mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-27 11:50:29 +00:00
147 lines
6.3 KiB
C
147 lines
6.3 KiB
C
// donna.h - written and placed in public domain by Jeffrey Walton
|
|
// Crypto++ specific implementation wrapped around Andrew
|
|
// Moon's public domain curve25519-donna and ed25519-donna,
|
|
// https://github.com/floodyberry/curve25519-donna and
|
|
// https://github.com/floodyberry/ed25519-donna.
|
|
|
|
// The curve25519 and ed25519 source files multiplex different repos and
|
|
// architectures using namespaces. The repos are Andrew Moon's
|
|
// curve25519-donna and ed25519-donna. The architectures are 32-bit, 64-bit
|
|
// and SSE. For example, 32-bit x25519 uses symbols from Donna::X25519 and
|
|
// Donna::Arch32.
|
|
|
|
// If needed, see Moon's commit "Go back to ignoring 256th bit [sic]",
|
|
// https://github.com/floodyberry/curve25519-donna/commit/57a683d18721a658
|
|
|
|
/// \file donna.h
|
|
/// \details Functions for curve25519 and ed25519 operations
|
|
/// \details This header provides the entry points into Andrew Moon's
|
|
/// curve25519 and ed25519 curve functions. The Crypto++ classes x25519
|
|
/// and ed25519 use the functions. The functions are in the <tt>Donna</tt>
|
|
/// namespace and are curve25519_mult(), ed25519_publickey(),
|
|
/// ed25519_sign() and ed25519_sign_open().
|
|
/// \details At the moment the hash function for signing is fixed at
|
|
/// SHA512.
|
|
|
|
#ifndef CRYPTOPP_DONNA_H
|
|
#define CRYPTOPP_DONNA_H
|
|
|
|
#include "cryptlib.h"
|
|
#include "stdcpp.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
NAMESPACE_BEGIN(Donna)
|
|
|
|
//***************************** curve25519 *****************************//
|
|
|
|
/// \brief Generate a public key
|
|
/// \param publicKey byte array for the public key
|
|
/// \param secretKey byte array with the private key
|
|
/// \returns 0 on success, non-0 otherwise
|
|
/// \details curve25519_mult() generates a public key from an existing
|
|
/// secret key. Internally curve25519_mult() performs a scalar
|
|
/// multiplication using the base point and writes the result to
|
|
/// <tt>pubkey</tt>.
|
|
int curve25519_mult(byte publicKey[32], const byte secretKey[32]);
|
|
|
|
/// \brief Generate a shared key
|
|
/// \param sharedKey byte array for the shared secret
|
|
/// \param secretKey byte array with the private key
|
|
/// \param othersKey byte array with the peer's public key
|
|
/// \returns 0 on success, non-0 otherwise
|
|
/// \details curve25519_mult() generates a shared key from an existing
|
|
/// secret key and the other party's public key. Internally
|
|
/// curve25519_mult() performs a scalar multiplication using the two keys
|
|
/// and writes the result to <tt>sharedKey</tt>.
|
|
int curve25519_mult(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]);
|
|
|
|
//******************************* ed25519 *******************************//
|
|
|
|
/// \brief Creates a public key from a secret key
|
|
/// \param publicKey byte array for the public key
|
|
/// \param secretKey byte array with the private key
|
|
/// \returns 0 on success, non-0 otherwise
|
|
/// \details ed25519_publickey() generates a public key from a secret key.
|
|
/// Internally ed25519_publickey() performs a scalar multiplication
|
|
/// using the secret key and then writes the result to <tt>publicKey</tt>.
|
|
int ed25519_publickey(byte publicKey[32], const byte secretKey[32]);
|
|
|
|
/// \brief Creates a signature on a message
|
|
/// \param message byte array with the message
|
|
/// \param messageLength size of the message, in bytes
|
|
/// \param publicKey byte array with the public key
|
|
/// \param secretKey byte array with the private key
|
|
/// \param signature byte array for the signature
|
|
/// \returns 0 on success, non-0 otherwise
|
|
/// \details ed25519_sign() generates a signature on a message using
|
|
/// the public and private keys. The various buffers can be exact
|
|
/// sizes, and do not require extra space like when using the
|
|
/// NaCl library functions.
|
|
/// \details At the moment the hash function for signing is fixed at
|
|
/// SHA512.
|
|
int ed25519_sign(const byte* message, size_t messageLength, const byte secretKey[32], const byte publicKey[32], byte signature[64]);
|
|
|
|
/// \brief Verifies a signature on a message
|
|
/// \param message byte array with the message
|
|
/// \param messageLength size of the message, in bytes
|
|
/// \param publicKey byte array with the public key
|
|
/// \param signature byte array with the signature
|
|
/// \returns 0 on success, non-0 otherwise
|
|
/// \details ed25519_sign_open() verifies a signature on a message using
|
|
/// the public. The various buffers can be exact sizes, and do not
|
|
/// require extra space like when using the NaCl library functions.
|
|
/// \details At the moment the hash function for signing is fixed at
|
|
/// SHA512.
|
|
int
|
|
ed25519_sign_open(const byte *message, size_t messageLength, const byte publicKey[32], const byte signature[64]);
|
|
|
|
//****************************** Internal ******************************//
|
|
|
|
#ifndef CRYPTOPP_DOXYGEN_PROCESSING
|
|
|
|
// CRYPTOPP_WORD128_AVAILABLE mostly depends upon GCC support for
|
|
// __SIZEOF_INT128__. If __SIZEOF_INT128__ is not available then Moon
|
|
// provides routines for MSC and GCC. It should cover most platforms,
|
|
// but there are gaps like MS ARM64 and XLC. We tried to enable the
|
|
// 64-bit path for SunCC from 12.5 but we got the dreaded compile
|
|
// error "The operand ___LCM cannot be assigned to".
|
|
|
|
#if defined(CRYPTOPP_WORD128_AVAILABLE) || \
|
|
(defined(_MSC_VER) && defined(_M_X64)) || \
|
|
(defined(__GNUC__) && (defined(__amd64__) || defined(__x86_64__)))
|
|
# define CRYPTOPP_CURVE25519_64BIT 1
|
|
#else
|
|
# define CRYPTOPP_CURVE25519_32BIT 1
|
|
#endif
|
|
|
|
// Benchmarking on a modern 64-bit Core i5-6400 @2.7 GHz shows SSE2 on Linux
|
|
// is not profitable. Here are the numbers in milliseconds/operation:
|
|
//
|
|
// * Langley, C++, 0.050
|
|
// * Moon, C++: 0.040
|
|
// * Moon, SSE2: 0.061
|
|
// * Moon, native: 0.045
|
|
//
|
|
// However, a modern 64-bit Core i5-3200 @2.5 GHz shows SSE2 is profitable
|
|
// for MS compilers. Here are the numbers in milliseconds/operation:
|
|
//
|
|
// * x86, no SSE2, 0.294
|
|
// * x86, SSE2, 0.097
|
|
// * x64, no SSE2, 0.081
|
|
// * x64, SSE2, 0.071
|
|
|
|
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) && defined(_MSC_VER)
|
|
# define CRYPTOPP_CURVE25519_SSE2 1
|
|
#endif
|
|
|
|
#if (CRYPTOPP_CURVE25519_SSE2)
|
|
extern int curve25519_mult_SSE2(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]);
|
|
#endif
|
|
|
|
#endif // CRYPTOPP_DOXYGEN_PROCESSING
|
|
|
|
NAMESPACE_END // Donna
|
|
NAMESPACE_END // CryptoPP
|
|
|
|
#endif // CRYPTOPP_DONNA_H
|