mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-30 05:10:40 +00:00
863 lines
31 KiB
C++
863 lines
31 KiB
C++
// simon_simd.cpp - written and placed in the public domain by Jeffrey Walton
|
|
//
|
|
// This source file uses intrinsics and built-ins to gain access to
|
|
// SSSE3, ARM NEON and ARMv8a, and Altivec instructions. A separate
|
|
// source file is needed because additional CXXFLAGS are required to enable
|
|
// the appropriate instructions sets in some build configurations.
|
|
|
|
#include "pch.h"
|
|
#include "config.h"
|
|
|
|
#include "simon.h"
|
|
#include "misc.h"
|
|
|
|
// Uncomment for benchmarking C++ against SSE or NEON.
|
|
// Do so in both simon.cpp and simon_simd.cpp.
|
|
// #undef CRYPTOPP_SSSE3_AVAILABLE
|
|
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
|
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE)
|
|
# include "adv_simd.h"
|
|
# include <pmmintrin.h>
|
|
# include <tmmintrin.h>
|
|
#endif
|
|
|
|
#if defined(__XOP__)
|
|
# include <ammintrin.h>
|
|
# if defined(__GNUC__)
|
|
# include <x86intrin.h>
|
|
# endif
|
|
#endif
|
|
|
|
#if (CRYPTOPP_ARM_NEON_HEADER)
|
|
# include "adv_simd.h"
|
|
# include <arm_neon.h>
|
|
#endif
|
|
|
|
#if (CRYPTOPP_ARM_ACLE_HEADER)
|
|
# include <stdint.h>
|
|
# include <arm_acle.h>
|
|
#endif
|
|
|
|
#if defined(_M_ARM64)
|
|
# include "adv_simd.h"
|
|
#endif
|
|
|
|
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
|
|
# include "adv_simd.h"
|
|
# include "ppc_simd.h"
|
|
#endif
|
|
|
|
// Squash MS LNK4221 and libtool warnings
|
|
extern const char SIMON128_SIMD_FNAME[] = __FILE__;
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::byte;
|
|
using CryptoPP::word32;
|
|
using CryptoPP::word64;
|
|
using CryptoPP::vec_swap; // SunCC
|
|
|
|
// *************************** ARM NEON ************************** //
|
|
|
|
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
|
|
|
|
// Missing from Microsoft's ARM A-32 implementation
|
|
#if defined(_MSC_VER) && !defined(_M_ARM64)
|
|
inline uint64x2_t vld1q_dup_u64(const uint64_t* ptr)
|
|
{
|
|
return vmovq_n_u64(*ptr);
|
|
}
|
|
#endif
|
|
|
|
template <class T>
|
|
inline T UnpackHigh64(const T& a, const T& b)
|
|
{
|
|
const uint64x1_t x(vget_high_u64((uint64x2_t)a));
|
|
const uint64x1_t y(vget_high_u64((uint64x2_t)b));
|
|
return (T)vcombine_u64(x, y);
|
|
}
|
|
|
|
template <class T>
|
|
inline T UnpackLow64(const T& a, const T& b)
|
|
{
|
|
const uint64x1_t x(vget_low_u64((uint64x2_t)a));
|
|
const uint64x1_t y(vget_low_u64((uint64x2_t)b));
|
|
return (T)vcombine_u64(x, y);
|
|
}
|
|
|
|
template <unsigned int R>
|
|
inline uint64x2_t RotateLeft64(const uint64x2_t& val)
|
|
{
|
|
const uint64x2_t a(vshlq_n_u64(val, R));
|
|
const uint64x2_t b(vshrq_n_u64(val, 64 - R));
|
|
return vorrq_u64(a, b);
|
|
}
|
|
|
|
template <unsigned int R>
|
|
inline uint64x2_t RotateRight64(const uint64x2_t& val)
|
|
{
|
|
const uint64x2_t a(vshlq_n_u64(val, 64 - R));
|
|
const uint64x2_t b(vshrq_n_u64(val, R));
|
|
return vorrq_u64(a, b);
|
|
}
|
|
|
|
#if defined(__aarch32__) || defined(__aarch64__)
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
|
|
template <>
|
|
inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val)
|
|
{
|
|
const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
|
|
const uint8x16_t mask = vld1q_u8(maskb);
|
|
|
|
return vreinterpretq_u64_u8(
|
|
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
|
|
}
|
|
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
|
|
template <>
|
|
inline uint64x2_t RotateRight64<8>(const uint64x2_t& val)
|
|
{
|
|
const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
|
|
const uint8x16_t mask = vld1q_u8(maskb);
|
|
|
|
return vreinterpretq_u64_u8(
|
|
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
|
|
}
|
|
#endif
|
|
|
|
inline uint64x2_t SIMON128_f(const uint64x2_t& val)
|
|
{
|
|
return veorq_u64(RotateLeft64<2>(val),
|
|
vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val)));
|
|
}
|
|
|
|
inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
uint64x2_t x1 = UnpackHigh64(block0, block1);
|
|
uint64x2_t y1 = UnpackLow64(block0, block1);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
|
|
{
|
|
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
|
|
|
|
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
|
|
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1);
|
|
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
|
|
std::swap(x1, y1);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = UnpackLow64(y1, x1);
|
|
block1 = UnpackHigh64(y1, x1);
|
|
}
|
|
|
|
inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
|
|
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
uint64x2_t x1 = UnpackHigh64(block0, block1);
|
|
uint64x2_t y1 = UnpackLow64(block0, block1);
|
|
uint64x2_t x2 = UnpackHigh64(block2, block3);
|
|
uint64x2_t y2 = UnpackLow64(block2, block3);
|
|
uint64x2_t x3 = UnpackHigh64(block4, block5);
|
|
uint64x2_t y3 = UnpackLow64(block4, block5);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
|
|
{
|
|
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
|
|
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1);
|
|
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1);
|
|
|
|
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
|
|
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
|
|
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2);
|
|
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
|
|
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
|
|
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk);
|
|
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk);
|
|
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = UnpackLow64(y1, x1);
|
|
block1 = UnpackHigh64(y1, x1);
|
|
block2 = UnpackLow64(y2, x2);
|
|
block3 = UnpackHigh64(y2, x2);
|
|
block4 = UnpackLow64(y3, x3);
|
|
block5 = UnpackHigh64(y3, x3);
|
|
}
|
|
|
|
inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
uint64x2_t x1 = UnpackHigh64(block0, block1);
|
|
uint64x2_t y1 = UnpackLow64(block0, block1);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
std::swap(x1, y1);
|
|
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
|
|
|
|
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1);
|
|
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
|
|
|
|
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i);
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = UnpackLow64(y1, x1);
|
|
block1 = UnpackHigh64(y1, x1);
|
|
}
|
|
|
|
inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
|
|
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
uint64x2_t x1 = UnpackHigh64(block0, block1);
|
|
uint64x2_t y1 = UnpackLow64(block0, block1);
|
|
uint64x2_t x2 = UnpackHigh64(block2, block3);
|
|
uint64x2_t y2 = UnpackLow64(block2, block3);
|
|
uint64x2_t x3 = UnpackHigh64(block4, block5);
|
|
uint64x2_t y3 = UnpackLow64(block4, block5);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
|
|
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
|
|
|
|
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
|
|
y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2));
|
|
y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1);
|
|
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
|
|
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1);
|
|
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1);
|
|
|
|
const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i);
|
|
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
|
|
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2);
|
|
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = UnpackLow64(y1, x1);
|
|
block1 = UnpackHigh64(y1, x1);
|
|
block2 = UnpackLow64(y2, x2);
|
|
block3 = UnpackHigh64(y2, x2);
|
|
block4 = UnpackLow64(y3, x3);
|
|
block5 = UnpackHigh64(y3, x3);
|
|
}
|
|
|
|
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
|
|
|
|
// ***************************** IA-32 ***************************** //
|
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE)
|
|
|
|
// GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html
|
|
#ifndef DOUBLE_CAST
|
|
# define DOUBLE_CAST(x) ((double *)(void *)(x))
|
|
#endif
|
|
#ifndef CONST_DOUBLE_CAST
|
|
# define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x))
|
|
#endif
|
|
|
|
inline void Swap128(__m128i& a,__m128i& b)
|
|
{
|
|
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
|
|
// __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
|
|
// SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
|
|
vec_swap(a, b);
|
|
#else
|
|
std::swap(a, b);
|
|
#endif
|
|
}
|
|
|
|
template <unsigned int R>
|
|
inline __m128i RotateLeft64(const __m128i& val)
|
|
{
|
|
#if defined(__XOP__)
|
|
return _mm_roti_epi64(val, R);
|
|
#else
|
|
return _mm_or_si128(
|
|
_mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
|
|
#endif
|
|
}
|
|
|
|
template <unsigned int R>
|
|
inline __m128i RotateRight64(const __m128i& val)
|
|
{
|
|
#if defined(__XOP__)
|
|
return _mm_roti_epi64(val, 64-R);
|
|
#else
|
|
return _mm_or_si128(
|
|
_mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R));
|
|
#endif
|
|
}
|
|
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
|
|
template <>
|
|
__m128i RotateLeft64<8>(const __m128i& val)
|
|
{
|
|
#if defined(__XOP__)
|
|
return _mm_roti_epi64(val, 8);
|
|
#else
|
|
const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7);
|
|
return _mm_shuffle_epi8(val, mask);
|
|
#endif
|
|
}
|
|
|
|
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
|
|
template <>
|
|
__m128i RotateRight64<8>(const __m128i& val)
|
|
{
|
|
#if defined(__XOP__)
|
|
return _mm_roti_epi64(val, 64-8);
|
|
#else
|
|
const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1);
|
|
return _mm_shuffle_epi8(val, mask);
|
|
#endif
|
|
}
|
|
|
|
inline __m128i SIMON128_f(const __m128i& v)
|
|
{
|
|
return _mm_xor_si128(RotateLeft64<2>(v),
|
|
_mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v)));
|
|
}
|
|
|
|
inline void SIMON128_Enc_Block(__m128i &block0, __m128i &block1,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
|
|
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
|
|
|
|
const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
|
|
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
|
|
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
|
|
Swap128(x1, y1);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = _mm_unpacklo_epi64(y1, x1);
|
|
block1 = _mm_unpackhi_epi64(y1, x1);
|
|
}
|
|
|
|
inline void SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1,
|
|
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
|
|
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
|
|
__m128i x2 = _mm_unpackhi_epi64(block2, block3);
|
|
__m128i y2 = _mm_unpacklo_epi64(block2, block3);
|
|
__m128i x3 = _mm_unpackhi_epi64(block4, block5);
|
|
__m128i y3 = _mm_unpacklo_epi64(block4, block5);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1) - 1; i += 2)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const __m128i rk1 = _mm_load_si128(CONST_M128_CAST(subkeys+i*2));
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
|
|
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1);
|
|
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1);
|
|
|
|
// Round keys are pre-splated in forward direction
|
|
const __m128i rk2 = _mm_load_si128(CONST_M128_CAST(subkeys+(i+1)*2));
|
|
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
|
|
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2);
|
|
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const __m128i rk = _mm_load_si128(CONST_M128_CAST(subkeys+(rounds-1)*2));
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
|
|
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk);
|
|
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk);
|
|
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = _mm_unpacklo_epi64(y1, x1);
|
|
block1 = _mm_unpackhi_epi64(y1, x1);
|
|
block2 = _mm_unpacklo_epi64(y2, x2);
|
|
block3 = _mm_unpackhi_epi64(y2, x2);
|
|
block4 = _mm_unpacklo_epi64(y3, x3);
|
|
block5 = _mm_unpackhi_epi64(y3, x3);
|
|
}
|
|
|
|
inline void SIMON128_Dec_Block(__m128i &block0, __m128i &block1,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
|
|
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
const __m128i rk = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
|
|
|
|
Swap128(x1, y1);
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const __m128i rk1 = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1)));
|
|
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
|
|
|
|
const __m128i rk2 = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i)));
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = _mm_unpacklo_epi64(y1, x1);
|
|
block1 = _mm_unpackhi_epi64(y1, x1);
|
|
}
|
|
|
|
inline void SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1,
|
|
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
|
|
const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
|
|
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
|
|
__m128i x2 = _mm_unpackhi_epi64(block2, block3);
|
|
__m128i y2 = _mm_unpacklo_epi64(block2, block3);
|
|
__m128i x3 = _mm_unpackhi_epi64(block4, block5);
|
|
__m128i y3 = _mm_unpacklo_epi64(block4, block5);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
const __m128i rk = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
|
|
|
|
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
|
|
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2));
|
|
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const __m128i rk1 = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1)));
|
|
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
|
|
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1);
|
|
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1);
|
|
|
|
const __m128i rk2 = _mm_castpd_si128(
|
|
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i)));
|
|
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
|
|
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2);
|
|
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2);
|
|
}
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = _mm_unpacklo_epi64(y1, x1);
|
|
block1 = _mm_unpackhi_epi64(y1, x1);
|
|
block2 = _mm_unpacklo_epi64(y2, x2);
|
|
block3 = _mm_unpackhi_epi64(y2, x2);
|
|
block4 = _mm_unpacklo_epi64(y3, x3);
|
|
block5 = _mm_unpackhi_epi64(y3, x3);
|
|
}
|
|
|
|
#endif // CRYPTOPP_SSSE3_AVAILABLE
|
|
|
|
// ***************************** Altivec ***************************** //
|
|
|
|
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
|
|
|
|
// Altivec uses native 64-bit types on 64-bit environments, or 32-bit types
|
|
// in 32-bit environments. Speck128 will use the appropriate type for the
|
|
// environment. Functions like VecAdd64 have two overloads, one for each
|
|
// environment. The 32-bit overload treats uint32x4_p like a 64-bit type,
|
|
// and does things like perform a add with carry or subtract with borrow.
|
|
|
|
// Speck128 on Power8 performed as expected because of 64-bit environment.
|
|
// Performance sucked on old PowerPC machines because of 32-bit environments.
|
|
// At Crypto++ 8.3 we added an implementation that operated on 32-bit words.
|
|
// Native 64-bit Speck128 performance dropped from about 4.1 to 6.3 cpb, but
|
|
// 32-bit Speck128 improved from 66.5 cpb to 10.4 cpb. Overall it was a
|
|
// good win even though we lost some performance in 64-bit environments.
|
|
|
|
using CryptoPP::uint8x16_p;
|
|
using CryptoPP::uint32x4_p;
|
|
#if defined(_ARCH_PWR8)
|
|
using CryptoPP::uint64x2_p;
|
|
#endif
|
|
|
|
using CryptoPP::VecAdd64;
|
|
using CryptoPP::VecSub64;
|
|
using CryptoPP::VecAnd64;
|
|
using CryptoPP::VecOr64;
|
|
using CryptoPP::VecXor64;
|
|
using CryptoPP::VecRotateLeft64;
|
|
using CryptoPP::VecRotateRight64;
|
|
using CryptoPP::VecSplatElement64;
|
|
using CryptoPP::VecLoad;
|
|
using CryptoPP::VecLoadAligned;
|
|
using CryptoPP::VecPermute;
|
|
|
|
#if defined(_ARCH_PWR8)
|
|
#define simon128_t uint64x2_p
|
|
#else
|
|
#define simon128_t uint32x4_p
|
|
#endif
|
|
|
|
inline simon128_t SIMON128_f(const simon128_t val)
|
|
{
|
|
return (simon128_t)VecXor64(VecRotateLeft64<2>(val),
|
|
VecAnd64(VecRotateLeft64<1>(val), VecRotateLeft64<8>(val)));
|
|
}
|
|
|
|
inline void SIMON128_Enc_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
|
|
simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
|
|
const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
|
|
const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
|
|
const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
|
|
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
|
|
x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
|
|
const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
|
|
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
|
|
|
|
std::swap(x1, y1);
|
|
}
|
|
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
//const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
//const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block = (uint32x4_p)VecPermute(x1, y1, m3);
|
|
}
|
|
|
|
inline void SIMON128_Dec_Block(uint32x4_p &block, const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
simon128_t x1 = (simon128_t)VecPermute(block, block, m1);
|
|
simon128_t y1 = (simon128_t)VecPermute(block, block, m2);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
std::swap(x1, y1);
|
|
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
|
|
const simon128_t tk = (simon128_t)VecLoad(ptr);
|
|
const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
|
|
|
|
y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
|
|
const simon128_t tk = (simon128_t)VecLoad(ptr);
|
|
const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
|
|
const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
|
|
|
|
x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
|
|
}
|
|
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
//const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
//const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block = (uint32x4_p)VecPermute(x1, y1, m3);
|
|
}
|
|
|
|
inline void SIMON128_Enc_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
|
|
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
|
|
uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
|
|
simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
|
|
simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
|
|
simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
|
|
simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
|
|
simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
|
|
|
|
for (size_t i = 0; i < static_cast<size_t>(rounds & ~1)-1; i += 2)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const word32* ptr1 = reinterpret_cast<const word32*>(subkeys+i*2);
|
|
const simon128_t rk1 = (simon128_t)VecLoadAligned(ptr1);
|
|
|
|
const word32* ptr2 = reinterpret_cast<const word32*>(subkeys+(i+1)*2);
|
|
const simon128_t rk2 = (simon128_t)VecLoadAligned(ptr2);
|
|
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk1);
|
|
y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk1);
|
|
y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk1);
|
|
|
|
x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk2);
|
|
x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk2);
|
|
x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk2);
|
|
}
|
|
|
|
if (rounds & 1)
|
|
{
|
|
// Round keys are pre-splated in forward direction
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+(rounds-1)*2);
|
|
const simon128_t rk = (simon128_t)VecLoadAligned(ptr);
|
|
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk);
|
|
y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk);
|
|
y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk);
|
|
|
|
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
|
|
}
|
|
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
|
|
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
|
|
block2 = (uint32x4_p)VecPermute(x2, y2, m3);
|
|
block3 = (uint32x4_p)VecPermute(x2, y2, m4);
|
|
block4 = (uint32x4_p)VecPermute(x3, y3, m3);
|
|
block5 = (uint32x4_p)VecPermute(x3, y3, m4);
|
|
}
|
|
|
|
inline void SIMON128_Dec_6_Blocks(uint32x4_p &block0, uint32x4_p &block1,
|
|
uint32x4_p &block2, uint32x4_p &block3, uint32x4_p &block4,
|
|
uint32x4_p &block5, const word64 *subkeys, unsigned int rounds)
|
|
{
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m1 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m2 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m1 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m2 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
|
|
simon128_t x1 = (simon128_t)VecPermute(block0, block1, m1);
|
|
simon128_t y1 = (simon128_t)VecPermute(block0, block1, m2);
|
|
simon128_t x2 = (simon128_t)VecPermute(block2, block3, m1);
|
|
simon128_t y2 = (simon128_t)VecPermute(block2, block3, m2);
|
|
simon128_t x3 = (simon128_t)VecPermute(block4, block5, m1);
|
|
simon128_t y3 = (simon128_t)VecPermute(block4, block5, m2);
|
|
|
|
if (rounds & 1)
|
|
{
|
|
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
|
|
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+rounds-1);
|
|
const simon128_t tk = (simon128_t)VecLoad(ptr);
|
|
const simon128_t rk = (simon128_t)VecSplatElement64<0>(tk);
|
|
|
|
y1 = VecXor64(VecXor64(y1, rk), SIMON128_f(x1));
|
|
y2 = VecXor64(VecXor64(y2, rk), SIMON128_f(x2));
|
|
y3 = VecXor64(VecXor64(y3, rk), SIMON128_f(x3));
|
|
rounds--;
|
|
}
|
|
|
|
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
|
|
{
|
|
const word32* ptr = reinterpret_cast<const word32*>(subkeys+i);
|
|
const simon128_t tk = (simon128_t)VecLoad(ptr);
|
|
const simon128_t rk1 = (simon128_t)VecSplatElement64<1>(tk);
|
|
const simon128_t rk2 = (simon128_t)VecSplatElement64<0>(tk);
|
|
|
|
x1 = VecXor64(VecXor64(x1, SIMON128_f(y1)), rk1);
|
|
x2 = VecXor64(VecXor64(x2, SIMON128_f(y2)), rk1);
|
|
x3 = VecXor64(VecXor64(x3, SIMON128_f(y3)), rk1);
|
|
|
|
y1 = VecXor64(VecXor64(y1, SIMON128_f(x1)), rk2);
|
|
y2 = VecXor64(VecXor64(y2, SIMON128_f(x2)), rk2);
|
|
y3 = VecXor64(VecXor64(y3, SIMON128_f(x3)), rk2);
|
|
}
|
|
|
|
#if (CRYPTOPP_BIG_ENDIAN)
|
|
const uint8x16_p m3 = {31,30,29,28,27,26,25,24, 15,14,13,12,11,10,9,8};
|
|
const uint8x16_p m4 = {23,22,21,20,19,18,17,16, 7,6,5,4,3,2,1,0};
|
|
#else
|
|
const uint8x16_p m3 = {7,6,5,4,3,2,1,0, 23,22,21,20,19,18,17,16};
|
|
const uint8x16_p m4 = {15,14,13,12,11,10,9,8, 31,30,29,28,27,26,25,24};
|
|
#endif
|
|
|
|
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
|
|
block0 = (uint32x4_p)VecPermute(x1, y1, m3);
|
|
block1 = (uint32x4_p)VecPermute(x1, y1, m4);
|
|
block2 = (uint32x4_p)VecPermute(x2, y2, m3);
|
|
block3 = (uint32x4_p)VecPermute(x2, y2, m4);
|
|
block4 = (uint32x4_p)VecPermute(x3, y3, m3);
|
|
block5 = (uint32x4_p)VecPermute(x3, y3, m4);
|
|
}
|
|
|
|
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
|
|
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
///////////////////////////////////////////////////////////////////////
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
// *************************** ARM NEON **************************** //
|
|
|
|
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
|
|
size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
|
|
size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
|
|
|
|
// ***************************** IA-32 ***************************** //
|
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE)
|
|
size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
|
|
size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
#endif // CRYPTOPP_SSSE3_AVAILABLE
|
|
|
|
// ***************************** Altivec ***************************** //
|
|
|
|
#if (CRYPTOPP_ALTIVEC_AVAILABLE)
|
|
size_t SIMON128_Enc_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
|
|
size_t SIMON128_Dec_AdvancedProcessBlocks_ALTIVEC(const word64* subKeys, size_t rounds,
|
|
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
return AdvancedProcessBlocks128_6x1_ALTIVEC(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
|
|
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
|
|
}
|
|
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
|
|
|
|
NAMESPACE_END
|