ext-cryptopp/filters.h
2019-07-10 08:10:44 -04:00

1465 lines
66 KiB
C++

// filters.h - originally written and placed in the public domain by Wei Dai
/// \file filters.h
/// \brief Implementation of BufferedTransformation's attachment interface.
#ifndef CRYPTOPP_FILTERS_H
#define CRYPTOPP_FILTERS_H
#include "cryptlib.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4127 4189 4231 4275 4514)
#endif
#include "cryptlib.h"
#include "simple.h"
#include "secblock.h"
#include "misc.h"
#include "smartptr.h"
#include "queue.h"
#include "algparam.h"
#include "stdcpp.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief Implementation of BufferedTransformation's attachment interface
/// \details Filter is a cornerstone of the Pipeline trinitiy. Data flows from
/// Sources, through Filters, and then terminates in Sinks. The difference
/// between a Source and Filter is a Source \a pumps data, while a Filter does
/// not. The difference between a Filter and a Sink is a Filter allows an
/// attached transformation, while a Sink does not.
/// \details See the discussion of BufferedTransformation in cryptlib.h for
/// more details.
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Filter : public BufferedTransformation, public NotCopyable
{
public:
virtual ~Filter() {}
/// \name ATTACHMENT
//@{
/// \brief Construct a Filter
/// \param attachment an optional attached transformation
/// \details attachment can be \p NULL.
Filter(BufferedTransformation *attachment = NULLPTR);
/// \brief Determine if attachable
/// \returns \p true if the object allows attached transformations, \p false otherwise.
/// \note Source and Filter offer attached transformations; while Sink does not.
bool Attachable() {return true;}
/// \brief Retrieve attached transformation
/// \returns pointer to a BufferedTransformation if there is an attached transformation, \p NULL otherwise.
BufferedTransformation *AttachedTransformation();
/// \brief Retrieve attached transformation
/// \returns pointer to a BufferedTransformation if there is an attached transformation, \p NULL otherwise.
const BufferedTransformation *AttachedTransformation() const;
/// \brief Replace an attached transformation
/// \param newAttachment an optional attached transformation
/// \details newAttachment can be a single filter, a chain of filters or \p NULL.
/// Pass \p NULL to remove an existing BufferedTransformation or chain of filters
void Detach(BufferedTransformation *newAttachment = NULLPTR);
//@}
// See the documentation for BufferedTransformation in cryptlib.h
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
// See the documentation for BufferedTransformation in cryptlib.h
void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1);
bool Flush(bool hardFlush, int propagation=-1, bool blocking=true);
bool MessageSeriesEnd(int propagation=-1, bool blocking=true);
protected:
virtual BufferedTransformation * NewDefaultAttachment() const;
void Insert(Filter *nextFilter); // insert filter after this one
virtual bool ShouldPropagateMessageEnd() const {return true;}
virtual bool ShouldPropagateMessageSeriesEnd() const {return true;}
void PropagateInitialize(const NameValuePairs &parameters, int propagation);
/// \brief Forward processed data on to attached transformation
/// \param outputSite unknown, system crash between keyboard and chair...
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
/// \param blocking specifies whether the object should block when processing input
/// \param channel the channel to process the data
/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
size_t Output(int outputSite, const byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel=DEFAULT_CHANNEL);
/// \brief Output multiple bytes that may be modified by callee.
/// \param outputSite unknown, system crash between keyboard and chair...
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
/// \param messageEnd means how many filters to signal MessageEnd() to, including this one
/// \param blocking specifies whether the object should block when processing input
/// \param channel the channel to process the data
/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
size_t OutputModifiable(int outputSite, byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel=DEFAULT_CHANNEL);
/// \brief Signals the end of messages to the object
/// \param outputSite unknown, system crash between keyboard and chair...
/// \param propagation the number of attached transformations the MessageEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \param channel the channel to process the data
/// \returns TODO
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
bool OutputMessageEnd(int outputSite, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL);
/// \brief Flush buffered input and/or output, with signal propagation
/// \param outputSite unknown, system crash between keyboard and chair...
/// \param hardFlush is used to indicate whether all data should be flushed
/// \param propagation the number of attached transformations the Flush() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \param channel the channel to process the data
/// \returns TODO
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
/// \note Hard flushes must be used with care. It means try to process and output everything, even if
/// there may not be enough data to complete the action. For example, hard flushing a HexDecoder
/// would cause an error if you do it after inputing an odd number of hex encoded characters.
/// \note For some types of filters, like ZlibDecompressor, hard flushes can only
/// be done at "synchronization points". These synchronization points are positions in the data
/// stream that are created by hard flushes on the corresponding reverse filters, in this
/// example ZlibCompressor. This is useful when zlib compressed data is moved across a
/// network in packets and compression state is preserved across packets, as in the SSH2 protocol.
bool OutputFlush(int outputSite, bool hardFlush, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL);
/// \brief Marks the end of a series of messages, with signal propagation
/// \param outputSite unknown, system crash between keyboard and chair...
/// \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed
/// \param blocking specifies whether the object should block when processing input
/// \param channel the channel to process the data
/// \returns TODO
/// \details Each object that receives the signal will perform its processing, decrement
/// propagation, and then pass the signal on to attached transformations if the value is not 0.
/// \details propagation count includes this object. Setting propagation to <tt>1</tt> means this
/// object only. Setting propagation to <tt>-1</tt> means unlimited propagation.
/// \note There should be a MessageEnd() immediately before MessageSeriesEnd().
bool OutputMessageSeriesEnd(int outputSite, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL);
private:
member_ptr<BufferedTransformation> m_attachment;
protected:
size_t m_inputPosition;
int m_continueAt;
};
/// \brief Create a working space in a BufferedTransformation
struct CRYPTOPP_DLL FilterPutSpaceHelper
{
virtual ~FilterPutSpaceHelper() {}
/// \brief Create a working space in a BufferedTransformation
/// \param target BufferedTransformation for the working space
/// \param channel channel for the working space
/// \param minSize minimum size of the allocation, in bytes
/// \param desiredSize preferred size of the allocation, in bytes
/// \param bufferSize actual size of the allocation, in bytes
/// \pre <tt>desiredSize >= minSize</tt> and <tt>bufferSize >= minSize</tt>.
/// \details \p bufferSize is an IN and OUT parameter. If HelpCreatePutSpace() returns a non-NULL value, then
/// bufferSize is valid and provides the size of the working space created for the caller.
/// \details Internally, HelpCreatePutSpace() calls \ref BufferedTransformation::ChannelCreatePutSpace
/// "ChannelCreatePutSpace()" using \p desiredSize. If the target returns \p desiredSize with a size less
/// than \p minSize (i.e., the request could not be fulfilled), then an internal SecByteBlock
/// called \p m_tempSpace is resized and used for the caller.
byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize)
{
CRYPTOPP_ASSERT(desiredSize >= minSize && bufferSize >= minSize);
if (m_tempSpace.size() < minSize)
{
byte *result = target.ChannelCreatePutSpace(channel, desiredSize);
if (desiredSize >= minSize)
{
bufferSize = desiredSize;
return result;
}
m_tempSpace.New(bufferSize);
}
bufferSize = m_tempSpace.size();
return m_tempSpace.begin();
}
/// \brief Create a working space in a BufferedTransformation
/// \param target the BufferedTransformation for the working space
/// \param channel channel for the working space
/// \param minSize minimum size of the allocation, in bytes
/// \details Internally, the overload calls HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize) using \p minSize for missing arguments.
byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize)
{return HelpCreatePutSpace(target, channel, minSize, minSize, minSize);}
/// \brief Create a working space in a BufferedTransformation
/// \param target the BufferedTransformation for the working space
/// \param channel channel for the working space
/// \param minSize minimum size of the allocation, in bytes
/// \param bufferSize the actual size of the allocation, in bytes
/// \details Internally, the overload calls HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize) using \p minSize for missing arguments.
byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t bufferSize)
{return HelpCreatePutSpace(target, channel, minSize, minSize, bufferSize);}
/// \brief Temporay working space
SecByteBlock m_tempSpace;
};
/// \brief Measure how many bytes and messages pass through the filter
/// \details measure how many bytes and messages pass through the filter. The filter also serves as valve by
/// maintaining a list of ranges to skip during processing.
class CRYPTOPP_DLL MeterFilter : public Bufferless<Filter>
{
public:
virtual ~MeterFilter() {}
/// \brief Construct a MeterFilter
/// \param attachment an optional attached transformation
/// \param transparent flag indicating if the filter should function transparently
/// \details \p attachment can be \p NULL. The filter is transparent by default. If the filter is
/// transparent, then PutMaybeModifiable() does not process a request and always returns 0.
MeterFilter(BufferedTransformation *attachment=NULLPTR, bool transparent=true)
: m_transparent(transparent), m_currentMessageBytes(0), m_totalBytes(0)
, m_currentSeriesMessages(0), m_totalMessages(0), m_totalMessageSeries(0)
, m_begin(NULLPTR), m_length(0) {Detach(attachment); ResetMeter();}
/// \brief Set or change the transparent mode of this object
/// \param transparent the new transparent mode
void SetTransparent(bool transparent) {m_transparent = transparent;}
/// \brief Adds a range to skip during processing
/// \param message the message to apply the range
/// \param position the 0-based index in the current stream
/// \param size the length of the range
/// \param sortNow flag indicating whether the range should be sorted
/// \details Internally, MeterFilter maitains a deque of ranges to skip. As messages are processed,
/// ranges of bytes are skipped according to the list of ranges.
void AddRangeToSkip(unsigned int message, lword position, lword size, bool sortNow = true);
/// \brief Resets the meter
/// \details ResetMeter() reinitializes the meter by setting counters to 0 and removing previous
/// skip ranges.
void ResetMeter();
void IsolatedInitialize(const NameValuePairs &parameters)
{CRYPTOPP_UNUSED(parameters); ResetMeter();}
lword GetCurrentMessageBytes() const {return m_currentMessageBytes;}
lword GetTotalBytes() const {return m_totalBytes;}
unsigned int GetCurrentSeriesMessages() const {return m_currentSeriesMessages;}
unsigned int GetTotalMessages() const {return m_totalMessages;}
unsigned int GetTotalMessageSeries() const {return m_totalMessageSeries;}
byte * CreatePutSpace(size_t &size)
{return AttachedTransformation()->CreatePutSpace(size);}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking);
bool IsolatedMessageSeriesEnd(bool blocking);
private:
size_t PutMaybeModifiable(byte *inString, size_t length, int messageEnd, bool blocking, bool modifiable);
bool ShouldPropagateMessageEnd() const {return m_transparent;}
bool ShouldPropagateMessageSeriesEnd() const {return m_transparent;}
struct MessageRange
{
inline bool operator<(const MessageRange &b) const // BCB2006 workaround: this has to be a member function
{return message < b.message || (message == b.message && position < b.position);}
unsigned int message; lword position; lword size;
};
bool m_transparent;
lword m_currentMessageBytes, m_totalBytes;
unsigned int m_currentSeriesMessages, m_totalMessages, m_totalMessageSeries;
std::deque<MessageRange> m_rangesToSkip;
byte *m_begin;
size_t m_length;
};
/// \brief A transparent MeterFilter
/// \sa MeterFilter, OpaqueFilter
class CRYPTOPP_DLL TransparentFilter : public MeterFilter
{
public:
/// \brief Construct a TransparentFilter
/// \param attachment an optional attached transformation
TransparentFilter(BufferedTransformation *attachment=NULLPTR) : MeterFilter(attachment, true) {}
};
/// \brief A non-transparent MeterFilter
/// \sa MeterFilter, TransparentFilter
class CRYPTOPP_DLL OpaqueFilter : public MeterFilter
{
public:
/// \brief Construct an OpaqueFilter
/// \param attachment an optional attached transformation
OpaqueFilter(BufferedTransformation *attachment=NULLPTR) : MeterFilter(attachment, false) {}
};
/// \brief Divides an input stream into discrete blocks
/// \details FilterWithBufferedInput divides the input stream into a first block, a number of
/// middle blocks, and a last block. First and last blocks are optional, and middle blocks may
/// be a stream instead (i.e. <tt>blockSize == 1</tt>).
/// \sa AuthenticatedEncryptionFilter, AuthenticatedDecryptionFilter, HashVerificationFilter,
/// SignatureVerificationFilter, StreamTransformationFilter
class CRYPTOPP_DLL FilterWithBufferedInput : public Filter
{
public:
virtual ~FilterWithBufferedInput() {}
/// \brief Construct a FilterWithBufferedInput with an attached transformation
/// \param attachment an attached transformation
FilterWithBufferedInput(BufferedTransformation *attachment);
/// \brief Construct a FilterWithBufferedInput with an attached transformation
/// \param firstSize the size of the first block
/// \param blockSize the size of middle blocks
/// \param lastSize the size of the last block
/// \param attachment an attached transformation
/// \details \p firstSize and \p lastSize may be 0. \p blockSize must be at least 1.
FilterWithBufferedInput(size_t firstSize, size_t blockSize, size_t lastSize, BufferedTransformation *attachment);
void IsolatedInitialize(const NameValuePairs &parameters);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
return PutMaybeModifiable(const_cast<byte *>(inString), length, messageEnd, blocking, false);
}
size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking)
{
return PutMaybeModifiable(inString, length, messageEnd, blocking, true);
}
/// \brief Flushes data buffered by this object, without signal propagation
/// \param hardFlush indicates whether all data should be flushed
/// \param blocking specifies whether the object should block when processing input
/// \details IsolatedFlush() calls ForceNextPut() if hardFlush is true
/// \note hardFlush must be used with care
bool IsolatedFlush(bool hardFlush, bool blocking);
/// \brief Flushes data buffered by this object
/// \details The input buffer may contain more than blockSize bytes if <tt>lastSize != 0</tt>.
/// ForceNextPut() forces a call to NextPut() if this is the case.
void ForceNextPut();
protected:
virtual bool DidFirstPut() const {return m_firstInputDone;}
virtual size_t GetFirstPutSize() const {return m_firstSize;}
virtual size_t GetBlockPutSize() const {return m_blockSize;}
virtual size_t GetLastPutSize() const {return m_lastSize;}
virtual void InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize)
{CRYPTOPP_UNUSED(parameters); CRYPTOPP_UNUSED(firstSize); CRYPTOPP_UNUSED(blockSize); CRYPTOPP_UNUSED(lastSize); InitializeDerived(parameters);}
virtual void InitializeDerived(const NameValuePairs &parameters)
{CRYPTOPP_UNUSED(parameters);}
// FirstPut() is called if (firstSize != 0 and totalLength >= firstSize)
// or (firstSize == 0 and (totalLength > 0 or a MessageEnd() is received)).
// inString is m_firstSize in length.
virtual void FirstPut(const byte *inString) =0;
// NextPut() is called if totalLength >= firstSize+blockSize+lastSize
virtual void NextPutSingle(const byte *inString)
{CRYPTOPP_UNUSED(inString); CRYPTOPP_ASSERT(false);}
// Same as NextPut() except length can be a multiple of blockSize
// Either NextPut() or NextPutMultiple() must be overridden
virtual void NextPutMultiple(const byte *inString, size_t length);
// Same as NextPutMultiple(), but inString can be modified
virtual void NextPutModifiable(byte *inString, size_t length)
{NextPutMultiple(inString, length);}
/// \brief Input the last block of data
/// \param inString the input byte buffer
/// \param length the size of the input buffer, in bytes
/// \details LastPut() processes the last block of data and signals attached filters to do the same.
/// LastPut() is always called. The pseudo algorithm for the logic is:
/// <pre>
/// if totalLength < firstSize then length == totalLength
/// else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
/// else lastSize <= length < lastSize+blockSize
/// </pre>
virtual void LastPut(const byte *inString, size_t length) =0;
virtual void FlushDerived() {}
protected:
size_t PutMaybeModifiable(byte *begin, size_t length, int messageEnd, bool blocking, bool modifiable);
void NextPutMaybeModifiable(byte *inString, size_t length, bool modifiable)
{
if (modifiable) NextPutModifiable(inString, length);
else NextPutMultiple(inString, length);
}
// This function should no longer be used, put this here to cause a compiler error
// if someone tries to override NextPut().
virtual int NextPut(const byte *inString, size_t length)
{CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(false); return 0;}
class BlockQueue
{
public:
void ResetQueue(size_t blockSize, size_t maxBlocks);
byte *GetBlock();
byte *GetContigousBlocks(size_t &numberOfBytes);
size_t GetAll(byte *outString);
void Put(const byte *inString, size_t length);
size_t CurrentSize() const {return m_size;}
size_t MaxSize() const {return m_buffer.size();}
private:
SecByteBlock m_buffer;
size_t m_blockSize, m_maxBlocks, m_size;
byte *m_begin;
};
size_t m_firstSize, m_blockSize, m_lastSize;
bool m_firstInputDone;
BlockQueue m_queue;
};
/// \brief A filter that buffers input using a ByteQueue
/// \details FilterWithInputQueue will buffer input using a ByteQueue. When the filter receives
/// a \ref BufferedTransformation::MessageEnd() "MessageEnd()" signal it will pass the data
/// on to its attached transformation.
class CRYPTOPP_DLL FilterWithInputQueue : public Filter
{
public:
virtual ~FilterWithInputQueue() {}
/// \brief Construct a FilterWithInputQueue
/// \param attachment an optional attached transformation
FilterWithInputQueue(BufferedTransformation *attachment=NULLPTR) : Filter(attachment) {}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
if (!blocking)
throw BlockingInputOnly("FilterWithInputQueue");
m_inQueue.Put(inString, length);
if (messageEnd)
{
IsolatedMessageEnd(blocking);
Output(0, NULLPTR, 0, messageEnd, blocking);
}
return 0;
}
protected:
virtual bool IsolatedMessageEnd(bool blocking) =0;
void IsolatedInitialize(const NameValuePairs &parameters)
{CRYPTOPP_UNUSED(parameters); m_inQueue.Clear();}
ByteQueue m_inQueue;
};
/// \struct BlockPaddingSchemeDef
/// \brief Padding schemes used for block ciphers
/// \since Crypto++ 5.0
struct BlockPaddingSchemeDef
{
/// \enum BlockPaddingScheme
/// \brief Padding schemes used for block ciphers.
/// \details DEFAULT_PADDING means PKCS_PADDING if <tt>cipher.MandatoryBlockSize() > 1 &&
/// cipher.MinLastBlockSize() == 0</tt>, which holds for ECB or CBC mode. Otherwise,
/// NO_PADDING for modes like OFB, CFB, CTR, CBC-CTS.
/// \sa <A HREF="http://www.weidai.com/scan-mirror/csp.html">Block Cipher Padding</A> for
/// additional details.
/// \since Crypto++ 5.0
enum BlockPaddingScheme {
/// \brief No padding added to a block
/// \since Crypto++ 5.0
NO_PADDING,
/// \brief 0's padding added to a block
/// \since Crypto++ 5.0
ZEROS_PADDING,
/// \brief PKCS padding added to a block
/// \since Crypto++ 5.0
PKCS_PADDING,
/// \brief 1 and 0's padding added to a block
/// \since Crypto++ 5.0
ONE_AND_ZEROS_PADDING,
/// \brief W3C padding added to a block
/// \sa <A HREF="http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/Overview.html">XML
/// Encryption Syntax and Processing</A>
/// \since Crypto++ 6.0
W3C_PADDING,
/// \brief Default padding scheme
/// \since Crypto++ 5.0
DEFAULT_PADDING
};
};
/// \brief Filter wrapper for StreamTransformation
/// \details StreamTransformationFilter() is a filter wrapper for StreamTransformation(). It is used when
/// pipelining data for stream ciphers and confidentiality-only block ciphers. The filter will optionally
/// handle padding and unpadding when needed. If you are using an authenticated encryption mode of operation,
/// then use AuthenticatedEncryptionFilter() and AuthenticatedDecryptionFilter()
/// \since Crypto++ 5.0
class CRYPTOPP_DLL StreamTransformationFilter : public FilterWithBufferedInput, public BlockPaddingSchemeDef, private FilterPutSpaceHelper
{
public:
virtual ~StreamTransformationFilter() {}
/// \brief Construct a StreamTransformationFilter
/// \param c reference to a StreamTransformation
/// \param attachment an optional attached transformation
/// \param padding the \ref BlockPaddingSchemeDef "padding scheme"
/// \details This contructor creates a StreamTransformationFilter() for stream ciphers and
/// confidentiality-only block cipher modes of operation. If you are using an authenticated
/// encryption mode of operation, then use either AuthenticatedEncryptionFilter() or
/// AuthenticatedDecryptionFilter().
/// \sa AuthenticatedEncryptionFilter() and AuthenticatedDecryptionFilter()
StreamTransformationFilter(StreamTransformation &c, BufferedTransformation *attachment = NULLPTR, BlockPaddingScheme padding = DEFAULT_PADDING);
std::string AlgorithmName() const {return m_cipher.AlgorithmName();}
protected:
friend class AuthenticatedEncryptionFilter;
friend class AuthenticatedDecryptionFilter;
/// \brief Construct a StreamTransformationFilter
/// \param c reference to a StreamTransformation
/// \param attachment an optional attached transformation
/// \param padding the \ref BlockPaddingSchemeDef "padding scheme"
/// \param authenticated flag indicating whether the filter should allow authenticated encryption schemes
/// \details This constructor is used for authenticated encryption mode of operation and by
/// AuthenticatedEncryptionFilter() and AuthenticatedDecryptionFilter().
StreamTransformationFilter(StreamTransformation &c, BufferedTransformation *attachment, BlockPaddingScheme padding, bool authenticated);
void InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize);
void FirstPut(const byte *inString);
void NextPutMultiple(const byte *inString, size_t length);
void NextPutModifiable(byte *inString, size_t length);
void LastPut(const byte *inString, size_t length);
static size_t LastBlockSize(StreamTransformation &c, BlockPaddingScheme padding);
StreamTransformation &m_cipher;
BlockPaddingScheme m_padding;
unsigned int m_mandatoryBlockSize;
unsigned int m_optimalBufferSize;
unsigned int m_reservedBufferSize;
bool m_isSpecial;
};
/// \brief Filter wrapper for HashTransformation
/// \since Crypto++ 1.0
class CRYPTOPP_DLL HashFilter : public Bufferless<Filter>, private FilterPutSpaceHelper
{
public:
virtual ~HashFilter() {}
/// \brief Construct a HashFilter
/// \param hm reference to a HashTransformation
/// \param attachment an optional attached transformation
/// \param putMessage flag indicating whether the original message should be passed to an attached transformation
/// \param truncatedDigestSize the size of the digest
/// \param messagePutChannel the channel on which the message should be output
/// \param hashPutChannel the channel on which the digest should be output
HashFilter(HashTransformation &hm, BufferedTransformation *attachment = NULLPTR, bool putMessage=false, int truncatedDigestSize=-1, const std::string &messagePutChannel=DEFAULT_CHANNEL, const std::string &hashPutChannel=DEFAULT_CHANNEL);
std::string AlgorithmName() const {return m_hashModule.AlgorithmName();}
void IsolatedInitialize(const NameValuePairs &parameters);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
byte * CreatePutSpace(size_t &size) {return m_hashModule.CreateUpdateSpace(size);}
private:
HashTransformation &m_hashModule;
bool m_putMessage;
unsigned int m_digestSize;
byte *m_space;
std::string m_messagePutChannel, m_hashPutChannel;
};
/// \brief Filter wrapper for HashTransformation
/// \since Crypto++ 4.0
class CRYPTOPP_DLL HashVerificationFilter : public FilterWithBufferedInput
{
public:
virtual ~HashVerificationFilter() {}
/// \brief Exception thrown when a data integrity check failure is encountered
class HashVerificationFailed : public Exception
{
public:
HashVerificationFailed()
: Exception(DATA_INTEGRITY_CHECK_FAILED, "HashVerificationFilter: message hash or MAC not valid") {}
};
/// \enum Flags
/// \brief Flags controlling filter behavior.
/// \details The flags are a bitmask and can be OR'd together.
enum Flags {
/// \brief Indicates the hash is at the end of the message (i.e., concatenation of message+hash)
HASH_AT_END=0,
/// \brief Indicates the hash is at the beginning of the message (i.e., concatenation of hash+message)
HASH_AT_BEGIN=1,
/// \brief Indicates the message should be passed to an attached transformation
PUT_MESSAGE=2,
/// \brief Indicates the hash should be passed to an attached transformation
PUT_HASH=4,
/// \brief Indicates the result of the verification should be passed to an attached transformation
PUT_RESULT=8,
/// \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered
THROW_EXCEPTION=16,
/// \brief Default flags using \p HASH_AT_BEGIN and \p PUT_RESULT
DEFAULT_FLAGS = HASH_AT_BEGIN | PUT_RESULT
};
/// \brief Construct a HashVerificationFilter
/// \param hm reference to a HashTransformation
/// \param attachment an optional attached transformation
/// \param flags flags indicating behaviors for the filter
/// \param truncatedDigestSize the size of the digest
/// \details <tt>truncatedDigestSize = -1</tt> indicates \ref HashTransformation::DigestSize() "DigestSize" should be used.
HashVerificationFilter(HashTransformation &hm, BufferedTransformation *attachment = NULLPTR, word32 flags = DEFAULT_FLAGS, int truncatedDigestSize=-1);
std::string AlgorithmName() const {return m_hashModule.AlgorithmName();}
bool GetLastResult() const {return m_verified;}
protected:
void InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize);
void FirstPut(const byte *inString);
void NextPutMultiple(const byte *inString, size_t length);
void LastPut(const byte *inString, size_t length);
private:
friend class AuthenticatedDecryptionFilter;
HashTransformation &m_hashModule;
word32 m_flags;
unsigned int m_digestSize;
bool m_verified;
SecByteBlock m_expectedHash;
};
/// \brief Filter wrapper for encrypting with AuthenticatedSymmetricCipher
/// \details AuthenticatedEncryptionFilter() is a wrapper for encrypting with AuthenticatedSymmetricCipher(),
/// optionally handling padding/unpadding when needed.
/// \sa AuthenticatedDecryptionFilter, EAX, CCM, GCM, AuthenticatedSymmetricCipher
/// \since Crypto++ 5.6.0
class CRYPTOPP_DLL AuthenticatedEncryptionFilter : public StreamTransformationFilter
{
public:
virtual ~AuthenticatedEncryptionFilter() {}
/// \brief Construct a AuthenticatedEncryptionFilter
/// \param c reference to a AuthenticatedSymmetricCipher
/// \param attachment an optional attached transformation
/// \param putAAD flag indicating whether the AAD should be passed to an attached transformation
/// \param truncatedDigestSize the size of the digest
/// \param macChannel the channel on which the MAC should be output
/// \param padding the \ref BlockPaddingSchemeDef "padding scheme"
/// \details <tt>truncatedDigestSize = -1</tt> indicates \ref HashTransformation::DigestSize() "DigestSize" should be used.
/// \since Crypto++ 5.6.0
AuthenticatedEncryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment = NULLPTR, bool putAAD=false, int truncatedDigestSize=-1, const std::string &macChannel=DEFAULT_CHANNEL, BlockPaddingScheme padding = DEFAULT_PADDING);
void IsolatedInitialize(const NameValuePairs &parameters);
byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);
size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking);
/// \brief Input the last block of data
/// \param inString the input byte buffer
/// \param length the size of the input buffer, in bytes
/// \details LastPut() processes the last block of data and signals attached filters to do the same.
/// LastPut() is always called. The pseudo algorithm for the logic is:
/// <pre>
/// if totalLength < firstSize then length == totalLength
/// else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
/// else lastSize <= length < lastSize+blockSize
/// </pre>
void LastPut(const byte *inString, size_t length);
protected:
HashFilter m_hf;
};
/// \brief Filter wrapper for decrypting with AuthenticatedSymmetricCipher
/// \details AuthenticatedDecryptionFilter() is a wrapper for decrypting with AuthenticatedSymmetricCipher(),
/// optionally handling padding/unpadding when needed.
/// \sa AuthenticatedEncryptionFilter, EAX, CCM, GCM, AuthenticatedSymmetricCipher
/// \since Crypto++ 5.6.0
class CRYPTOPP_DLL AuthenticatedDecryptionFilter : public FilterWithBufferedInput, public BlockPaddingSchemeDef
{
public:
/// \enum Flags
/// \brief Flags controlling filter behavior.
/// \details The flags are a bitmask and can be OR'd together.
enum Flags {
/// \brief Indicates the MAC is at the end of the message (i.e., concatenation of message+mac)
MAC_AT_END=0,
/// \brief Indicates the MAC is at the beginning of the message (i.e., concatenation of mac+message)
MAC_AT_BEGIN=1,
/// \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered
THROW_EXCEPTION=16,
/// \brief Default flags using \p THROW_EXCEPTION
DEFAULT_FLAGS = THROW_EXCEPTION
};
virtual ~AuthenticatedDecryptionFilter() {}
/// \brief Construct a AuthenticatedDecryptionFilter
/// \param c reference to a AuthenticatedSymmetricCipher
/// \param attachment an optional attached transformation
/// \param flags flags indicating behaviors for the filter
/// \param truncatedDigestSize the size of the digest
/// \param padding the \ref BlockPaddingSchemeDef "padding scheme"
/// \details Additional authenticated data should be given in channel "AAD".
/// \details <tt>truncatedDigestSize = -1</tt> indicates \ref HashTransformation::DigestSize() "DigestSize" should be used.
/// \since Crypto++ 5.6.0
AuthenticatedDecryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment = NULLPTR, word32 flags = DEFAULT_FLAGS, int truncatedDigestSize=-1, BlockPaddingScheme padding = DEFAULT_PADDING);
std::string AlgorithmName() const {return m_hashVerifier.AlgorithmName();}
byte * ChannelCreatePutSpace(const std::string &channel, size_t &size);
size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking);
bool GetLastResult() const {return m_hashVerifier.GetLastResult();}
protected:
void InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize);
void FirstPut(const byte *inString);
void NextPutMultiple(const byte *inString, size_t length);
/// \brief Input the last block of data
/// \param inString the input byte buffer
/// \param length the size of the input buffer, in bytes
/// \details LastPut() processes the last block of data and signals attached filters to do the same.
/// LastPut() is always called. The pseudo algorithm for the logic is:
/// <pre>
/// if totalLength < firstSize then length == totalLength
/// else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
/// else lastSize <= length < lastSize+blockSize
/// </pre>
void LastPut(const byte *inString, size_t length);
HashVerificationFilter m_hashVerifier;
StreamTransformationFilter m_streamFilter;
};
/// \brief Filter wrapper for PK_Signer
/// \since Crypto++ 4.0
class CRYPTOPP_DLL SignerFilter : public Unflushable<Filter>
{
public:
virtual ~SignerFilter() {}
/// \brief Construct a SignerFilter
/// \param rng a RandomNumberGenerator derived class
/// \param signer a PK_Signer derived class
/// \param attachment an optional attached transformation
/// \param putMessage flag indicating whether the original message should be passed to an attached transformation
SignerFilter(RandomNumberGenerator &rng, const PK_Signer &signer, BufferedTransformation *attachment = NULLPTR, bool putMessage=false)
: m_rng(rng), m_signer(signer), m_messageAccumulator(signer.NewSignatureAccumulator(rng)), m_putMessage(putMessage) {Detach(attachment);}
std::string AlgorithmName() const {return m_signer.AlgorithmName();}
void IsolatedInitialize(const NameValuePairs &parameters);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
private:
RandomNumberGenerator &m_rng;
const PK_Signer &m_signer;
member_ptr<PK_MessageAccumulator> m_messageAccumulator;
bool m_putMessage;
SecByteBlock m_buf;
};
/// \brief Filter wrapper for PK_Verifier
/// \details This filter was formerly named <tt>VerifierFilter</tt>. The name changed at Crypto++ 5.0.
/// \since Crypto++ 4.0
class CRYPTOPP_DLL SignatureVerificationFilter : public FilterWithBufferedInput
{
public:
/// \brief Exception thrown when an invalid signature is encountered
class SignatureVerificationFailed : public Exception
{
public:
SignatureVerificationFailed()
: Exception(DATA_INTEGRITY_CHECK_FAILED, "VerifierFilter: digital signature not valid") {}
};
/// \enum Flags
/// \brief Flags controlling filter behavior.
/// \details The flags are a bitmask and can be OR'd together.
enum Flags {
/// \brief Indicates the signature is at the end of the message (i.e., concatenation of message+signature)
SIGNATURE_AT_END=0,
/// \brief Indicates the signature is at the beginning of the message (i.e., concatenation of signature+message)
SIGNATURE_AT_BEGIN=1,
/// \brief Indicates the message should be passed to an attached transformation
PUT_MESSAGE=2,
/// \brief Indicates the signature should be passed to an attached transformation
PUT_SIGNATURE=4,
/// \brief Indicates the result of the verification should be passed to an attached transformation
PUT_RESULT=8,
/// \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered
THROW_EXCEPTION=16,
/// \brief Default flags using \p SIGNATURE_AT_BEGIN and \p PUT_RESULT
DEFAULT_FLAGS = SIGNATURE_AT_BEGIN | PUT_RESULT
};
virtual ~SignatureVerificationFilter() {}
/// \brief Construct a SignatureVerificationFilter
/// \param verifier a PK_Verifier derived class
/// \param attachment an optional attached transformation
/// \param flags flags indicating behaviors for the filter
SignatureVerificationFilter(const PK_Verifier &verifier, BufferedTransformation *attachment = NULLPTR, word32 flags = DEFAULT_FLAGS);
std::string AlgorithmName() const {return m_verifier.AlgorithmName();}
/// \brief Retrieves the result of the last verification
/// \returns true if the signature on the previosus message was valid, false otherwise
bool GetLastResult() const {return m_verified;}
protected:
void InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, size_t &firstSize, size_t &blockSize, size_t &lastSize);
void FirstPut(const byte *inString);
void NextPutMultiple(const byte *inString, size_t length);
void LastPut(const byte *inString, size_t length);
private:
const PK_Verifier &m_verifier;
member_ptr<PK_MessageAccumulator> m_messageAccumulator;
word32 m_flags;
SecByteBlock m_signature;
bool m_verified;
};
/// \brief Redirect input to another BufferedTransformation without owning it
/// \since Crypto++ 4.0
class CRYPTOPP_DLL Redirector : public CustomSignalPropagation<Sink>
{
public:
/// \enum Behavior
/// \brief Controls signal propagation behavior
enum Behavior
{
/// \brief Pass data only
DATA_ONLY = 0x00,
/// \brief Pass signals
PASS_SIGNALS = 0x01,
/// \brief Pass wait events
PASS_WAIT_OBJECTS = 0x02,
/// \brief Pass everything
/// \details PASS_EVERYTHING is default
PASS_EVERYTHING = PASS_SIGNALS | PASS_WAIT_OBJECTS
};
virtual ~Redirector() {}
/// \brief Construct a Redirector
Redirector() : m_target(NULLPTR), m_behavior(PASS_EVERYTHING) {}
/// \brief Construct a Redirector
/// \param target the destination BufferedTransformation
/// \param behavior Behavior "flags" specifying signal propagation
Redirector(BufferedTransformation &target, Behavior behavior=PASS_EVERYTHING)
: m_target(&target), m_behavior(behavior) {}
/// \brief Redirect input to another BufferedTransformation
/// \param target the destination BufferedTransformation
void Redirect(BufferedTransformation &target) {m_target = &target;}
/// \brief Stop redirecting input
void StopRedirection() {m_target = NULLPTR;}
Behavior GetBehavior() {return static_cast<Behavior>(m_behavior);}
void SetBehavior(Behavior behavior) {m_behavior=behavior;}
bool GetPassSignals() const {return (m_behavior & PASS_SIGNALS) != 0;}
void SetPassSignals(bool pass) { if (pass) m_behavior |= PASS_SIGNALS; else m_behavior &= ~static_cast<word32>(PASS_SIGNALS); }
bool GetPassWaitObjects() const {return (m_behavior & PASS_WAIT_OBJECTS) != 0;}
void SetPassWaitObjects(bool pass) { if (pass) m_behavior |= PASS_WAIT_OBJECTS; else m_behavior &= ~static_cast<word32>(PASS_WAIT_OBJECTS); }
bool CanModifyInput() const
{return m_target ? m_target->CanModifyInput() : false;}
void Initialize(const NameValuePairs &parameters, int propagation);
byte * CreatePutSpace(size_t &size)
{
if (m_target)
return m_target->CreatePutSpace(size);
else
{
size = 0;
return NULLPTR;
}
}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{return m_target ? m_target->Put2(inString, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;}
bool Flush(bool hardFlush, int propagation=-1, bool blocking=true)
{return m_target && GetPassSignals() ? m_target->Flush(hardFlush, propagation, blocking) : false;}
bool MessageSeriesEnd(int propagation=-1, bool blocking=true)
{return m_target && GetPassSignals() ? m_target->MessageSeriesEnd(propagation, blocking) : false;}
byte * ChannelCreatePutSpace(const std::string &channel, size_t &size)
{
if (m_target)
return m_target->ChannelCreatePutSpace(channel, size);
else
{
size = 0;
return NULLPTR;
}
}
size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{return m_target ? m_target->ChannelPut2(channel, begin, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;}
size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
{return m_target ? m_target->ChannelPutModifiable2(channel, begin, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;}
bool ChannelFlush(const std::string &channel, bool completeFlush, int propagation=-1, bool blocking=true)
{return m_target && GetPassSignals() ? m_target->ChannelFlush(channel, completeFlush, propagation, blocking) : false;}
bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true)
{return m_target && GetPassSignals() ? m_target->ChannelMessageSeriesEnd(channel, propagation, blocking) : false;}
unsigned int GetMaxWaitObjectCount() const
{ return m_target && GetPassWaitObjects() ? m_target->GetMaxWaitObjectCount() : 0; }
void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack)
{ if (m_target && GetPassWaitObjects()) m_target->GetWaitObjects(container, callStack); }
private:
BufferedTransformation *m_target;
word32 m_behavior;
};
/// \brief Filter class that is a proxy for a sink
/// \details Used By ProxyFilter
/// \since Crypto++ 4.0
class CRYPTOPP_DLL OutputProxy : public CustomSignalPropagation<Sink>
{
public:
virtual ~OutputProxy() {}
/// \brief Construct an OutputProxy
/// \param owner the owning transformation
/// \param passSignal flag indicating if signals should be passed
OutputProxy(BufferedTransformation &owner, bool passSignal) : m_owner(owner), m_passSignal(passSignal) {}
/// \brief Retrieve passSignal flag
/// \returns flag indicating if signals should be passed
bool GetPassSignal() const {return m_passSignal;}
/// \brief Set passSignal flag
/// \param passSignal flag indicating if signals should be passed
void SetPassSignal(bool passSignal) {m_passSignal = passSignal;}
byte * CreatePutSpace(size_t &size)
{return m_owner.AttachedTransformation()->CreatePutSpace(size);}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{return m_owner.AttachedTransformation()->Put2(inString, length, m_passSignal ? messageEnd : 0, blocking);}
size_t PutModifiable2(byte *begin, size_t length, int messageEnd, bool blocking)
{return m_owner.AttachedTransformation()->PutModifiable2(begin, length, m_passSignal ? messageEnd : 0, blocking);}
void Initialize(const NameValuePairs &parameters=g_nullNameValuePairs, int propagation=-1)
{if (m_passSignal) m_owner.AttachedTransformation()->Initialize(parameters, propagation);}
bool Flush(bool hardFlush, int propagation=-1, bool blocking=true)
{return m_passSignal ? m_owner.AttachedTransformation()->Flush(hardFlush, propagation, blocking) : false;}
bool MessageSeriesEnd(int propagation=-1, bool blocking=true)
{return m_passSignal ? m_owner.AttachedTransformation()->MessageSeriesEnd(propagation, blocking) : false;}
byte * ChannelCreatePutSpace(const std::string &channel, size_t &size)
{return m_owner.AttachedTransformation()->ChannelCreatePutSpace(channel, size);}
size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking)
{return m_owner.AttachedTransformation()->ChannelPut2(channel, begin, length, m_passSignal ? messageEnd : 0, blocking);}
size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking)
{return m_owner.AttachedTransformation()->ChannelPutModifiable2(channel, begin, length, m_passSignal ? messageEnd : 0, blocking);}
bool ChannelFlush(const std::string &channel, bool completeFlush, int propagation=-1, bool blocking=true)
{return m_passSignal ? m_owner.AttachedTransformation()->ChannelFlush(channel, completeFlush, propagation, blocking) : false;}
bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true)
{return m_passSignal ? m_owner.AttachedTransformation()->ChannelMessageSeriesEnd(channel, propagation, blocking) : false;}
private:
BufferedTransformation &m_owner;
bool m_passSignal;
};
/// \brief Base class for Filter classes that are proxies for a chain of other filters
/// \since Crypto++ 4.0
class CRYPTOPP_DLL ProxyFilter : public FilterWithBufferedInput
{
public:
virtual ~ProxyFilter() {}
/// \brief Construct a ProxyFilter
/// \param filter an output filter
/// \param firstSize the first Put size
/// \param lastSize the last Put size
/// \param attachment an attached transformation
ProxyFilter(BufferedTransformation *filter, size_t firstSize, size_t lastSize, BufferedTransformation *attachment);
bool IsolatedFlush(bool hardFlush, bool blocking);
/// \brief Sets the OutputProxy filter
/// \param filter an OutputProxy filter
void SetFilter(Filter *filter);
void NextPutMultiple(const byte *s, size_t len);
void NextPutModifiable(byte *inString, size_t length);
protected:
member_ptr<BufferedTransformation> m_filter;
};
/// \brief Proxy filter that doesn't modify the underlying filter's input or output
/// \since Crypto++ 5.0
class CRYPTOPP_DLL SimpleProxyFilter : public ProxyFilter
{
public:
/// \brief Construct a SimpleProxyFilter
/// \param filter an output filter
/// \param attachment an attached transformation
SimpleProxyFilter(BufferedTransformation *filter, BufferedTransformation *attachment)
: ProxyFilter(filter, 0, 0, attachment) {}
void FirstPut(const byte * inString)
{CRYPTOPP_UNUSED(inString);}
/// \brief Input the last block of data
/// \param inString the input byte buffer
/// \param length the size of the input buffer, in bytes
/// \details LastPut() processes the last block of data and signals attached filters to do the same.
/// LastPut() is always called. The pseudo algorithm for the logic is:
/// <pre>
/// if totalLength < firstSize then length == totalLength
/// else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
/// else lastSize <= length < lastSize+blockSize
/// </pre>
void LastPut(const byte *inString, size_t length)
{CRYPTOPP_UNUSED(inString), CRYPTOPP_UNUSED(length); m_filter->MessageEnd();}
};
/// \brief Filter wrapper for PK_Encryptor
/// \details PK_DecryptorFilter is a proxy for the filter created by PK_Encryptor::CreateEncryptionFilter.
/// This class provides symmetry with VerifierFilter.
/// \since Crypto++ 5.0
class CRYPTOPP_DLL PK_EncryptorFilter : public SimpleProxyFilter
{
public:
/// \brief Construct a PK_EncryptorFilter
/// \param rng a RandomNumberGenerator derived class
/// \param encryptor a PK_Encryptor derived class
/// \param attachment an optional attached transformation
PK_EncryptorFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment = NULLPTR)
: SimpleProxyFilter(encryptor.CreateEncryptionFilter(rng), attachment) {}
};
/// \brief Filter wrapper for PK_Decryptor
/// \details PK_DecryptorFilter is a proxy for the filter created by PK_Decryptor::CreateDecryptionFilter.
/// This class provides symmetry with SignerFilter.
/// \since Crypto++ 5.0
class CRYPTOPP_DLL PK_DecryptorFilter : public SimpleProxyFilter
{
public:
/// \brief Construct a PK_DecryptorFilter
/// \param rng a RandomNumberGenerator derived class
/// \param decryptor a PK_Decryptor derived class
/// \param attachment an optional attached transformation
PK_DecryptorFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment = NULLPTR)
: SimpleProxyFilter(decryptor.CreateDecryptionFilter(rng), attachment) {}
};
/// \brief Append input to a string object
/// \tparam T std::basic_string<char> type
/// \details StringSinkTemplate is a StringSinkTemplate typedef
/// \since Crypto++ 5.0
template <class T>
class StringSinkTemplate : public Bufferless<Sink>
{
public:
typedef typename T::value_type value_type;
virtual ~StringSinkTemplate() {}
/// \brief Construct a StringSinkTemplate
/// \param output std::basic_string<char> or std::vector<byte> type
StringSinkTemplate(T &output)
: m_output(&output) {CRYPTOPP_ASSERT(sizeof(value_type)==1);}
void IsolatedInitialize(const NameValuePairs &parameters)
{if (!parameters.GetValue("OutputStringPointer", m_output)) throw InvalidArgument("StringSink: OutputStringPointer not specified");}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking)
{
CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking);
if (length > 0)
{
typename T::size_type size = m_output->size();
if (length < size && size + length > m_output->capacity())
m_output->reserve(2*size);
m_output->insert(m_output->end(), (const value_type *)inString, (const value_type *)inString+length);
}
return 0;
}
private:
T *m_output;
};
/// \brief Append input to a string object
/// \details StringSink is a typedef for StringSinkTemplate<std::string>.
/// \sa ArraySink, ArrayXorSink
/// \since Crypto++ 4.0
DOCUMENTED_TYPEDEF(StringSinkTemplate<std::string>, StringSink)
CRYPTOPP_DLL_TEMPLATE_CLASS StringSinkTemplate<std::string>;
/// \brief Append input to a std::vector<byte> object
/// \details VectorSink is a typedef for StringSinkTemplate<std::vector<byte> >.
/// \since Crypto++ 8.0
DOCUMENTED_TYPEDEF(StringSinkTemplate<std::vector<byte> >, VectorSink)
CRYPTOPP_DLL_TEMPLATE_CLASS StringSinkTemplate<std::vector<byte> >;
/// \brief Incorporates input into RNG as additional entropy
/// \since Crypto++ 4.0
class RandomNumberSink : public Bufferless<Sink>
{
public:
virtual ~RandomNumberSink() {}
/// \brief Construct a RandomNumberSink
RandomNumberSink()
: m_rng(NULLPTR) {}
/// \brief Construct a RandomNumberSink
/// \param rng a RandomNumberGenerator derived class
RandomNumberSink(RandomNumberGenerator &rng)
: m_rng(&rng) {}
void IsolatedInitialize(const NameValuePairs &parameters);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
private:
RandomNumberGenerator *m_rng;
};
/// \brief Copy input to a memory buffer
/// \details ArraySink wraps a fixed size buffer. The buffer is full once Put returns non-0.
/// When used in a pipleline, ArraySink silently discards input if the buffer is full.
/// AvailableSize() can be used to determine how much space remains in the buffer.
/// TotalPutLength() can be used to determine how many bytes were processed.
/// \sa StringSink, ArrayXorSink
/// \since Crypto++ 4.0
class CRYPTOPP_DLL ArraySink : public Bufferless<Sink>
{
public:
virtual ~ArraySink() {}
/// \brief Construct an ArraySink
/// \param parameters a set of NameValuePairs to initialize this object
/// \details Name::OutputBuffer() is a mandatory parameter using this constructor.
ArraySink(const NameValuePairs &parameters = g_nullNameValuePairs)
: m_buf(NULLPTR), m_size(0), m_total(0) {IsolatedInitialize(parameters);}
/// \brief Construct an ArraySink
/// \param buf pointer to a memory buffer
/// \param size length of the memory buffer
ArraySink(byte *buf, size_t size)
: m_buf(buf), m_size(size), m_total(0) {}
/// \brief Provides the size remaining in the Sink
/// \returns size remaining in the Sink, in bytes
size_t AvailableSize() {return SaturatingSubtract(m_size, m_total);}
/// \brief Provides the number of bytes written to the Sink
/// \returns number of bytes written to the Sink, in bytes
lword TotalPutLength() {return m_total;}
void IsolatedInitialize(const NameValuePairs &parameters);
byte * CreatePutSpace(size_t &size);
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
protected:
byte *m_buf;
size_t m_size;
lword m_total;
};
/// \brief Xor input to a memory buffer
/// \details ArrayXorSink wraps a fixed size buffer. The buffer is full once Put returns non-0.
/// When used in a pipleline, ArrayXorSink silently discards input if the buffer is full.
/// AvailableSize() can be used to determine how much space remains in the buffer.
/// TotalPutLength() can be used to determine how many bytes were processed.
/// \sa StringSink, ArraySink
/// \since Crypto++ 4.0
class CRYPTOPP_DLL ArrayXorSink : public ArraySink
{
public:
virtual ~ArrayXorSink() {}
/// \brief Construct an ArrayXorSink
/// \param buf pointer to a memory buffer
/// \param size length of the memory buffer
ArrayXorSink(byte *buf, size_t size)
: ArraySink(buf, size) {}
size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking);
byte * CreatePutSpace(size_t &size) {return BufferedTransformation::CreatePutSpace(size);}
};
/// \brief String-based implementation of Store interface
/// \since Crypto++ 4.0
class StringStore : public Store
{
public:
/// \brief Construct a StringStore
/// \param string pointer to a C-String
StringStore(const char *string = NULLPTR)
{StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string)));}
/// \brief Construct a StringStore
/// \param string pointer to a memory buffer
/// \param length size of the memory buffer
StringStore(const byte *string, size_t length)
{StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string, length)));}
/// \brief Construct a StringStore
/// \tparam T std::basic_string<char> type
/// \param string reference to a std::basic_string<char> type
template <class T> StringStore(const T &string)
{StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string)));}
CRYPTOPP_DLL size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
CRYPTOPP_DLL size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
private:
CRYPTOPP_DLL void StoreInitialize(const NameValuePairs &parameters);
const byte *m_store;
size_t m_length, m_count;
};
/// \brief RNG-based implementation of Source interface
/// \since Crypto++ 4.0
class CRYPTOPP_DLL RandomNumberStore : public Store
{
public:
virtual ~RandomNumberStore() {}
RandomNumberStore()
: m_rng(NULLPTR), m_length(0), m_count(0) {}
RandomNumberStore(RandomNumberGenerator &rng, lword length)
: m_rng(&rng), m_length(length), m_count(0) {}
bool AnyRetrievable() const {return MaxRetrievable() != 0;}
lword MaxRetrievable() const {return m_length-m_count;}
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const
{
CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(begin); CRYPTOPP_UNUSED(end); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking);
throw NotImplemented("RandomNumberStore: CopyRangeTo2() is not supported by this store");
}
private:
void StoreInitialize(const NameValuePairs &parameters);
RandomNumberGenerator *m_rng;
lword m_length, m_count;
};
/// \brief Empty store
/// \since Crypto++ 5.0
class CRYPTOPP_DLL NullStore : public Store
{
public:
NullStore(lword size = ULONG_MAX) : m_size(size) {}
void StoreInitialize(const NameValuePairs &parameters)
{CRYPTOPP_UNUSED(parameters);}
lword MaxRetrievable() const {return m_size;}
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
private:
lword m_size;
};
/// \brief Implementation of BufferedTransformation's attachment interface
/// \details Source is a cornerstone of the Pipeline trinitiy. Data flows from
/// Sources, through Filters, and then terminates in Sinks. The difference
/// between a Source and Filter is a Source \a pumps data, while a Filter does
/// not. The difference between a Filter and a Sink is a Filter allows an
/// attached transformation, while a Sink does not.
/// \details See the discussion of BufferedTransformation in cryptlib.h for
/// more details.
/// \sa Store and SourceTemplate
/// \since Crypto++ 1.0
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Source : public InputRejecting<Filter>
{
public:
virtual ~Source() {}
/// \brief Construct a Source
/// \param attachment an optional attached transformation
Source(BufferedTransformation *attachment = NULLPTR)
{Source::Detach(attachment);}
/// \name PIPELINE
//@{
/// \brief Pump data to attached transformation
/// \param pumpMax the maximum number of bytes to pump
/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
/// \details Internally, Pump() calls Pump2().
/// \note pumpMax is a <tt>lword</tt>, which is a 64-bit value that typically uses
/// <tt>LWORD_MAX</tt>. The default argument is <tt>SIZE_MAX</tt>, and it can be
/// 32-bits or 64-bits.
/// \sa Pump2, PumpAll, AnyRetrievable, MaxRetrievable
lword Pump(lword pumpMax=SIZE_MAX)
{Pump2(pumpMax); return pumpMax;}
/// \brief Pump messages to attached transformation
/// \param count the maximum number of messages to pump
/// \returns TODO
/// \details Internally, PumpMessages() calls PumpMessages2().
unsigned int PumpMessages(unsigned int count=UINT_MAX)
{PumpMessages2(count); return count;}
/// \brief Pump all data to attached transformation
/// \details Pumps all data to the attached transformation and signal the end of the current
/// message. To avoid the MessageEnd() signal call \ref Pump "Pump(LWORD_MAX)" or \ref Pump2
/// "Pump2(LWORD_MAX, bool)".
/// \details Internally, PumpAll() calls PumpAll2(), which calls PumpMessages().
/// \sa Pump, Pump2, AnyRetrievable, MaxRetrievable
void PumpAll()
{PumpAll2();}
/// \brief Pump data to attached transformation
/// \param byteCount the maximum number of bytes to pump
/// \param blocking specifies whether the object should block when processing input
/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
/// \details byteCount is an \a IN and \a OUT parameter. When the call is made, byteCount is the
/// requested size of the pump. When the call returns, byteCount is the number of bytes that
/// were pumped.
/// \sa Pump, PumpAll, AnyRetrievable, MaxRetrievable
virtual size_t Pump2(lword &byteCount, bool blocking=true) =0;
/// \brief Pump messages to attached transformation
/// \param messageCount the maximum number of messages to pump
/// \param blocking specifies whether the object should block when processing input
/// \details messageCount is an IN and OUT parameter.
virtual size_t PumpMessages2(unsigned int &messageCount, bool blocking=true) =0;
/// \brief Pump all data to attached transformation
/// \param blocking specifies whether the object should block when processing input
/// \returns the number of bytes that remain in the block (i.e., bytes not processed)
/// \sa Pump, Pump2, AnyRetrievable, MaxRetrievable
virtual size_t PumpAll2(bool blocking=true);
/// \brief Determines if the Source is exhausted
/// \returns true if the source has been exhausted
virtual bool SourceExhausted() const =0;
//@}
protected:
void SourceInitialize(bool pumpAll, const NameValuePairs &parameters)
{
IsolatedInitialize(parameters);
if (pumpAll)
PumpAll();
}
};
/// \brief Transform a Store into a Source
/// \tparam T the class or type
/// \since Crypto++ 5.0
template <class T>
class SourceTemplate : public Source
{
public:
virtual ~SourceTemplate() {}
/// \brief Construct a SourceTemplate
/// \param attachment an attached transformation
SourceTemplate<T>(BufferedTransformation *attachment)
: Source(attachment) {}
void IsolatedInitialize(const NameValuePairs &parameters)
{m_store.IsolatedInitialize(parameters);}
size_t Pump2(lword &byteCount, bool blocking=true)
{return m_store.TransferTo2(*AttachedTransformation(), byteCount, DEFAULT_CHANNEL, blocking);}
size_t PumpMessages2(unsigned int &messageCount, bool blocking=true)
{return m_store.TransferMessagesTo2(*AttachedTransformation(), messageCount, DEFAULT_CHANNEL, blocking);}
size_t PumpAll2(bool blocking=true)
{return m_store.TransferAllTo2(*AttachedTransformation(), DEFAULT_CHANNEL, blocking);}
bool SourceExhausted() const
{return !m_store.AnyRetrievable() && !m_store.AnyMessages();}
void SetAutoSignalPropagation(int propagation)
{m_store.SetAutoSignalPropagation(propagation);}
int GetAutoSignalPropagation() const
{return m_store.GetAutoSignalPropagation();}
protected:
T m_store;
};
/// \brief String-based implementation of the Source interface
/// \since Crypto++ 4.0
class CRYPTOPP_DLL StringSource : public SourceTemplate<StringStore>
{
public:
/// \brief Construct a StringSource
/// \param attachment an optional attached transformation
StringSource(BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {}
/// \brief Construct a StringSource
/// \param string C-String
/// \param pumpAll flag indicating if source data should be pumped to its attached transformation
/// \param attachment an optional attached transformation
StringSource(const char *string, bool pumpAll, BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string)));}
/// \brief Construct a StringSource
/// \param string binary byte array
/// \param length size of the byte array
/// \param pumpAll flag indicating if source data should be pumped to its attached transformation
/// \param attachment an optional attached transformation
StringSource(const byte *string, size_t length, bool pumpAll, BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string, length)));}
/// \brief Construct a StringSource
/// \param string std::string
/// \param pumpAll flag indicating if source data should be pumped to its attached transformation
/// \param attachment an optional attached transformation
StringSource(const std::string &string, bool pumpAll, BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string)));}
};
/// \brief Pointer-based implementation of the Source interface
/// \details ArraySource is a typedef for StringSource. Use the third constructor for an array source.
/// The third constructor takes a pointer and length.
/// \since Crypto++ 5.6.0
DOCUMENTED_TYPEDEF(StringSource, ArraySource)
/// \brief std::vector-based implementation of the Source interface
/// \since Crypto++ 8.0
class CRYPTOPP_DLL VectorSource : public SourceTemplate<StringStore>
{
public:
/// \brief Construct a VectorSource
/// \param attachment an optional attached transformation
VectorSource(BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {}
/// \brief Construct a VectorSource
/// \param vec vector of bytes
/// \param pumpAll flag indicating if source data should be pumped to its attached transformation
/// \param attachment an optional attached transformation
VectorSource(const std::vector<byte> &vec, bool pumpAll, BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<StringStore>(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(vec)));}
};
/// \brief RNG-based implementation of Source interface
/// \since Crypto++ 4.0
class CRYPTOPP_DLL RandomNumberSource : public SourceTemplate<RandomNumberStore>
{
public:
RandomNumberSource(RandomNumberGenerator &rng, int length, bool pumpAll, BufferedTransformation *attachment = NULLPTR)
: SourceTemplate<RandomNumberStore>(attachment)
{SourceInitialize(pumpAll, MakeParameters("RandomNumberGeneratorPointer", &rng)("RandomNumberStoreSize", length));}
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif