ext-cryptopp/modarith.h
2002-10-04 17:31:41 +00:00

150 lines
4.6 KiB
C++

#ifndef CRYPTOPP_MODARITH_H
#define CRYPTOPP_MODARITH_H
// implementations are in integer.cpp
#include "cryptlib.h"
#include "misc.h"
#include "integer.h"
#include "algebra.h"
NAMESPACE_BEGIN(CryptoPP)
//! .
class ModularArithmetic : public AbstractRing<Integer>
{
public:
typedef int RandomizationParameter;
typedef Integer Element;
ModularArithmetic(const Integer &modulus = Integer::One())
: modulus(modulus), result((word)0, modulus.reg.size()) {}
ModularArithmetic(const ModularArithmetic &ma)
: modulus(ma.modulus), result((word)0, modulus.reg.size()) {}
ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters
virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);}
void DEREncode(BufferedTransformation &bt) const;
void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
void BERDecodeElement(BufferedTransformation &in, Element &a) const;
const Integer& GetModulus() const {return modulus;}
void SetModulus(const Integer &newModulus) {modulus = newModulus; result.reg.resize(modulus.reg.size());}
virtual bool IsMontgomeryRepresentation() const {return false;}
virtual Integer ConvertIn(const Integer &a) const
{return a%modulus;}
virtual Integer ConvertOut(const Integer &a) const
{return a;}
const Integer& Half(const Integer &a) const;
bool Equal(const Integer &a, const Integer &b) const
{return a==b;}
const Integer& Identity() const
{return Integer::Zero();}
const Integer& Add(const Integer &a, const Integer &b) const;
Integer& Accumulate(Integer &a, const Integer &b) const;
const Integer& Inverse(const Integer &a) const;
const Integer& Subtract(const Integer &a, const Integer &b) const;
Integer& Reduce(Integer &a, const Integer &b) const;
const Integer& Double(const Integer &a) const
{return Add(a, a);}
const Integer& MultiplicativeIdentity() const
{return Integer::One();}
const Integer& Multiply(const Integer &a, const Integer &b) const
{return result1 = a*b%modulus;}
const Integer& Square(const Integer &a) const
{return result1 = a.Squared()%modulus;}
bool IsUnit(const Integer &a) const
{return Integer::Gcd(a, modulus).IsUnit();}
const Integer& MultiplicativeInverse(const Integer &a) const
{return result1 = a.InverseMod(modulus);}
const Integer& Divide(const Integer &a, const Integer &b) const
{return Multiply(a, MultiplicativeInverse(b));}
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const;
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
unsigned int MaxElementBitLength() const
{return (modulus-1).BitCount();}
unsigned int MaxElementByteLength() const
{return (modulus-1).ByteCount();}
Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0 ) const
// left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct
{
return Element( rng , Integer( (long) 0) , modulus - Integer( (long) 1 ) ) ;
}
static const RandomizationParameter DefaultRandomizationParameter ;
protected:
Integer modulus;
mutable Integer result, result1;
};
// const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ;
//! do modular arithmetics in Montgomery representation for increased speed
class MontgomeryRepresentation : public ModularArithmetic
{
public:
MontgomeryRepresentation(const Integer &modulus); // modulus must be odd
virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);}
bool IsMontgomeryRepresentation() const {return true;}
Integer ConvertIn(const Integer &a) const
{return (a<<(WORD_BITS*modulus.reg.size()))%modulus;}
Integer ConvertOut(const Integer &a) const;
const Integer& MultiplicativeIdentity() const
{return result1 = Integer::Power2(WORD_BITS*modulus.reg.size())%modulus;}
const Integer& Multiply(const Integer &a, const Integer &b) const;
const Integer& Square(const Integer &a) const;
const Integer& MultiplicativeInverse(const Integer &a) const;
Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const
{return AbstractRing<Integer>::CascadeExponentiate(x, e1, y, e2);}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{AbstractRing<Integer>::SimultaneousExponentiate(results, base, exponents, exponentsCount);}
private:
Integer u;
mutable SecAlignedWordBlock workspace;
};
NAMESPACE_END
#endif