ext-cryptopp/chacha.cpp
2019-02-06 04:14:39 -05:00

582 lines
20 KiB
C++

// chacha.cpp - written and placed in the public domain by Jeffrey Walton.
// Based on Wei Dai's Salsa20, Botan's SSE2 implementation,
// and Bernstein's reference ChaCha family implementation at
// http://cr.yp.to/chacha.html.
#include "pch.h"
#include "config.h"
#include "chacha.h"
#include "argnames.h"
#include "misc.h"
#include "cpu.h"
// Internal compiler error in GCC 3.3 and below
#if defined(__GNUC__) && (__GNUC__ < 4)
# undef CRYPTOPP_SSE2_INTRIN_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_AVX2_AVAILABLE)
extern void ChaCha_OperateKeystream_AVX2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
extern void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if (CRYPTOPP_POWER7_AVAILABLE)
extern void ChaCha_OperateKeystream_POWER7(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
extern void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds);
#endif
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void ChaCha_TestInstantiations()
{
ChaCha::Encryption x;
ChaChaTLS::Encryption y;
XChaCha20::Encryption z;
}
#endif
NAMESPACE_END // CryptoPP
////////////////////////////// ChaCha Core //////////////////////////////
#define CHACHA_QUARTER_ROUND(a,b,c,d) \
a += b; d ^= a; d = rotlConstant<16,word32>(d); \
c += d; b ^= c; b = rotlConstant<12,word32>(b); \
a += b; d ^= a; d = rotlConstant<8,word32>(d); \
c += d; b ^= c; b = rotlConstant<7,word32>(b);
#define CHACHA_OUTPUT(x){\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 0, x0 + state[0]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 1, x1 + state[1]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 2, x2 + state[2]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 3, x3 + state[3]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 4, x4 + state[4]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 5, x5 + state[5]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 6, x6 + state[6]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 7, x7 + state[7]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 8, x8 + state[8]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 9, x9 + state[9]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 10, x10 + state[10]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 11, x11 + state[11]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 12, x12 + state[12]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 13, x13 + state[13]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 14, x14 + state[14]);\
CRYPTOPP_KEYSTREAM_OUTPUT_WORD(x, LITTLE_ENDIAN_ORDER, 15, x15 + state[15]);}
ANONYMOUS_NAMESPACE_BEGIN
// Hacks... Bring in all symbols, and supply
// the stuff the templates normally provide.
using namespace CryptoPP;
typedef word32 WordType;
enum {BYTES_PER_ITERATION=64};
// MultiBlockSafe detects a condition that can arise in the SIMD
// implementations where we overflow one of the 32-bit state words during
// addition in an intermediate result. Preconditions for the issue include
// a user seeks to around 2^32 blocks (256 GB of data) for ChaCha; or a
// user specifies an arbitrarily large initial counter block for ChaChaTLS.
// Also see https://github.com/weidai11/cryptopp/issues/732.
inline bool MultiBlockSafe(unsigned int ctrLow, unsigned int blocks)
{
return 0xffffffff - ctrLow > blocks;
}
// OperateKeystream always produces a key stream. The key stream is written
// to output. Optionally a message may be supplied to xor with the key stream.
// The message is input, and output = output ^ input.
void ChaCha_OperateKeystream(KeystreamOperation operation,
word32 state[16], word32& ctrLow, word32& ctrHigh, word32 rounds,
byte *output, const byte *input, size_t iterationCount)
{
do
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
{
while (iterationCount >= 8 && MultiBlockSafe(state[12], 8))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_AVX2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 8;
input += (!!xorInput) * 8 * BYTES_PER_ITERATION;
output += 8 * BYTES_PER_ITERATION;
iterationCount -= 8;
}
}
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_SSE2(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_NEON(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
#if (CRYPTOPP_POWER7_AVAILABLE)
if (HasPower7())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_POWER7(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
{
while (iterationCount >= 4 && MultiBlockSafe(state[12], 4))
{
const bool xorInput = (operation & INPUT_NULL) != INPUT_NULL;
ChaCha_OperateKeystream_ALTIVEC(state, xorInput ? input : NULLPTR, output, rounds);
// MultiBlockSafe avoids overflow on the counter words
state[12] += 4;
input += (!!xorInput)*4*BYTES_PER_ITERATION;
output += 4*BYTES_PER_ITERATION;
iterationCount -= 4;
}
}
#endif
if (iterationCount)
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
CRYPTOPP_KEYSTREAM_OUTPUT_SWITCH(CHACHA_OUTPUT, BYTES_PER_ITERATION);
// This is state[12] and state[13] from ChaCha. In the case of
// ChaChaTLS ctrHigh is a reference to a discard value.
if (++ctrLow == 0)
ctrHigh++;
}
// We may re-enter a SIMD keystream operation from here.
} while (iterationCount--);
}
// XChaCha key derivation
void HChaCha_OperateKeystream(const word32 state[16], word32 output[8])
{
word32 x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15;
x0 = state[0]; x1 = state[1]; x2 = state[2]; x3 = state[3];
x4 = state[4]; x5 = state[5]; x6 = state[6]; x7 = state[7];
x8 = state[8]; x9 = state[9]; x10 = state[10]; x11 = state[11];
x12 = state[12]; x13 = state[13]; x14 = state[14]; x15 = state[15];
for (int i = 20; i > 0; i -= 2)
{
CHACHA_QUARTER_ROUND(x0, x4, x8, x12);
CHACHA_QUARTER_ROUND(x1, x5, x9, x13);
CHACHA_QUARTER_ROUND(x2, x6, x10, x14);
CHACHA_QUARTER_ROUND(x3, x7, x11, x15);
CHACHA_QUARTER_ROUND(x0, x5, x10, x15);
CHACHA_QUARTER_ROUND(x1, x6, x11, x12);
CHACHA_QUARTER_ROUND(x2, x7, x8, x13);
CHACHA_QUARTER_ROUND(x3, x4, x9, x14);
}
output[0] = x0; output[1] = x1;
output[2] = x2; output[3] = x3;
output[4] = x12; output[5] = x13;
output[6] = x14; output[7] = x15;
}
std::string ChaCha_AlgorithmProvider()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return "AVX2";
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return "SSE2";
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return "NEON";
else
#endif
#if (CRYPTOPP_POWER7_AVAILABLE)
if (HasPower7())
return "Power7";
else
#elif (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return "Altivec";
else
#endif
return "C++";
}
unsigned int ChaCha_GetAlignment()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 16;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 16;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 16;
else
#endif
return GetAlignmentOf<word32>();
}
unsigned int ChaCha_GetOptimalBlockSize()
{
#if (CRYPTOPP_AVX2_AVAILABLE)
if (HasAVX2())
return 8 * BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
if (HasNEON())
return 4*BYTES_PER_ITERATION;
else
#endif
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
if (HasAltivec())
return 4*BYTES_PER_ITERATION;
else
#endif
return BYTES_PER_ITERATION;
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
////////////////////////////// Bernstein ChaCha //////////////////////////////
std::string ChaCha_Policy::AlgorithmName() const
{
return std::string("ChaCha")+IntToString(m_rounds);
}
std::string ChaCha_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaCha_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 16 || length == 32);
CRYPTOPP_UNUSED(key); CRYPTOPP_UNUSED(length);
m_rounds = params.GetIntValueWithDefault(Name::Rounds(), 20);
if (m_rounds != 20 && m_rounds != 12 && m_rounds != 8)
throw InvalidRounds(ChaCha::StaticAlgorithmName(), m_rounds);
// "expand 16-byte k" or "expand 32-byte k"
m_state[0] = 0x61707865;
m_state[1] = (length == 16) ? 0x3120646e : 0x3320646e;
m_state[2] = (length == 16) ? 0x79622d36 : 0x79622d32;
m_state[3] = 0x6b206574;
GetBlock<word32, LittleEndian> get1(key);
get1(m_state[4])(m_state[5])(m_state[6])(m_state[7]);
GetBlock<word32, LittleEndian> get2(key + ((length == 32) ? 16 : 0));
get2(m_state[8])(m_state[9])(m_state[10])(m_state[11]);
}
void ChaCha_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==8); CRYPTOPP_UNUSED(length);
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_state[13] = 0;
get(m_state[14])(m_state[15]);
}
void ChaCha_Policy::SeekToIteration(lword iterationCount)
{
m_state[12] = (word32)iterationCount; // low word
m_state[13] = (word32)SafeRightShift<32>(iterationCount);
}
unsigned int ChaCha_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaCha_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaCha_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
m_rounds, output, input, iterationCount);
}
////////////////////////////// IETF ChaChaTLS //////////////////////////////
std::string ChaChaTLS_Policy::AlgorithmName() const
{
return std::string("ChaChaTLS");
}
std::string ChaChaTLS_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void ChaChaTLS_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
// ChaChaTLS is always 20 rounds. Fetch Rounds() to avoid a spurious failure.
int rounds = params.GetIntValueWithDefault(Name::Rounds(), ROUNDS);
if (rounds != 20)
throw InvalidRounds(ChaChaTLS::StaticAlgorithmName(), rounds);
// RFC 8439 test vectors use an initial block counter. However, the counter
// can be an arbitrary value per RFC 8439 Section 2.4. We stash the counter
// away in state[16] and use it for a Resynchronize() operation. I think
// the initial counter is used more like a Tweak when non-0, and it should
// be provided in Resynchronize() (light-weight re-keying). However,
// Resynchronize() does not have an overload that allows us to pass it into
// the function, so we have to use the heavier-weight SetKey to change it.
word64 block;
if (params.GetValue("InitialBlock", block))
m_state[CTR] = static_cast<word32>(block);
else
m_state[CTR] = 0;
// State words are defined in RFC 8439, Section 2.3. Key is 32-bytes.
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void ChaChaTLS_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *IV, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==12);
// State words are defined in RFC 8439, Section 2.3.
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
// State words are defined in RFC 8439, Section 2.3
GetBlock<word32, LittleEndian> get(IV);
m_state[12] = m_state[CTR];
get(m_state[13])(m_state[14])(m_state[15]);
}
void ChaChaTLS_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? If the initial block counter is
// large then we can wrap and process more data as long as
// data processed in the security context does not exceed
// 2^32 blocks or approximately 256 GB of data.
CRYPTOPP_ASSERT(iterationCount <= std::numeric_limits<word32>::max());
m_state[12] = (word32)iterationCount; // low word
}
unsigned int ChaChaTLS_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int ChaChaTLS_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void ChaChaTLS_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
word32 discard=0;
ChaCha_OperateKeystream(operation, m_state, m_state[12], discard,
ROUNDS, output, input, iterationCount);
// If this fires it means ChaCha_OperateKeystream generated a counter
// block carry that was discarded. The problem is, the RFC does not
// specify what should happen when the counter block wraps. All we can
// do is inform the user that something bad may happen because we don't
// know what we should do.
// Also see https://github.com/weidai11/cryptopp/issues/790 and
// https://mailarchive.ietf.org/arch/msg/cfrg/gsOnTJzcbgG6OqD8Sc0GO5aR_tU
CRYPTOPP_ASSERT(discard==0);
}
////////////////////////////// IETF XChaCha20 //////////////////////////////
std::string XChaCha20_Policy::AlgorithmName() const
{
return std::string("XChaCha20");
}
std::string XChaCha20_Policy::AlgorithmProvider() const
{
return ChaCha_AlgorithmProvider();
}
void XChaCha20_Policy::CipherSetKey(const NameValuePairs &params, const byte *key, size_t length)
{
CRYPTOPP_ASSERT(key); CRYPTOPP_ASSERT(length == 32);
// XChaCha20 is always 20 rounds. Fetch Rounds() to avoid a spurious failure.
int rounds = params.GetIntValueWithDefault(Name::Rounds(), ROUNDS);
if (rounds != 20)
throw InvalidRounds(XChaCha20::StaticAlgorithmName(), rounds);
word64 block;
if (params.GetValue("InitialBlock", block))
m_state[CTR] = static_cast<word32>(block);
else
m_state[CTR] = 1;
// Stash key away for use in CipherResynchronize
GetBlock<word32, LittleEndian> get(key);
get(m_state[KEY+0])(m_state[KEY+1])(m_state[KEY+2])(m_state[KEY+3])
(m_state[KEY+4])(m_state[KEY+5])(m_state[KEY+6])(m_state[KEY+7]);
}
void XChaCha20_Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer), CRYPTOPP_UNUSED(length);
CRYPTOPP_ASSERT(length==24);
// HChaCha derivation
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Copy saved key into state
std::memcpy(m_state+4, m_state+KEY, 8*sizeof(word32));
GetBlock<word32, LittleEndian> get(iv);
get(m_state[12])(m_state[13])(m_state[14])(m_state[15]);
// Operate the keystream without adding state back in.
// This function also gathers the key words into a
// contiguous 8-word block.
HChaCha_OperateKeystream(m_state, m_state+4);
// XChaCha state
m_state[0] = 0x61707865; m_state[1] = 0x3320646e;
m_state[2] = 0x79622d32; m_state[3] = 0x6b206574;
// Setup new IV
m_state[12] = m_state[CTR];
m_state[13] = 0;
m_state[14] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+16);
m_state[15] = GetWord<word32>(false, LITTLE_ENDIAN_ORDER, iv+20);
}
void XChaCha20_Policy::SeekToIteration(lword iterationCount)
{
// Should we throw here??? XChaCha does not have a block
// counter, so I'm not sure how to seek on it.
CRYPTOPP_ASSERT(0); CRYPTOPP_UNUSED(iterationCount);
}
unsigned int XChaCha20_Policy::GetAlignment() const
{
return ChaCha_GetAlignment();
}
unsigned int XChaCha20_Policy::GetOptimalBlockSize() const
{
return ChaCha_GetOptimalBlockSize();
}
void XChaCha20_Policy::OperateKeystream(KeystreamOperation operation,
byte *output, const byte *input, size_t iterationCount)
{
ChaCha_OperateKeystream(operation, m_state, m_state[12], m_state[13],
ROUNDS, output, input, iterationCount);
}
NAMESPACE_END