mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 18:09:48 +00:00
371 lines
14 KiB
C++
371 lines
14 KiB
C++
// eccrypto.h - written and placed in the public domain by Wei Dai
|
||
|
||
//! \file eccrypto.h
|
||
//! \brief Classes and functions for Elliptic Curves over prime and binary fields
|
||
|
||
#ifndef CRYPTOPP_ECCRYPTO_H
|
||
#define CRYPTOPP_ECCRYPTO_H
|
||
|
||
#include "config.h"
|
||
#include "cryptlib.h"
|
||
#include "pubkey.h"
|
||
#include "integer.h"
|
||
#include "asn.h"
|
||
#include "hmac.h"
|
||
#include "sha.h"
|
||
#include "gfpcrypt.h"
|
||
#include "dh.h"
|
||
#include "mqv.h"
|
||
#include "hmqv.h"
|
||
#include "fhmqv.h"
|
||
#include "ecp.h"
|
||
#include "ec2n.h"
|
||
|
||
NAMESPACE_BEGIN(CryptoPP)
|
||
|
||
//! \brief Elliptic Curve Parameters
|
||
//! \tparam EC elliptic curve field
|
||
//! \details This class corresponds to the ASN.1 sequence of the same name
|
||
//! in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
|
||
template <class EC>
|
||
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
|
||
{
|
||
typedef DL_GroupParameters_EC<EC> ThisClass;
|
||
|
||
public:
|
||
typedef EC EllipticCurve;
|
||
typedef typename EllipticCurve::Point Point;
|
||
typedef Point Element;
|
||
typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_GroupParameters_EC() {}
|
||
#endif
|
||
|
||
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}
|
||
DL_GroupParameters_EC(const OID &oid)
|
||
: m_compress(false), m_encodeAsOID(true) {Initialize(oid);}
|
||
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
|
||
: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}
|
||
DL_GroupParameters_EC(BufferedTransformation &bt)
|
||
: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}
|
||
|
||
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
|
||
{
|
||
this->m_groupPrecomputation.SetCurve(ec);
|
||
this->SetSubgroupGenerator(G);
|
||
m_n = n;
|
||
m_k = k;
|
||
}
|
||
void Initialize(const OID &oid);
|
||
|
||
// NameValuePairs
|
||
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
||
void AssignFrom(const NameValuePairs &source);
|
||
|
||
// GeneratibleCryptoMaterial interface
|
||
//! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
|
||
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
|
||
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
|
||
|
||
// DL_GroupParameters
|
||
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
|
||
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
|
||
const Integer & GetSubgroupOrder() const {return m_n;}
|
||
Integer GetCofactor() const;
|
||
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
|
||
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
|
||
bool FastSubgroupCheckAvailable() const {return false;}
|
||
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
|
||
{
|
||
if (reversible)
|
||
GetCurve().EncodePoint(encoded, element, m_compress);
|
||
else
|
||
element.x.Encode(encoded, GetEncodedElementSize(false));
|
||
}
|
||
virtual unsigned int GetEncodedElementSize(bool reversible) const
|
||
{
|
||
if (reversible)
|
||
return GetCurve().EncodedPointSize(m_compress);
|
||
else
|
||
return GetCurve().GetField().MaxElementByteLength();
|
||
}
|
||
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
|
||
{
|
||
Point result;
|
||
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
|
||
throw DL_BadElement();
|
||
if (checkForGroupMembership && !ValidateElement(1, result, NULL))
|
||
throw DL_BadElement();
|
||
return result;
|
||
}
|
||
Integer ConvertElementToInteger(const Element &element) const;
|
||
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
|
||
bool IsIdentity(const Element &element) const {return element.identity;}
|
||
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
||
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
|
||
|
||
// ASN1Key
|
||
OID GetAlgorithmID() const;
|
||
|
||
// used by MQV
|
||
Element MultiplyElements(const Element &a, const Element &b) const;
|
||
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
|
||
|
||
// non-inherited
|
||
|
||
// enumerate OIDs for recommended parameters, use OID() to get first one
|
||
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
|
||
|
||
void BERDecode(BufferedTransformation &bt);
|
||
void DEREncode(BufferedTransformation &bt) const;
|
||
|
||
void SetPointCompression(bool compress) {m_compress = compress;}
|
||
bool GetPointCompression() const {return m_compress;}
|
||
|
||
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
|
||
bool GetEncodeAsOID() const {return m_encodeAsOID;}
|
||
|
||
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
|
||
|
||
bool operator==(const ThisClass &rhs) const
|
||
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
|
||
|
||
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
|
||
const Point& GetBasePoint() const {return this->GetSubgroupGenerator();}
|
||
const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();}
|
||
void LoadRecommendedParameters(const OID &oid) {Initialize(oid);}
|
||
#endif
|
||
|
||
protected:
|
||
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
|
||
unsigned int ExponentLength() const {return m_n.ByteCount();}
|
||
|
||
OID m_oid; // set if parameters loaded from a recommended curve
|
||
Integer m_n; // order of base point
|
||
mutable Integer m_k; // cofactor
|
||
mutable bool m_compress, m_encodeAsOID; // presentation details
|
||
};
|
||
|
||
//! EC public key
|
||
template <class EC>
|
||
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
|
||
{
|
||
public:
|
||
typedef typename EC::Point Element;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_PublicKey_EC() {}
|
||
#endif
|
||
|
||
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Element &Q)
|
||
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
|
||
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
|
||
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
|
||
|
||
// X509PublicKey
|
||
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
void DEREncodePublicKey(BufferedTransformation &bt) const;
|
||
};
|
||
|
||
//! EC private key
|
||
template <class EC>
|
||
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
|
||
{
|
||
public:
|
||
typedef typename EC::Point Element;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_PrivateKey_EC() {}
|
||
#endif
|
||
|
||
void Initialize(const DL_GroupParameters_EC<EC> ¶ms, const Integer &x)
|
||
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
|
||
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
|
||
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
|
||
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> ¶ms)
|
||
{this->GenerateRandom(rng, params);}
|
||
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
|
||
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
|
||
|
||
// PKCS8PrivateKey
|
||
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
||
void DEREncodePrivateKey(BufferedTransformation &bt) const;
|
||
};
|
||
|
||
//! Elliptic Curve Diffie-Hellman, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">ECDH</a>
|
||
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
|
||
struct ECDH
|
||
{
|
||
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECDH() {}
|
||
#endif
|
||
};
|
||
|
||
/// Elliptic Curve Menezes-Qu-Vanstone, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">ECMQV</a>
|
||
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
|
||
struct ECMQV
|
||
{
|
||
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECMQV() {}
|
||
#endif
|
||
};
|
||
|
||
//! \brief Hashed Menezes-Qu-Vanstone in ECP or EC2N
|
||
//! \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
|
||
//! Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
|
||
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
|
||
struct ECHMQV
|
||
{
|
||
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECHMQV() {}
|
||
#endif
|
||
};
|
||
|
||
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
|
||
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
|
||
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
|
||
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
|
||
|
||
//! \brief Fully Hashed Menezes-Qu-Vanstone in ECP or EC2N
|
||
//! \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
//! <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
//! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
|
||
struct ECFHMQV
|
||
{
|
||
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECFHMQV() {}
|
||
#endif
|
||
};
|
||
|
||
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
|
||
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
|
||
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
|
||
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
|
||
|
||
//! EC keys
|
||
template <class EC>
|
||
struct DL_Keys_EC
|
||
{
|
||
typedef DL_PublicKey_EC<EC> PublicKey;
|
||
typedef DL_PrivateKey_EC<EC> PrivateKey;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_Keys_EC() {}
|
||
#endif
|
||
};
|
||
|
||
template <class EC, class H>
|
||
struct ECDSA;
|
||
|
||
//! ECDSA keys
|
||
template <class EC>
|
||
struct DL_Keys_ECDSA
|
||
{
|
||
typedef DL_PublicKey_EC<EC> PublicKey;
|
||
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_Keys_ECDSA() {}
|
||
#endif
|
||
};
|
||
|
||
//! ECDSA algorithm
|
||
template <class EC>
|
||
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
|
||
{
|
||
public:
|
||
CRYPTOPP_CONSTEXPR static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_Algorithm_ECDSA() {}
|
||
#endif
|
||
};
|
||
|
||
//! ECNR algorithm
|
||
template <class EC>
|
||
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
|
||
{
|
||
public:
|
||
CRYPTOPP_CONSTEXPR static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~DL_Algorithm_ECNR() {}
|
||
#endif
|
||
};
|
||
|
||
//! <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
|
||
template <class EC, class H>
|
||
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
|
||
{
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECDSA() {}
|
||
#endif
|
||
};
|
||
|
||
//! ECNR
|
||
template <class EC, class H = SHA>
|
||
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
|
||
{
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECNR() {}
|
||
#endif
|
||
};
|
||
|
||
//! Elliptic Curve Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">ECIES</a>
|
||
/*! Default to (NoCofactorMultiplication and DHAES_MODE = false) for compatibilty with SEC1 and Crypto++ 4.2.
|
||
The combination of (IncompatibleCofactorMultiplication and DHAES_MODE = true) is recommended for best
|
||
efficiency and security. */
|
||
template <class EC, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = false>
|
||
struct ECIES
|
||
: public DL_ES<
|
||
DL_Keys_EC<EC>,
|
||
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
|
||
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<SHA1> >,
|
||
DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>,
|
||
ECIES<EC> >
|
||
{
|
||
static std::string CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} // TODO: fix this after name is standardized
|
||
|
||
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
|
||
virtual ~ECIES() {}
|
||
#endif
|
||
|
||
} CRYPTOPP_DEPRECATED ("ECIES will be changing in the near future due to an interop issue");
|
||
|
||
NAMESPACE_END
|
||
|
||
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
|
||
#include "eccrypto.cpp"
|
||
#endif
|
||
|
||
NAMESPACE_BEGIN(CryptoPP)
|
||
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
|
||
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
|
||
|
||
NAMESPACE_END
|
||
|
||
#endif
|