
|
}
|
|
else
|
|
{
|
|
m_result1 = a-b;
|
|
if (m_result1.IsNegative())
|
|
m_result1 += m_modulus;
|
|
return m_result1;
|
|
}
|
|
}
|
|
|
|
Integer& ModularArithmetic::Reduce(Integer &a, const Integer &b) const
|
|
{
|
|
if (a.reg.size()==m_modulus.reg.size() && b.reg.size()==m_modulus.reg.size())
|
|
{
|
|
if (CryptoPP::Subtract(a.reg, a.reg, b.reg, a.reg.size()))
|
|
CryptoPP::Add(a.reg, a.reg, m_modulus.reg, a.reg.size());
|
|
}
|
|
else
|
|
{
|
|
a-=b;
|
|
if (a.IsNegative())
|
|
a+=m_modulus;
|
|
}
|
|
|
|
return a;
|
|
}
|
|
|
|
const Integer& ModularArithmetic::Inverse(const Integer &a) const
|
|
{
|
|
if (!a)
|
|
return a;
|
|
|
|
CopyWords(m_result.reg.begin(), m_modulus.reg, m_modulus.reg.size());
|
|
if (CryptoPP::Subtract(m_result.reg.begin(), m_result.reg, a.reg, a.reg.size()))
|
|
Decrement(m_result.reg.begin()+a.reg.size(), m_modulus.reg.size()-a.reg.size());
|
|
|
|
return m_result;
|
|
}
|
|
|
|
Integer ModularArithmetic::CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
|
|
{
|
|
if (m_modulus.IsOdd())
|
|
{
|
|
MontgomeryRepresentation dr(m_modulus);
|
|
return dr.ConvertOut(dr.CascadeExponentiate(dr.ConvertIn(x), e1, dr.ConvertIn(y), e2));
|
|
}
|
|
else
|
|
return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);
|
|
}
|
|
|
|
void ModularArithmetic::SimultaneousExponentiate(Integer *results, const Integer &base, const Integer *exponents, unsigned int exponentsCount) const
|
|
{
|
|
if (m_modulus.IsOdd())
|
|
{
|
|
MontgomeryRepresentation dr(m_modulus);
|
|
dr.SimultaneousExponentiate(results, dr.ConvertIn(base), exponents, exponentsCount);
|
|
for (unsigned int i=0; i<exponentsCount; i++)
|
|
results[i] = dr.ConvertOut(results[i]);
|
|
}
|
|
else
|
|
AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);
|
|
}
|
|
|
|
MontgomeryRepresentation::MontgomeryRepresentation(const Integer &m) // modulus must be odd
|
|
: ModularArithmetic(m),
|
|
m_u((word)0, m_modulus.reg.size()),
|
|
m_workspace(5*m_modulus.reg.size())
|
|
{
|
|
if (!m_modulus.IsOdd())
|
|
throw InvalidArgument("MontgomeryRepresentation: Montgomery representation requires an odd modulus");
|
|
|
|
RecursiveInverseModPower2(m_u.reg, m_workspace, m_modulus.reg, m_modulus.reg.size());
|
|
}
|
|
|
|
const Integer& MontgomeryRepresentation::Multiply(const Integer &a, const Integer &b) const
|
|
{
|
|
word *const T = m_workspace.begin();
|
|
word *const R = m_result.reg.begin();
|
|
const size_t N = m_modulus.reg.size();
|
|
assert(a.reg.size()<=N && b.reg.size()<=N);
|
|
|
|
AsymmetricMultiply(T, T+2*N, a.reg, a.reg.size(), b.reg, b.reg.size());
|
|
SetWords(T+a.reg.size()+b.reg.size(), 0, 2*N-a.reg.size()-b.reg.size());
|
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
|
|
return m_result;
|
|
}
|
|
|
|
const Integer& MontgomeryRepresentation::Square(const Integer &a) const
|
|
{
|
|
word *const T = m_workspace.begin();
|
|
word *const R = m_result.reg.begin();
|
|
const size_t N = m_modulus.reg.size();
|
|
assert(a.reg.size()<=N);
|
|
|
|
CryptoPP::Square(T, T+2*N, a.reg, a.reg.size());
|
|
SetWords(T+2*a.reg.size(), 0, 2*N-2*a.reg.size());
|
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
|
|
return m_result;
|
|
}
|
|
|
|
Integer MontgomeryRepresentation::ConvertOut(const Integer &a) const
|
|
{
|
|
word *const T = m_workspace.begin();
|
|
word *const R = m_result.reg.begin();
|
|
const size_t N = m_modulus.reg.size();
|
|
assert(a.reg.size()<=N);
|
|
|
|
CopyWords(T, a.reg, a.reg.size());
|
|
SetWords(T+a.reg.size(), 0, 2*N-a.reg.size());
|
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
|
|
return m_result;
|
|
}
|
|
|
|
const Integer& MontgomeryRepresentation::MultiplicativeInverse(const Integer &a) const
|
|
{
|
|
// return (EuclideanMultiplicativeInverse(a, modulus)<<(2*WORD_BITS*modulus.reg.size()))%modulus;
|
|
word *const T = m_workspace.begin();
|
|
word *const R = m_result.reg.begin();
|
|
const size_t N = m_modulus.reg.size();
|
|
assert(a.reg.size()<=N);
|
|
|
|
CopyWords(T, a.reg, a.reg.size());
|
|
SetWords(T+a.reg.size(), 0, 2*N-a.reg.size());
|
|
MontgomeryReduce(R, T+2*N, T, m_modulus.reg, m_u.reg, N);
|
|
unsigned k = AlmostInverse(R, T, R, N, m_modulus.reg, N);
|
|
|
|
// cout << "k=" << k << " N*32=" << 32*N << endl;
|
|
|
|
if (k>N*WORD_BITS)
|
|
DivideByPower2Mod(R, R, k-N*WORD_BITS, m_modulus.reg, N);
|
|
else
|
|
MultiplyByPower2Mod(R, R, N*WORD_BITS-k, m_modulus.reg, N);
|
|
|
|
return m_result;
|
|
}
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|