ext-cryptopp/simon-simd.cpp
Jeffrey Walton 86acc8ed45
Use 6x-2x-1x for Simon and Speck on IA-32
For Simon-64 and Speck-64 this means we are effectively using 12x-4x-1x. We are mostly at the threshold for IA-32 and parallelization. At any time 10 to 13 XMM registers are being used.

Prefer movsd by way of _mm_load_sd and _mm_store_sd.

Fix "error C3861: _mm_cvtsi128_si64x identifier not found".
2017-12-06 06:18:46 -05:00

2021 lines
78 KiB
C++

// simon-simd.cpp - written and placed in the public domain by Jeffrey Walton
//
// This source file uses intrinsics and built-ins to gain access to
// SSSE3, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate
// source file is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "simon.h"
#include "misc.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both simon.cpp and simon-simd.cpp.
// #undef CRYPTOPP_SSSE3_AVAILABLE
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <tmmintrin.h>
#endif
#if (CRYPTOPP_SSE41_AVAILABLE)
# include <smmintrin.h>
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__)
# define CRYPTOPP_AVX512_ROTATE 1
# include <immintrin.h>
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotlFixed;
using CryptoPP::rotrFixed;
using CryptoPP::BlockTransformation;
// *************************** ARM NEON ************************** //
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one64[] = {0, 1<<24, 0, 1<<24};
#else
const word32 s_one64[] = {0, 1, 0, 1};
#endif
template <unsigned int R>
inline uint32x4_t RotateLeft32(const uint32x4_t& val)
{
CRYPTOPP_ASSERT(R < 32);
const uint32x4_t a(vshlq_n_u32(val, R));
const uint32x4_t b(vshrq_n_u32(val, 32 - R));
return vorrq_u32(a, b);
}
template <unsigned int R>
inline uint32x4_t RotateRight32(const uint32x4_t& val)
{
CRYPTOPP_ASSERT(R < 32);
const uint32x4_t a(vshlq_n_u32(val, 32 - R));
const uint32x4_t b(vshrq_n_u32(val, R));
return vorrq_u32(a, b);
}
#if defined(__aarch32__) || defined(__aarch64__)
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateRight32<8>(const uint32x4_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,14,12 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
#endif
inline uint32x4_t Shuffle32(const uint32x4_t& val)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
return vreinterpretq_u32_u8(
vrev32q_u8(vreinterpretq_u8_u32(val)));
#else
return val;
#endif
}
inline uint32x4_t SIMON64_f(const uint32x4_t& val)
{
return veorq_u32(RotateLeft32<2>(val),
vandq_u32(RotateLeft32<1>(val), RotateLeft32<8>(val)));
}
template <typename T>
inline word32* Ptr32(T* ptr)
{
return reinterpret_cast<word32*>(ptr);
}
template <typename T>
inline const word32* Ptr32(const T* ptr)
{
return reinterpret_cast<const word32*>(ptr);
}
template <typename T>
inline word64* Ptr64(T* ptr)
{
return reinterpret_cast<word64*>(ptr);
}
template <typename T>
inline const word64* Ptr64(const T* ptr)
{
return reinterpret_cast<const word64*>(ptr);
}
inline void SIMON64_Enc_Block(uint32x4_t &block1, uint32x4_t &block0,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const uint32x4x2_t t0 = vuzpq_u32(block0, block1);
uint32x4_t x1 = t0.val[0];
uint32x4_t y1 = t0.val[1];
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1)-1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys+rounds-1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
std::swap(x1, y1);
}
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
const uint32x4x2_t t1 = vzipq_u32(x1, y1);
block0 = t1.val[0];
block1 = t1.val[1];
}
inline void SIMON64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const uint32x4x2_t t0 = vuzpq_u32(block0, block1);
uint32x4_t x1 = t0.val[0];
uint32x4_t y1 = t0.val[1];
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
if (rounds & 1)
{
std::swap(x1, y1);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
rounds--;
}
for (size_t i = rounds-2; static_cast<int>(i) >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
}
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
const uint32x4x2_t t1 = vzipq_u32(x1, y1);
block0 = t1.val[0];
block1 = t1.val[1];
}
inline void SIMON64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const uint32x4x2_t t0 = vuzpq_u32(block0, block1);
uint32x4_t x1 = t0.val[0];
uint32x4_t y1 = t0.val[1];
const uint32x4x2_t t1 = vuzpq_u32(block2, block3);
uint32x4_t x2 = t1.val[0];
uint32x4_t y2 = t1.val[1];
const uint32x4x2_t t2 = vuzpq_u32(block4, block5);
uint32x4_t x3 = t2.val[0];
uint32x4_t y3 = t2.val[1];
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
x2 = Shuffle32(x2); y2 = Shuffle32(y2);
x3 = Shuffle32(x3); y3 = Shuffle32(y3);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1) - 1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk1);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk2);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
x2 = Shuffle32(x2); y2 = Shuffle32(y2);
x3 = Shuffle32(x3); y3 = Shuffle32(y3);
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
const uint32x4x2_t t3 = vzipq_u32(x1, y1);
block0 = t3.val[0];
block1 = t3.val[1];
const uint32x4x2_t t4 = vzipq_u32(x2, y2);
block2 = t4.val[0];
block3 = t4.val[1];
const uint32x4x2_t t5 = vzipq_u32(x3, y3);
block4 = t5.val[0];
block5 = t5.val[1];
}
inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const uint32x4x2_t t0 = vuzpq_u32(block0, block1);
uint32x4_t x1 = t0.val[0];
uint32x4_t y1 = t0.val[1];
const uint32x4x2_t t1 = vuzpq_u32(block2, block3);
uint32x4_t x2 = t1.val[0];
uint32x4_t y2 = t1.val[1];
const uint32x4x2_t t2 = vuzpq_u32(block4, block5);
uint32x4_t x3 = t2.val[0];
uint32x4_t y3 = t2.val[1];
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
x2 = Shuffle32(x2); y2 = Shuffle32(y2);
x3 = Shuffle32(x3); y3 = Shuffle32(y3);
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
y2 = veorq_u32(veorq_u32(y2, rk), SIMON64_f(x2));
y3 = veorq_u32(veorq_u32(y3, rk), SIMON64_f(x3));
rounds--;
}
for (size_t i = rounds - 2; static_cast<int>(i) >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys + i + 1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk1);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys + i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk2);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk2);
}
x1 = Shuffle32(x1); y1 = Shuffle32(y1);
x2 = Shuffle32(x2); y2 = Shuffle32(y2);
x3 = Shuffle32(x3); y3 = Shuffle32(y3);
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
const uint32x4x2_t t3 = vzipq_u32(x1, y1);
block0 = t3.val[0];
block1 = t3.val[1];
const uint32x4x2_t t4 = vzipq_u32(x2, y2);
block2 = t4.val[0];
block3 = t4.val[1];
const uint32x4x2_t t5 = vzipq_u32(x3, y3);
block4 = t5.val[0];
block5 = t5.val[1];
}
template <typename F2, typename F6>
inline size_t SIMON64_AdvancedProcessBlocks_NEON(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
size_t xorIncrement = xorBlocks ? neonBlockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - neonBlockSize;
xorBlocks += length - neonBlockSize;
outBlocks += length - neonBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const uint32x4_t be1 = vld1q_u32(s_one64);
block1 = vaddq_u32(block0, be1);
block2 = vaddq_u32(block1, be1);
block3 = vaddq_u32(block2, be1);
block4 = vaddq_u32(block3, be1);
block5 = vaddq_u32(block4, be1);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u32(vaddq_u32(block5, be1)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+1*inc));
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+2*inc));
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+3*inc));
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+4*inc));
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+5*inc));
inBlocks += 6*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u32(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u32(block1));
vst1q_u8(outBlocks+2*inc, vreinterpretq_u8_u32(block2));
vst1q_u8(outBlocks+3*inc, vreinterpretq_u8_u32(block3));
vst1q_u8(outBlocks+4*inc, vreinterpretq_u8_u32(block4));
vst1q_u8(outBlocks+5*inc, vreinterpretq_u8_u32(block5));
outBlocks += 6*inc;
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const uint32x4_t be1 = vld1q_u32(s_one64);
block1 = vaddq_u32(block0, be1);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u32(vaddq_u32(block1, be1)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+1*inc));
inBlocks += 2*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u32(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u32(block1));
outBlocks += 2*inc;
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
const size_t blockSize = 8;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = {0,0,0,0};
block = vsetq_lane_u32(Ptr32(inBlocks)[0], block, 0);
block = vsetq_lane_u32(Ptr32(inBlocks)[1], block, 1);
if (flags & BlockTransformation::BT_XorInput)
{
uint32x4_t x;
x = vsetq_lane_u32(Ptr32(xorBlocks)[0], x, 0);
x = vsetq_lane_u32(Ptr32(xorBlocks)[1], x, 1);
block = veorq_u32(block, x);
}
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
uint32x4_t x;
x = vsetq_lane_u32(Ptr32(xorBlocks)[0], x, 0);
x = vsetq_lane_u32(Ptr32(xorBlocks)[1], x, 1);
block = veorq_u32(block, x);
}
word32 t[2];
t[0] = vgetq_lane_u32(block, 0);
t[1] = vgetq_lane_u32(block, 1);
std::memcpy(outBlocks, t, sizeof(t));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one128[] = {0, 0, 0, 1<<24};
#else
const word32 s_one128[] = {0, 0, 0, 1};
#endif
template <class T>
inline T UnpackHigh64(const T& a, const T& b)
{
const uint64x1_t x(vget_high_u64((uint64x2_t)a));
const uint64x1_t y(vget_high_u64((uint64x2_t)b));
return (T)vcombine_u64(x, y);
}
template <class T>
inline T UnpackLow64(const T& a, const T& b)
{
const uint64x1_t x(vget_low_u64((uint64x2_t)a));
const uint64x1_t y(vget_low_u64((uint64x2_t)b));
return (T)vcombine_u64(x, y);
}
template <unsigned int R>
inline uint64x2_t RotateLeft64(const uint64x2_t& val)
{
CRYPTOPP_ASSERT(R < 64);
const uint64x2_t a(vshlq_n_u64(val, R));
const uint64x2_t b(vshrq_n_u64(val, 64 - R));
return vorrq_u64(a, b);
}
template <unsigned int R>
inline uint64x2_t RotateRight64(const uint64x2_t& val)
{
CRYPTOPP_ASSERT(R < 64);
const uint64x2_t a(vshlq_n_u64(val, 64 - R));
const uint64x2_t b(vshrq_n_u64(val, R));
return vorrq_u64(a, b);
}
#if defined(__aarch32__) || defined(__aarch64__)
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u64_u8(
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint64x2_t RotateRight64<8>(const uint64x2_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u64_u8(
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
}
#endif
inline uint64x2_t Shuffle64(const uint64x2_t& val)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
return vreinterpretq_u64_u8(
vrev64q_u8(vreinterpretq_u8_u64(val)));
#else
return val;
#endif
}
inline uint64x2_t SIMON128_f(const uint64x2_t& val)
{
return veorq_u64(RotateLeft64<2>(val),
vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val)));
}
inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackLow64(block0, block1);
uint64x2_t y1 = UnpackHigh64(block0, block1);
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1)-1; i += 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
}
if (rounds & 1)
{
const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
std::swap(x1, y1);
}
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
block0 = UnpackLow64(x1, y1);
block1 = UnpackHigh64(x1, y1);
}
inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackLow64(block0, block1);
uint64x2_t y1 = UnpackHigh64(block0, block1);
uint64x2_t x2 = UnpackLow64(block2, block3);
uint64x2_t y2 = UnpackHigh64(block2, block3);
uint64x2_t x3 = UnpackLow64(block4, block5);
uint64x2_t y3 = UnpackHigh64(block4, block5);
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
x2 = Shuffle64(x2); y2 = Shuffle64(y2);
x3 = Shuffle64(x3); y3 = Shuffle64(y3);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1) - 1; i += 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2);
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2);
}
if (rounds & 1)
{
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
x2 = Shuffle64(x2); y2 = Shuffle64(y2);
x3 = Shuffle64(x3); y3 = Shuffle64(y3);
block0 = UnpackLow64(x1, y1);
block1 = UnpackHigh64(x1, y1);
block2 = UnpackLow64(x2, y2);
block3 = UnpackHigh64(x2, y2);
block4 = UnpackLow64(x3, y3);
block5 = UnpackHigh64(x3, y3);
}
inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackLow64(block0, block1);
uint64x2_t y1 = UnpackHigh64(block0, block1);
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
if (rounds & 1)
{
std::swap(x1, y1);
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
rounds--;
}
for (size_t i = rounds-2; static_cast<int>(i) >= 0; i -= 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
}
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
block0 = UnpackLow64(x1, y1);
block1 = UnpackHigh64(x1, y1);
}
inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackLow64(block0, block1);
uint64x2_t y1 = UnpackHigh64(block0, block1);
uint64x2_t x2 = UnpackLow64(block2, block3);
uint64x2_t y2 = UnpackHigh64(block2, block3);
uint64x2_t x3 = UnpackLow64(block4, block5);
uint64x2_t y3 = UnpackHigh64(block4, block5);
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
x2 = Shuffle64(x2); y2 = Shuffle64(y2);
x3 = Shuffle64(x3); y3 = Shuffle64(y3);
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2));
y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3));
rounds--;
}
for (size_t i = rounds - 2; static_cast<int>(i) >= 0; i -= 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1);
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2);
}
x1 = Shuffle64(x1); y1 = Shuffle64(y1);
x2 = Shuffle64(x2); y2 = Shuffle64(y2);
x3 = Shuffle64(x3); y3 = Shuffle64(y3);
block0 = UnpackLow64(x1, y1);
block1 = UnpackHigh64(x1, y1);
block2 = UnpackLow64(x2, y2);
block3 = UnpackHigh64(x2, y2);
block4 = UnpackLow64(x3, y3);
block5 = UnpackHigh64(x3, y3);
}
template <typename F2, typename F6>
size_t SIMON128_AdvancedProcessBlocks_NEON(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+1*inc));
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+2*inc));
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+3*inc));
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+4*inc));
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+5*inc));
inBlocks += 6*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u64(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u64(block1));
vst1q_u8(outBlocks+2*inc, vreinterpretq_u8_u64(block2));
vst1q_u8(outBlocks+3*inc, vreinterpretq_u8_u64(block3));
vst1q_u8(outBlocks+4*inc, vreinterpretq_u8_u64(block4));
vst1q_u8(outBlocks+5*inc, vreinterpretq_u8_u64(block5));
outBlocks += 6*inc;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block1 = vaddq_u64(block0, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+1*inc));
inBlocks += 2*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u64(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u64(block1));
outBlocks += 2*inc;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_XorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one64[] = {0, 1<<24, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one128[] = {0, 0, 0, 1<<24};
inline void Swap128(__m128i& a,__m128i& b)
{
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
// __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
// SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
vec_swap(a, b);
#else
std::swap(a, b);
#endif
}
#if defined(CRYPTOPP_AVX512_ROTATE)
template <unsigned int R>
inline __m128i RotateLeft64(const __m128i& val)
{
return _mm_rol_epi64(val, R);
}
template <unsigned int R>
inline __m128i RotateRight64(const __m128i& val)
{
return _mm_ror_epi64(val, R);
}
#else
template <unsigned int R>
inline __m128i RotateLeft64(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
}
template <unsigned int R>
inline __m128i RotateRight64(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateLeft64<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7);
return _mm_shuffle_epi8(val, mask);
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateRight64<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1);
return _mm_shuffle_epi8(val, mask);
}
#endif // CRYPTOPP_AVX512_ROTATE
inline __m128i SIMON128_f(const __m128i& v)
{
return _mm_xor_si128(RotateLeft64<2>(v),
_mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v)));
}
inline void SIMON128_Enc_Block(__m128i &block0, __m128i &block1, const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpacklo_epi64(block0, block1);
__m128i y1 = _mm_unpackhi_epi64(block0, block1);
const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys+i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys+i+1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys+rounds-1)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
Swap128(x1, y1);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
block0 = _mm_unpacklo_epi64(x1, y1);
block1 = _mm_unpackhi_epi64(x1, y1);
}
inline void SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpacklo_epi64(block0, block1);
__m128i y1 = _mm_unpackhi_epi64(block0, block1);
__m128i x2 = _mm_unpacklo_epi64(block2, block3);
__m128i y2 = _mm_unpackhi_epi64(block2, block3);
__m128i x3 = _mm_unpacklo_epi64(block4, block5);
__m128i y3 = _mm_unpackhi_epi64(block4, block5);
const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1) - 1; i += 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + i + 1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + rounds - 1)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk);
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(x1, y1);
block1 = _mm_unpackhi_epi64(x1, y1);
block2 = _mm_unpacklo_epi64(x2, y2);
block3 = _mm_unpackhi_epi64(x2, y2);
block4 = _mm_unpacklo_epi64(x3, y3);
block5 = _mm_unpackhi_epi64(x3, y3);
}
inline void SIMON128_Dec_Block(__m128i &block0, __m128i &block1, const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpacklo_epi64(block0, block1);
__m128i y1 = _mm_unpackhi_epi64(block0, block1);
const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + rounds - 1)));
Swap128(x1, y1);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
rounds--;
}
for (size_t i = rounds-2; static_cast<int>(i) >= 0; i -= 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys+i+1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys+i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
block0 = _mm_unpacklo_epi64(x1, y1);
block1 = _mm_unpackhi_epi64(x1, y1);
}
inline void SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpacklo_epi64(block0, block1);
__m128i y1 = _mm_unpackhi_epi64(block0, block1);
__m128i x2 = _mm_unpacklo_epi64(block2, block3);
__m128i y2 = _mm_unpackhi_epi64(block2, block3);
__m128i x3 = _mm_unpacklo_epi64(block4, block5);
__m128i y3 = _mm_unpackhi_epi64(block4, block5);
const __m128i mask = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + rounds - 1)));
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2));
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3));
rounds--;
}
for (size_t i = rounds - 2; static_cast<int>(i) >= 0; i -= 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + i + 1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(subkeys + i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(x1, y1);
block1 = _mm_unpackhi_epi64(x1, y1);
block2 = _mm_unpacklo_epi64(x2, y2);
block3 = _mm_unpackhi_epi64(x2, y2);
block4 = _mm_unpacklo_epi64(x3, y3);
block5 = _mm_unpackhi_epi64(x3, y3);
}
template <typename F2, typename F6>
inline size_t SIMON128_AdvancedProcessBlocks_SSSE3(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one128);
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
}
else
{
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one128);
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
}
else
{
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (flags & BlockTransformation::BT_XorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
#endif // CRYPTOPP_SSSE3_AVAILABLE
#if defined(CRYPTOPP_SSE41_AVAILABLE)
template <unsigned int R>
inline __m128i RotateLeft32(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
}
template <unsigned int R>
inline __m128i RotateRight32(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateLeft32<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
return _mm_shuffle_epi8(val, mask);
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateRight32<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1);
return _mm_shuffle_epi8(val, mask);
}
inline __m128i SIMON64_f(const __m128i& v)
{
return _mm_xor_si128(RotateLeft32<2>(v),
_mm_and_si128(RotateLeft32<1>(v), RotateLeft32<8>(v)));
}
inline void SIMON64_Enc_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
const __m128i mask = _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
Swap128(x1, y1);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(x1, y1);
block1 = _mm_unpackhi_epi32(x1, y1);
}
inline void SIMON64_Dec_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
const __m128i mask = _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
if (rounds & 1)
{
Swap128(x1, y1);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
rounds--;
}
for (size_t i = rounds-2; static_cast<int>(i) >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(x1, y1);
block1 = _mm_unpackhi_epi32(x1, y1);
}
inline void SIMON64_Enc_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
const __m128i mask = _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
for (size_t i = 0; static_cast<int>(i) < (rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk1);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk2);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk);
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(x1, y1);
block1 = _mm_unpackhi_epi32(x1, y1);
block2 = _mm_unpacklo_epi32(x2, y2);
block3 = _mm_unpackhi_epi32(x2, y2);
block4 = _mm_unpacklo_epi32(x3, y3);
block5 = _mm_unpackhi_epi32(x3, y3);
}
inline void SIMON64_Dec_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read from
// a big-endian byte array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
const __m128i mask = _mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3);
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
if (rounds & 1)
{
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON64_f(x2));
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON64_f(x3));
rounds--;
}
for (size_t i = rounds-2; static_cast<int>(i) >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk1);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk2);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk2);
}
x1 = _mm_shuffle_epi8(x1, mask);
y1 = _mm_shuffle_epi8(y1, mask);
x2 = _mm_shuffle_epi8(x2, mask);
y2 = _mm_shuffle_epi8(y2, mask);
x3 = _mm_shuffle_epi8(x3, mask);
y3 = _mm_shuffle_epi8(y3, mask);
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(x1, y1);
block1 = _mm_unpackhi_epi32(x1, y1);
block2 = _mm_unpacklo_epi32(x2, y2);
block3 = _mm_unpackhi_epi32(x2, y2);
block4 = _mm_unpacklo_epi32(x3, y3);
block5 = _mm_unpackhi_epi32(x3, y3);
}
template <typename F2, typename F6>
inline size_t SIMON64_AdvancedProcessBlocks_SSE41(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
// Fake block size to match XMM word
const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
size_t xorIncrement = xorBlocks ? xmmBlockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - xmmBlockSize;
xorBlocks += length - xmmBlockSize;
outBlocks += length - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one64);
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
}
else
{
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*xmmBlockSize;
}
while (length >= 2*xmmBlockSize)
{
__m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one64);
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
}
else
{
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BlockTransformation::BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
const size_t blockSize = 8;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(inBlocks)));
if (flags & BlockTransformation::BT_XorInput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
}
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
block = _mm_xor_si128(block, _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
}
_mm_store_sd(reinterpret_cast<double*>(outBlocks), _mm_castsi128_pd(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
#endif // CRYPTOPP_SSE41_AVAILABLE
ANONYMOUS_NAMESPACE_END
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(CryptoPP)
// *************************** ARM NEON **************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSE41_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_SSE41(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_SSE41(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_SSSE3(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_SSSE3(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_SSSE3_AVAILABLE
NAMESPACE_END