ext-cryptopp/asn.h
2019-09-29 15:09:25 -04:00

824 lines
30 KiB
C++

// asn.h - originally written and placed in the public domain by Wei Dai
/// \file asn.h
/// \brief Classes and functions for working with ANS.1 objects
#ifndef CRYPTOPP_ASN_H
#define CRYPTOPP_ASN_H
#include "cryptlib.h"
#include "filters.h"
#include "smartptr.h"
#include "stdcpp.h"
#include "queue.h"
#include "misc.h"
#include <iosfwd>
// Issue 340
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# pragma GCC diagnostic ignored "-Wsign-conversion"
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief ASN.1 types
/// \note These tags and flags are not complete
enum ASNTag
{
BOOLEAN = 0x01,
INTEGER = 0x02,
BIT_STRING = 0x03,
OCTET_STRING = 0x04,
TAG_NULL = 0x05,
OBJECT_IDENTIFIER = 0x06,
OBJECT_DESCRIPTOR = 0x07,
EXTERNAL = 0x08,
REAL = 0x09,
ENUMERATED = 0x0a,
UTF8_STRING = 0x0c,
SEQUENCE = 0x10,
SET = 0x11,
NUMERIC_STRING = 0x12,
PRINTABLE_STRING = 0x13,
T61_STRING = 0x14,
VIDEOTEXT_STRING = 0x15,
IA5_STRING = 0x16,
UTC_TIME = 0x17,
GENERALIZED_TIME = 0x18,
GRAPHIC_STRING = 0x19,
VISIBLE_STRING = 0x1a,
GENERAL_STRING = 0x1b
};
/// \brief ASN.1 flags
/// \note These tags and flags are not complete
enum ASNIdFlag
{
UNIVERSAL = 0x00,
// DATA = 0x01,
// HEADER = 0x02,
PRIMITIVE = 0x00,
CONSTRUCTED = 0x20,
APPLICATION = 0x40,
CONTEXT_SPECIFIC = 0x80,
PRIVATE = 0xc0
};
/// \brief Raises a BERDecodeErr
inline void BERDecodeError() {throw BERDecodeErr();}
/// \brief Exception thrown when an unknown object identifier is encountered
class CRYPTOPP_DLL UnknownOID : public BERDecodeErr
{
public:
/// \brief Construct an UnknownOID
UnknownOID() : BERDecodeErr("BER decode error: unknown object identifier") {}
/// \brief Construct an UnknownOID
/// \param err error message to use for the execption
UnknownOID(const char *err) : BERDecodeErr(err) {}
};
/// \brief DER encode a length
/// \param bt BufferedTransformation object for writing
/// \param length the size to encode
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API DERLengthEncode(BufferedTransformation &bt, lword length);
/// \brief BER decode a length
/// \param bt BufferedTransformation object for reading
/// \param length the decoded size
/// \returns true if the value was decoded
/// \throws BERDecodeError if the value fails to decode or is too large for size_t
/// \details BERLengthDecode() returns false if the encoding is indefinite length.
CRYPTOPP_DLL bool CRYPTOPP_API BERLengthDecode(BufferedTransformation &bt, size_t &length);
/// \brief DER encode NULL
/// \param bt BufferedTransformation object for writing
CRYPTOPP_DLL void CRYPTOPP_API DEREncodeNull(BufferedTransformation &bt);
/// \brief BER decode NULL
/// \param bt BufferedTransformation object for reading
CRYPTOPP_DLL void CRYPTOPP_API BERDecodeNull(BufferedTransformation &bt);
/// \brief DER encode octet string
/// \param bt BufferedTransformation object for writing
/// \param str the string to encode
/// \param strLen the length of the string
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API DEREncodeOctetString(BufferedTransformation &bt, const byte *str, size_t strLen);
/// \brief DER encode octet string
/// \param bt BufferedTransformation object for reading
/// \param str the string to encode
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API DEREncodeOctetString(BufferedTransformation &bt, const SecByteBlock &str);
/// \brief BER decode octet string
/// \param bt BufferedTransformation object for reading
/// \param str the decoded string
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API BERDecodeOctetString(BufferedTransformation &bt, SecByteBlock &str);
/// \brief BER decode octet string
/// \param bt BufferedTransformation object for reading
/// \param str the decoded string
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API BERDecodeOctetString(BufferedTransformation &bt, BufferedTransformation &str);
/// \brief DER encode text string
/// \param bt BufferedTransformation object for writing
/// \param str the string to encode
/// \param asnTag the ASN.1 type
/// \returns the number of octets used for the encoding
/// \details DEREncodeTextString() can be used for UTF8_STRING, PRINTABLE_STRING, and IA5_STRING
CRYPTOPP_DLL size_t CRYPTOPP_API DEREncodeTextString(BufferedTransformation &bt, const std::string &str, byte asnTag);
/// \brief BER decode text string
/// \param bt BufferedTransformation object for reading
/// \param str the string to encode
/// \param asnTag the ASN.1 type
/// \details BERDecodeTextString() can be used for UTF8_STRING, PRINTABLE_STRING, and IA5_STRING
CRYPTOPP_DLL size_t CRYPTOPP_API BERDecodeTextString(BufferedTransformation &bt, std::string &str, byte asnTag);
/// \brief DER encode bit string
/// \param bt BufferedTransformation object for writing
/// \param str the string to encode
/// \param strLen the length of the string
/// \param unusedBits the number of unused bits
/// \returns the number of octets used for the encoding
CRYPTOPP_DLL size_t CRYPTOPP_API DEREncodeBitString(BufferedTransformation &bt, const byte *str, size_t strLen, unsigned int unusedBits=0);
/// \brief DER decode bit string
/// \param bt BufferedTransformation object for reading
/// \param str the decoded string
/// \param unusedBits the number of unused bits
CRYPTOPP_DLL size_t CRYPTOPP_API BERDecodeBitString(BufferedTransformation &bt, SecByteBlock &str, unsigned int &unusedBits);
/// \brief BER decode and DER re-encode
/// \param bt BufferedTransformation object for writing
/// \param dest BufferedTransformation object
CRYPTOPP_DLL void CRYPTOPP_API DERReencode(BufferedTransformation &bt, BufferedTransformation &dest);
/// \brief Object Identifier
class CRYPTOPP_DLL OID
{
public:
virtual ~OID() {}
/// \brief Construct an OID
OID() {}
/// \brief Construct an OID
/// \param v value to initialize the OID
OID(word32 v) : m_values(1, v) {}
/// \brief Construct an OID
/// \param bt BufferedTransformation object
OID(BufferedTransformation &bt) {BERDecode(bt);}
/// \brief Append a value to an OID
/// \param rhs the value to append
inline OID & operator+=(word32 rhs) {m_values.push_back(rhs); return *this;}
/// \brief DER encode this OID
/// \param bt BufferedTransformation object
void DEREncode(BufferedTransformation &bt) const;
/// \brief BER decode an OID
/// \param bt BufferedTransformation object
void BERDecode(BufferedTransformation &bt);
/// \brief BER decode an OID
/// \param bt BufferedTransformation object
/// \throws BERDecodeErr() if decoded value doesn't match an expected OID
/// \details BERDecodeAndCheck() can be used to parse an OID and verify it matches an expected.
/// <pre>
/// BERSequenceDecoder key(bt);
/// ...
/// BERSequenceDecoder algorithm(key);
/// GetAlgorithmID().BERDecodeAndCheck(algorithm);
/// </pre>
void BERDecodeAndCheck(BufferedTransformation &bt) const;
bool Empty() const {
return m_values.empty();
}
const std::vector<word32>& GetValues() const {
return m_values;
}
std::ostream& Print(std::ostream& out) const;
protected:
friend bool operator==(const OID &lhs, const OID &rhs);
friend bool operator!=(const OID &lhs, const OID &rhs);
friend bool operator<(const OID &lhs, const OID &rhs);
std::vector<word32> m_values;
private:
static void EncodeValue(BufferedTransformation &bt, word32 v);
static size_t DecodeValue(BufferedTransformation &bt, word32 &v);
};
/// \brief ASN.1 encoded object filter
class EncodedObjectFilter : public Filter
{
public:
enum Flag {PUT_OBJECTS=1, PUT_MESSANGE_END_AFTER_EACH_OBJECT=2, PUT_MESSANGE_END_AFTER_ALL_OBJECTS=4, PUT_MESSANGE_SERIES_END_AFTER_ALL_OBJECTS=8};
enum State {IDENTIFIER, LENGTH, BODY, TAIL, ALL_DONE} m_state;
virtual ~EncodedObjectFilter() {}
/// \brief Construct an EncodedObjectFilter
/// \param attachment a BufferedTrasformation to attach to this object
/// \param nObjects the number of objects
/// \param flags bitwise OR of EncodedObjectFilter::Flag
EncodedObjectFilter(BufferedTransformation *attachment = NULLPTR, unsigned int nObjects = 1, word32 flags = 0);
/// \brief Input a byte buffer for processing
/// \param inString the byte buffer to process
/// \param length the size of the string, in bytes
void Put(const byte *inString, size_t length);
unsigned int GetNumberOfCompletedObjects() const {return m_nCurrentObject;}
unsigned long GetPositionOfObject(unsigned int i) const {return m_positions[i];}
private:
BufferedTransformation & CurrentTarget();
ByteQueue m_queue;
std::vector<unsigned int> m_positions;
lword m_lengthRemaining;
word32 m_nObjects, m_nCurrentObject, m_level, m_flags;
byte m_id;
};
/// \brief BER General Decoder
class CRYPTOPP_DLL BERGeneralDecoder : public Store
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SEQUENCE | CONSTRUCTED};
virtual ~BERGeneralDecoder();
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \details BERGeneralDecoder uses DefaultTag
explicit BERGeneralDecoder(BufferedTransformation &inQueue);
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERGeneralDecoder(BufferedTransformation &inQueue, byte asnTag);
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERGeneralDecoder(BERGeneralDecoder &inQueue, byte asnTag);
/// \brief Determine length encoding
/// \returns true if the ASN.1 object is definite length encoded, false otherwise
bool IsDefiniteLength() const {
return m_definiteLength;
}
/// \brief Determine remaining length
/// \returns number of octets that remain to be consumed
/// \details RemainingLength() is only valid if IsDefiniteLength()
/// returns true.
lword RemainingLength() const {
CRYPTOPP_ASSERT(m_definiteLength);
return IsDefiniteLength() ? m_length : 0;
}
/// \brief Determine end of stream
/// \returns true if all octets have been consumed, false otherwise
bool EndReached() const;
/// \brief Determine next octet
/// \returns next octet in the stream
/// \details PeekByte does not consume the octet.
/// \throws BERDecodeError if there are no octets remaining
byte PeekByte() const;
/// \brief Determine next octet
/// \details CheckByte reads the next byte in the stream and verifies
/// the octet matches b.
/// \throws BERDecodeError if the next octet is not b
void CheckByte(byte b);
/// \brief Transfer bytes to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param transferBytes the number of bytes to transfer
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when
/// processing input
/// \return the number of bytes that remain in the transfer block
/// (i.e., bytes not transferred)
/// \details TransferTo2() removes bytes and moves
/// them to the destination. Transfer begins at the index position
/// in the current stream, and not from an absolute position in the
/// stream.
/// \details transferBytes is an \a IN and \a OUT parameter. When
/// the call is made, transferBytes is the requested size of the
/// transfer. When the call returns, transferBytes is the number
/// of bytes that were transferred.
size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true);
/// \brief Copy bytes to another BufferedTransformation
/// \param target the destination BufferedTransformation
/// \param begin the 0-based index of the first byte to copy in
/// the stream
/// \param end the 0-based index of the last byte to copy in
/// the stream
/// \param channel the channel on which the transfer should occur
/// \param blocking specifies whether the object should block when
/// processing input
/// \return the number of bytes that remain in the copy block
/// (i.e., bytes not copied)
/// \details CopyRangeTo2 copies bytes to the
/// destination. The bytes are not removed from this object. Copying
/// begins at the index position in the current stream, and not from
/// an absolute position in the stream.
/// \details begin is an \a IN and \a OUT parameter. When the call is
/// made, begin is the starting position of the copy. When the call
/// returns, begin is the position of the first byte that was \a not
/// copied (which may be different than end). begin can be used for
/// subsequent calls to CopyRangeTo2().
size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const;
/// \brief Signals the end of messages to the object
/// \details Call this to denote end of sequence
void MessageEnd();
protected:
BufferedTransformation &m_inQueue;
lword m_length;
bool m_finished, m_definiteLength;
private:
void Init(byte asnTag);
void StoreInitialize(const NameValuePairs &parameters)
{CRYPTOPP_UNUSED(parameters); CRYPTOPP_ASSERT(false);}
lword ReduceLength(lword delta);
};
/// \brief DER General Encoder
class CRYPTOPP_DLL DERGeneralEncoder : public ByteQueue
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SEQUENCE | CONSTRUCTED};
virtual ~DERGeneralEncoder();
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \details DERGeneralEncoder uses DefaultTag
explicit DERGeneralEncoder(BufferedTransformation &outQueue);
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERGeneralEncoder(BufferedTransformation &outQueue, byte asnTag);
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERGeneralEncoder(DERGeneralEncoder &outQueue, byte asnTag);
/// \brief Signals the end of messages to the object
/// \details Call this to denote end of sequence
void MessageEnd();
private:
BufferedTransformation &m_outQueue;
byte m_asnTag;
bool m_finished;
};
/// \brief BER Sequence Decoder
class CRYPTOPP_DLL BERSequenceDecoder : public BERGeneralDecoder
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SEQUENCE | CONSTRUCTED};
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \details BERSequenceDecoder uses DefaultTag
explicit BERSequenceDecoder(BufferedTransformation &inQueue)
: BERGeneralDecoder(inQueue, DefaultTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERSequenceDecoder(BufferedTransformation &inQueue, byte asnTag)
: BERGeneralDecoder(inQueue, asnTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \details BERSequenceDecoder uses DefaultTag
explicit BERSequenceDecoder(BERSequenceDecoder &inQueue)
: BERGeneralDecoder(inQueue, DefaultTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERSequenceDecoder(BERSequenceDecoder &inQueue, byte asnTag)
: BERGeneralDecoder(inQueue, asnTag) {}
};
/// \brief DER Sequence Encoder
class CRYPTOPP_DLL DERSequenceEncoder : public DERGeneralEncoder
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SEQUENCE | CONSTRUCTED};
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \details DERSequenceEncoder uses DefaultTag
explicit DERSequenceEncoder(BufferedTransformation &outQueue)
: DERGeneralEncoder(outQueue, DefaultTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERSequenceEncoder(BufferedTransformation &outQueue, byte asnTag)
: DERGeneralEncoder(outQueue, asnTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \details DERSequenceEncoder uses DefaultTag
explicit DERSequenceEncoder(DERSequenceEncoder &outQueue)
: DERGeneralEncoder(outQueue, DefaultTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERSequenceEncoder(DERSequenceEncoder &outQueue, byte asnTag)
: DERGeneralEncoder(outQueue, asnTag) {}
};
/// \brief BER Set Decoder
class CRYPTOPP_DLL BERSetDecoder : public BERGeneralDecoder
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SET | CONSTRUCTED};
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \details BERSetDecoder uses DefaultTag
explicit BERSetDecoder(BufferedTransformation &inQueue)
: BERGeneralDecoder(inQueue, DefaultTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERSetDecoder(BufferedTransformation &inQueue, byte asnTag)
: BERGeneralDecoder(inQueue, asnTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \details BERSetDecoder uses DefaultTag
explicit BERSetDecoder(BERSetDecoder &inQueue)
: BERGeneralDecoder(inQueue, DefaultTag) {}
/// \brief Construct an ASN.1 decoder
/// \param inQueue input byte queue
/// \param asnTag ASN.1 tag
explicit BERSetDecoder(BERSetDecoder &inQueue, byte asnTag)
: BERGeneralDecoder(inQueue, asnTag) {}
};
/// \brief DER Set Encoder
class CRYPTOPP_DLL DERSetEncoder : public DERGeneralEncoder
{
public:
/// \brief Default ASN.1 tag
enum {DefaultTag = SET | CONSTRUCTED};
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \details DERSetEncoder uses DefaultTag
explicit DERSetEncoder(BufferedTransformation &outQueue)
: DERGeneralEncoder(outQueue, DefaultTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERSetEncoder(BufferedTransformation &outQueue, byte asnTag)
: DERGeneralEncoder(outQueue, asnTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \details DERSetEncoder uses DefaultTag
explicit DERSetEncoder(DERSetEncoder &outQueue)
: DERGeneralEncoder(outQueue, DefaultTag) {}
/// \brief Construct an ASN.1 encoder
/// \param outQueue output byte queue
/// \param asnTag ASN.1 tag
explicit DERSetEncoder(DERSetEncoder &outQueue, byte asnTag)
: DERGeneralEncoder(outQueue, asnTag) {}
};
/// \brief Optional data encoder and decoder
/// \tparam T class or type
template <class T>
class ASNOptional : public member_ptr<T>
{
public:
/// \brief BER decode optional data
/// \param seqDecoder sequence with the optional ASN.1 data
/// \param tag ASN.1 tag to match as optional data
/// \param mask the mask to apply when matching the tag
/// \sa ASNTag and ASNIdFlag
void BERDecode(BERSequenceDecoder &seqDecoder, byte tag, byte mask = ~CONSTRUCTED)
{
byte b;
if (seqDecoder.Peek(b) && (b & mask) == tag)
reset(new T(seqDecoder));
}
/// \brief DER encode optional data
/// \param out BufferedTransformation object
void DEREncode(BufferedTransformation &out)
{
if (this->get() != NULLPTR)
this->get()->DEREncode(out);
}
};
/// \brief Encode and decode ASN.1 objects with additional information
/// \tparam BASE base class or type
/// \details Encodes and decodes public keys, private keys and group
/// parameters with OID identifying the algorithm or scheme.
template <class BASE>
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE ASN1CryptoMaterial : public ASN1Object, public BASE
{
public:
/// \brief DER encode ASN.1 object
/// \param bt BufferedTransformation object
/// \details Save() will write the OID associated with algorithm or scheme.
/// In the case of public and private keys, this function writes the
/// subjectPubicKeyInfo and privateKeyInfo parts.
void Save(BufferedTransformation &bt) const
{BEREncode(bt);}
/// \brief BER decode ASN.1 object
/// \param bt BufferedTransformation object
void Load(BufferedTransformation &bt)
{BERDecode(bt);}
};
/// \brief Encodes and decodes subjectPublicKeyInfo
class CRYPTOPP_DLL X509PublicKey : public ASN1CryptoMaterial<PublicKey>
{
public:
virtual ~X509PublicKey() {}
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
/// \brief Retrieves the OID of the algorithm
/// \returns OID of the algorithm
virtual OID GetAlgorithmID() const =0;
/// \brief Decode algorithm parameters
/// \param bt BufferedTransformation object
/// \sa BERDecodePublicKey, <A HREF="http://www.ietf.org/rfc/rfc2459.txt">RFC
/// 2459, section 7.3.1</A>
virtual bool BERDecodeAlgorithmParameters(BufferedTransformation &bt)
{BERDecodeNull(bt); return false;}
/// \brief Encode algorithm parameters
/// \param bt BufferedTransformation object
/// \sa DEREncodePublicKey, <A HREF="http://www.ietf.org/rfc/rfc2459.txt">RFC
/// 2459, section 7.3.1</A>
virtual bool DEREncodeAlgorithmParameters(BufferedTransformation &bt) const
{DEREncodeNull(bt); return false;}
/// \brief Decode subjectPublicKey part of subjectPublicKeyInfo
/// \param bt BufferedTransformation object
/// \param parametersPresent flag indicating if algorithm parameters are present
/// \param size number of octets to read for the parameters, in bytes
/// \details BERDecodePublicKey() the decodes subjectPublicKey part of
/// subjectPublicKeyInfo, without the BIT STRING header.
/// \details When <tt>parametersPresent = true</tt> then BERDecodePublicKey() calls
/// BERDecodeAlgorithmParameters() to parse algorithm parameters.
/// \sa BERDecodeAlgorithmParameters
virtual void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size) =0;
/// \brief Encode subjectPublicKey part of subjectPublicKeyInfo
/// \param bt BufferedTransformation object
/// \details DEREncodePublicKey() encodes the subjectPublicKey part of
/// subjectPublicKeyInfo, without the BIT STRING header.
/// \sa DEREncodeAlgorithmParameters
virtual void DEREncodePublicKey(BufferedTransformation &bt) const =0;
};
/// \brief Encodes and Decodes privateKeyInfo
class CRYPTOPP_DLL PKCS8PrivateKey : public ASN1CryptoMaterial<PrivateKey>
{
public:
virtual ~PKCS8PrivateKey() {}
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
/// \brief Retrieves the OID of the algorithm
/// \returns OID of the algorithm
virtual OID GetAlgorithmID() const =0;
/// \brief Decode optional parameters
/// \param bt BufferedTransformation object
/// \sa BERDecodePrivateKey, <A HREF="http://www.ietf.org/rfc/rfc2459.txt">RFC
/// 2459, section 7.3.1</A>
virtual bool BERDecodeAlgorithmParameters(BufferedTransformation &bt)
{BERDecodeNull(bt); return false;}
/// \brief Encode optional parameters
/// \param bt BufferedTransformation object
/// \sa DEREncodePrivateKey, <A HREF="http://www.ietf.org/rfc/rfc2459.txt">RFC
/// 2459, section 7.3.1</A>
virtual bool DEREncodeAlgorithmParameters(BufferedTransformation &bt) const
{DEREncodeNull(bt); return false;}
/// \brief Decode privateKey part of privateKeyInfo
/// \param bt BufferedTransformation object
/// \param parametersPresent flag indicating if algorithm parameters are present
/// \param size number of octets to read for the parameters, in bytes
/// \details BERDecodePrivateKey() the decodes privateKey part of privateKeyInfo,
/// without the OCTET STRING header.
/// \details When <tt>parametersPresent = true</tt> then BERDecodePrivateKey() calls
/// BERDecodeAlgorithmParameters() to parse algorithm parameters.
/// \sa BERDecodeAlgorithmParameters
virtual void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size) =0;
/// \brief Encode privateKey part of privateKeyInfo
/// \param bt BufferedTransformation object
/// \details DEREncodePrivateKey() encodes the privateKey part of privateKeyInfo,
/// without the OCTET STRING header.
/// \sa DEREncodeAlgorithmParameters
virtual void DEREncodePrivateKey(BufferedTransformation &bt) const =0;
/// \brief Decode optional attributes
/// \param bt BufferedTransformation object
/// \details BERDecodeOptionalAttributes() decodes optional attributes including
/// context-specific tag.
/// \sa BERDecodeAlgorithmParameters, DEREncodeOptionalAttributes
/// \note default implementation stores attributes to be output using
/// DEREncodeOptionalAttributes
virtual void BERDecodeOptionalAttributes(BufferedTransformation &bt);
/// \brief Encode optional attributes
/// \param bt BufferedTransformation object
/// \details DEREncodeOptionalAttributes() encodes optional attributes including
/// context-specific tag.
/// \sa BERDecodeAlgorithmParameters
virtual void DEREncodeOptionalAttributes(BufferedTransformation &bt) const;
protected:
ByteQueue m_optionalAttributes;
};
// ********************************************************
/// \brief DER Encode unsigned value
/// \tparam T class or type
/// \param out BufferedTransformation object
/// \param w unsigned value to encode
/// \param asnTag the ASN.1 type
/// \details DEREncodeUnsigned() can be used with INTEGER, BOOLEAN, and ENUM
template <class T>
size_t DEREncodeUnsigned(BufferedTransformation &out, T w, byte asnTag = INTEGER)
{
byte buf[sizeof(w)+1];
unsigned int bc;
if (asnTag == BOOLEAN)
{
buf[sizeof(w)] = w ? 0xff : 0;
bc = 1;
}
else
{
buf[0] = 0;
for (unsigned int i=0; i<sizeof(w); i++)
buf[i+1] = byte(w >> (sizeof(w)-1-i)*8);
bc = sizeof(w);
while (bc > 1 && buf[sizeof(w)+1-bc] == 0)
--bc;
if (buf[sizeof(w)+1-bc] & 0x80)
++bc;
}
out.Put(asnTag);
size_t lengthBytes = DERLengthEncode(out, bc);
out.Put(buf+sizeof(w)+1-bc, bc);
return 1+lengthBytes+bc;
}
/// \brief BER Decode unsigned value
/// \tparam T fundamental C++ type
/// \param in BufferedTransformation object
/// \param w the decoded value
/// \param asnTag the ASN.1 type
/// \param minValue the minimum expected value
/// \param maxValue the maximum expected value
/// \throws BERDecodeErr() if the value cannot be parsed or the decoded value is not within range.
/// \details DEREncodeUnsigned() can be used with INTEGER, BOOLEAN, and ENUM
template <class T>
void BERDecodeUnsigned(BufferedTransformation &in, T &w, byte asnTag = INTEGER,
T minValue = 0, T maxValue = T(0xffffffff))
{
byte b;
if (!in.Get(b) || b != asnTag)
BERDecodeError();
size_t bc;
bool definite = BERLengthDecode(in, bc);
if (!definite)
BERDecodeError();
if (bc > in.MaxRetrievable()) // Issue 346
BERDecodeError();
if (asnTag == BOOLEAN && bc != 1) // X.690, 8.2.1
BERDecodeError();
if ((asnTag == INTEGER || asnTag == ENUMERATED) && bc == 0) // X.690, 8.3.1 and 8.4
BERDecodeError();
SecByteBlock buf(bc);
if (bc != in.Get(buf, bc))
BERDecodeError();
// This consumes leading 0 octets. According to X.690, 8.3.2, it could be non-conforming behavior.
// X.690, 8.3.2 says "the bits of the first octet and bit 8 of the second octet ... (a) shall
// not all be ones and (b) shall not all be zeros ... These rules ensure that an integer value
// is always encoded in the smallest possible number of octet".
// We invented AER (Alternate Encoding Rules), which is more relaxed than BER, CER, and DER.
const byte *ptr = buf;
while (bc > sizeof(w) && *ptr == 0)
{
bc--;
ptr++;
}
if (bc > sizeof(w))
BERDecodeError();
w = 0;
for (unsigned int i=0; i<bc; i++)
w = (w << 8) | ptr[i];
if (w < minValue || w > maxValue)
BERDecodeError();
}
#ifdef CRYPTOPP_DOXYGEN_PROCESSING
/// \brief Compare two OIDs for equality
/// \param lhs the first OID
/// \param rhs the second OID
/// \returns true if the OIDs are equal, false otherwise
inline bool operator==(const OID &lhs, const OID &rhs);
/// \brief Compare two OIDs for inequality
/// \param lhs the first OID
/// \param rhs the second OID
/// \returns true if the OIDs are not equal, false otherwise
inline bool operator!=(const OID &lhs, const OID &rhs);
/// \brief Compare two OIDs for ordering
/// \param lhs the first OID
/// \param rhs the second OID
/// \returns true if the first OID is less than the second OID, false otherwise
/// \details operator<() calls std::lexicographical_compare() on each element in the array of values.
inline bool operator<(const OID &lhs, const OID &rhs);
/// \brief Append a value to an OID
/// \param lhs the OID
/// \param rhs the value to append
inline OID operator+(const OID &lhs, unsigned long rhs);
#else
inline bool operator==(const ::CryptoPP::OID &lhs, const ::CryptoPP::OID &rhs)
{return lhs.m_values == rhs.m_values;}
inline bool operator!=(const ::CryptoPP::OID &lhs, const ::CryptoPP::OID &rhs)
{return lhs.m_values != rhs.m_values;}
inline bool operator<(const ::CryptoPP::OID &lhs, const ::CryptoPP::OID &rhs)
{return std::lexicographical_compare(lhs.m_values.begin(), lhs.m_values.end(), rhs.m_values.begin(), rhs.m_values.end());}
inline ::CryptoPP::OID operator+(const ::CryptoPP::OID &lhs, unsigned long rhs)
{return ::CryptoPP::OID(lhs)+=rhs;}
inline std::ostream& operator<<(std::ostream& out, const OID &oid)
{ return oid.Print(out); }
#endif
NAMESPACE_END
// Issue 340
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif
#endif