ext-cryptopp/mqv.h
Jeffrey Walton e9b11b8e08 Whitespace
2016-07-13 15:47:58 -04:00

220 lines
9.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// mqv.h - written and placed in the public domain by Wei Dai
//! \file mqv.h
//! \brief Classes for MenezesQuVanstone (MQV) key agreement
#ifndef CRYPTOPP_MQV_H
#define CRYPTOPP_MQV_H
#include "cryptlib.h"
#include "gfpcrypt.h"
#include "modarith.h"
#include "integer.h"
#include "algebra.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
//! \class MQV_Domain
//! \brief MQV domain for performing authenticated key agreement
//! \tparam GROUP_PARAMETERS doamin parameters
//! \tparam COFACTOR_OPTION cofactor option
//! \details GROUP_PARAMETERS paramters include the curve coefcients and the base point.
//! Binary curves use a polynomial to represent its characteristic, while prime curves
//! use a prime number.
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = CPP_TYPENAME GROUP_PARAMETERS::DefaultCofactorOption>
class MQV_Domain : public AuthenticatedKeyAgreementDomain
{
public:
typedef GROUP_PARAMETERS GroupParameters;
typedef typename GroupParameters::Element Element;
typedef MQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION> Domain;
//! \brief Construct a MQV domain
MQV_Domain() {}
//! \brief Construct a MQV domain
//! \param params group parameters and options
MQV_Domain(const GroupParameters &params)
: m_groupParameters(params) {}
//! \brief Construct a MQV domain
//! \param bt BufferedTransformation with group parameters and options
MQV_Domain(BufferedTransformation &bt)
{m_groupParameters.BERDecode(bt);}
//! \brief Construct a MQV domain
//! \tparam T1 template parameter used as a constructor parameter
//! \tparam T2 template parameter used as a constructor parameter
//! \param v1 first parameter
//! \param v2 second parameter
//! \details v1 and v2 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2>
MQV_Domain(T1 v1, T2 v2)
{m_groupParameters.Initialize(v1, v2);}
//! \brief Construct a MQV domain
//! \tparam T1 template parameter used as a constructor parameter
//! \tparam T2 template parameter used as a constructor parameter
//! \tparam T3 template parameter used as a constructor parameter
//! \param v1 first parameter
//! \param v2 second parameter
//! \param v3 third parameter
//! \details v1, v2 and v3 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2, class T3>
MQV_Domain(T1 v1, T2 v2, T3 v3)
{m_groupParameters.Initialize(v1, v2, v3);}
//! \brief Construct a MQV domain
//! \tparam T1 template parameter used as a constructor parameter
//! \tparam T2 template parameter used as a constructor parameter
//! \tparam T3 template parameter used as a constructor parameter
//! \tparam T4 template parameter used as a constructor parameter
//! \param v1 first parameter
//! \param v2 second parameter
//! \param v3 third parameter
//! \param v4 third parameter
//! \details v1, v2, v3 and v4 are passed directly to the GROUP_PARAMETERS object.
template <class T1, class T2, class T3, class T4>
MQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4)
{m_groupParameters.Initialize(v1, v2, v3, v4);}
//! \brief Retrieves the group parameters for this domain
//! \return the group parameters for this domain as a const reference
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
//! \brief Retrieves the group parameters for this domain
//! \return the group parameters for this domain as a non-const reference
GroupParameters & AccessGroupParameters() {return m_groupParameters;}
//! \brief Retrieves the crypto parameters for this domain
//! \return the crypto parameters for this domain as a non-const reference
CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
//! \brief Provides the size of the agreed value
//! \return size of agreed value produced in this domain
//! \details The length is calculated using <tt>GetEncodedElementSize(false)</tt>, which means the
//! element is encoded in a non-reversible format. A non-reversible format means its a raw byte array,
//! and it lacks presentation format like an ASN.1 BIT_STRING or OCTET_STRING.
unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
//! \brief Provides the size of the static private key
//! \return size of static private keys in this domain
//! \details The length is calculated using the byte count of the subgroup order.
unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
//! \brief Provides the size of the static public key
//! \return size of static public keys in this domain
//! \details The length is calculated using <tt>GetEncodedElementSize(true)</tt>, which means the
//! element is encoded in a reversible format. A reversible format means it has a presentation format,
//! and its an ANS.1 encoded element or point.
unsigned int StaticPublicKeyLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(true);}
//! \brief Generate static private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer for the generated private key in this domain
//! \details The private key is a random scalar used as an exponent in the range <tt>[1,MaxExponent()]</tt>.
//! \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
}
//! \brief Generate a static public key from a private key in this domain
//! \param rng a RandomNumberGenerator derived class
//! \param privateKey a byte buffer with the previously generated private key
//! \param publicKey a byte buffer for the generated public key in this domain
//! \details The public key is an element or point on the curve, and its stored in a revrsible format.
//! A reversible format means it has a presentation format, and its an ANS.1 encoded element or point.
//! \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, publicKey);
}
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
unsigned int EphemeralPublicKeyLength() const {return StaticPublicKeyLength();}
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(rng, Integer::One(), params.GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
}
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
}
bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const
{
try
{
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Element WW = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
Element VV = params.DecodeElement(ephemeralOtherPublicKey, true);
Integer s(staticPrivateKey, StaticPrivateKeyLength());
Integer u(ephemeralPrivateKey, StaticPrivateKeyLength());
Element V = params.DecodeElement(ephemeralPrivateKey+StaticPrivateKeyLength(), false);
const Integer &r = params.GetSubgroupOrder();
Integer h2 = Integer::Power2((r.BitCount()+1)/2);
Integer e = ((h2+params.ConvertElementToInteger(V)%h2)*s+u) % r;
Integer tt = h2 + params.ConvertElementToInteger(VV) % h2;
if (COFACTOR_OPTION::ToEnum() == NO_COFACTOR_MULTIPLICTION)
{
Element P = params.ExponentiateElement(WW, tt);
P = m_groupParameters.MultiplyElements(P, VV);
Element R[2];
const Integer e2[2] = {r, e};
params.SimultaneousExponentiate(R, P, e2, 2);
if (!params.IsIdentity(R[0]) || params.IsIdentity(R[1]))
return false;
params.EncodeElement(false, R[1], agreedValue);
}
else
{
const Integer &k = params.GetCofactor();
if (COFACTOR_OPTION::ToEnum() == COMPATIBLE_COFACTOR_MULTIPLICTION)
e = ModularArithmetic(r).Divide(e, k);
Element P = m_groupParameters.CascadeExponentiate(VV, k*e, WW, k*(e*tt%r));
if (params.IsIdentity(P))
return false;
params.EncodeElement(false, P, agreedValue);
}
}
catch (DL_BadElement &)
{
return false;
}
return true;
}
private:
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return m_groupParameters;}
GroupParameters m_groupParameters;
};
//! Menezes-Qu-Vanstone in GF(p) with key validation, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#MQV">MQV</a>
typedef MQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> MQV;
NAMESPACE_END
#endif