mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-27 03:40:22 +00:00
1220 lines
49 KiB
C++
1220 lines
49 KiB
C++
// adv-simd.h - written and placed in the public domain by Jeffrey Walton
|
|
//
|
|
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
|
|
// have a commom pattern. Namely, they have a specialized implementation of
|
|
// AdvancedProcessBlocks which processes multiple block using hardware
|
|
// acceleration. After several implementations we noticed a lot of copy and
|
|
// paste occuring. adv-simd.h provides a template to avoid the copy and paste.
|
|
//
|
|
// There are 8 templates provided in this file. The number following the
|
|
// function name is the block size of the cipher. The name following that
|
|
// is the acceleration and arrangement. For example SSE1x4 means Intel SSE
|
|
// using two encrypt (or decrypt) functions: one that operates on 1 block,
|
|
// and one that operates on 4 blocks.
|
|
//
|
|
// * AdvancedProcessBlocks64_SSE1x4
|
|
// * AdvancedProcessBlocks128_SSE1x4
|
|
// * AdvancedProcessBlocks64_SSE2x6
|
|
// * AdvancedProcessBlocks128_SSE2x6
|
|
// * AdvancedProcessBlocks64_NEON2x6
|
|
// * AdvancedProcessBlocks128_NEON2x6
|
|
//
|
|
|
|
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
|
|
|
|
#include "config.h"
|
|
#include "misc.h"
|
|
#include "stdcpp.h"
|
|
|
|
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
|
|
# include <arm_neon.h>
|
|
#endif
|
|
|
|
#if (CRYPTOPP_SSSE3_AVAILABLE)
|
|
# include <emmintrin.h>
|
|
# include <pmmintrin.h>
|
|
# include <tmmintrin.h>
|
|
#endif
|
|
|
|
// ************************ All block ciphers *********************** //
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::BlockTransformation;
|
|
|
|
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput)
|
|
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel)
|
|
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter)
|
|
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection)
|
|
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers)
|
|
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
// *************************** ARM NEON ************************** //
|
|
|
|
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::word32;
|
|
using CryptoPP::word64;
|
|
|
|
#if defined(CRYPTOPP_LITTLE_ENDIAN)
|
|
const word32 s_zero32x4[] = {0, 0, 0, 0};
|
|
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
|
|
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
|
|
#else
|
|
const word32 s_zero32x4[] = {0, 0, 0, 0};
|
|
const word32 s_one32x4_1b[] = {0, 0, 0, 1};
|
|
const word32 s_one32x4_2b[] = {0, 2, 0, 2};
|
|
#endif
|
|
|
|
#if defined(CRYPTOPP_LITTLE_ENDIAN)
|
|
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
|
|
#else
|
|
const word32 s_one32x4[] = {0, 0, 0, 1};
|
|
#endif
|
|
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
template <typename F2, typename F6>
|
|
inline size_t AdvancedProcessBlocks64_NEON2x6(F2 func2, F6 func6,
|
|
const word32 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 8);
|
|
|
|
const ptrdiff_t blockSize = 8;
|
|
const ptrdiff_t neonBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? neonBlockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 6*neonBlockSize)
|
|
{
|
|
uint32x4_t block0, block1, block2, block3, block4, block5;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
|
|
// After the dup load we have two counters in the NEON word. Then we need
|
|
// to increment the low ctr by 0 and the high ctr by 1.
|
|
const uint8x8_t ctr = vld1_u8(inBlocks);
|
|
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
|
|
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
|
|
|
|
// After initial increment of {0,1} remaining counters increment by {2,2}.
|
|
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
|
|
block1 = vaddq_u32(be2, block0);
|
|
block2 = vaddq_u32(be2, block1);
|
|
block3 = vaddq_u32(be2, block2);
|
|
block4 = vaddq_u32(be2, block3);
|
|
block5 = vaddq_u32(be2, block4);
|
|
|
|
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
|
|
vreinterpretq_u8_u32(vaddq_u32(be2, block5))));
|
|
}
|
|
else
|
|
{
|
|
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block4));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block5));
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 6*neonBlockSize;
|
|
}
|
|
|
|
while (length >= 2*neonBlockSize)
|
|
{
|
|
uint32x4_t block0, block1;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
|
|
// After the dup load we have two counters in the NEON word. Then we need
|
|
// to increment the low ctr by 0 and the high ctr by 1.
|
|
const uint8x8_t ctr = vld1_u8(inBlocks);
|
|
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
|
|
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
|
|
|
|
// After initial increment of {0,1} remaining counters increment by {2,2}.
|
|
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
|
|
block1 = vaddq_u32(be2, block0);
|
|
|
|
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
|
|
vreinterpretq_u8_u32(vaddq_u32(be2, block1))));
|
|
}
|
|
else
|
|
{
|
|
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 2*neonBlockSize;
|
|
}
|
|
}
|
|
|
|
if (length)
|
|
{
|
|
// Adjust to real block size
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inIncrement += inIncrement ? blockSize : 0;
|
|
xorIncrement += xorIncrement ? blockSize : 0;
|
|
outIncrement += outIncrement ? blockSize : 0;
|
|
inBlocks -= inIncrement;
|
|
xorBlocks -= xorIncrement;
|
|
outBlocks -= outIncrement;
|
|
}
|
|
else
|
|
{
|
|
inIncrement -= inIncrement ? blockSize : 0;
|
|
xorIncrement -= xorIncrement ? blockSize : 0;
|
|
outIncrement -= outIncrement ? blockSize : 0;
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
uint32x4_t block, zero = vld1q_u32(s_zero32x4);
|
|
|
|
const uint8x8_t v = vld1_u8(inBlocks);
|
|
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
const uint8x8_t x = vld1_u8(xorBlocks);
|
|
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
|
|
}
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[7]++;
|
|
|
|
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
const uint8x8_t x = vld1_u8(xorBlocks);
|
|
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
|
|
}
|
|
|
|
vst1_u8(const_cast<byte*>(outBlocks),
|
|
vget_low_u8(vreinterpretq_u8_u32(block)));
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
template <typename F1, typename F6>
|
|
size_t AdvancedProcessBlocks128_NEON1x6(F1 func1, F6 func6,
|
|
const word32 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 16);
|
|
|
|
const ptrdiff_t blockSize = 16;
|
|
// const ptrdiff_t neonBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? blockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 6*blockSize)
|
|
{
|
|
uint64x2_t block0, block1, block2, block3, block4, block5;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
|
|
block1 = vaddq_u64(block0, be);
|
|
block2 = vaddq_u64(block1, be);
|
|
block3 = vaddq_u64(block2, be);
|
|
block4 = vaddq_u64(block3, be);
|
|
block5 = vaddq_u64(block4, be);
|
|
vst1q_u8(const_cast<byte*>(inBlocks),
|
|
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
|
|
}
|
|
else
|
|
{
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 6*blockSize;
|
|
}
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
uint64x2_t block;
|
|
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
|
|
if (flags & BT_XorInput)
|
|
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[15]++;
|
|
|
|
func1(block, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
template <typename F2, typename F6>
|
|
size_t AdvancedProcessBlocks128_NEON2x6(F2 func2, F6 func6,
|
|
const word64 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 16);
|
|
|
|
const ptrdiff_t blockSize = 16;
|
|
// const ptrdiff_t neonBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? blockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 6*blockSize)
|
|
{
|
|
uint64x2_t block0, block1, block2, block3, block4, block5;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
|
|
block1 = vaddq_u64(block0, be);
|
|
block2 = vaddq_u64(block1, be);
|
|
block3 = vaddq_u64(block2, be);
|
|
block4 = vaddq_u64(block3, be);
|
|
block5 = vaddq_u64(block4, be);
|
|
vst1q_u8(const_cast<byte*>(inBlocks),
|
|
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
|
|
}
|
|
else
|
|
{
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 6*blockSize;
|
|
}
|
|
|
|
while (length >= 2*blockSize)
|
|
{
|
|
uint64x2_t block0, block1;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
block1 = vaddq_u64(block0, be);
|
|
|
|
vst1q_u8(const_cast<byte*>(inBlocks),
|
|
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
|
|
}
|
|
else
|
|
{
|
|
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
|
|
outBlocks += outIncrement;
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 2*blockSize;
|
|
}
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
uint64x2_t block, zero = {0,0};
|
|
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
|
|
|
|
if (flags & BT_XorInput)
|
|
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[15]++;
|
|
|
|
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
|
|
|
|
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
|
|
|
|
// *************************** Intel SSE ************************** //
|
|
|
|
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
|
|
|
|
// Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224
|
|
#if (__SUNPRO_CC >= 0x5130)
|
|
# define MAYBE_CONST
|
|
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
|
|
#else
|
|
# define MAYBE_CONST const
|
|
# define MAYBE_UNCONST_CAST(T, x) (x)
|
|
#endif
|
|
|
|
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
|
|
#ifndef M128_CAST
|
|
# define M128_CAST(x) ((__m128i *)(void *)(x))
|
|
#endif
|
|
#ifndef CONST_M128_CAST
|
|
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
|
|
#endif
|
|
|
|
ANONYMOUS_NAMESPACE_BEGIN
|
|
|
|
using CryptoPP::word32;
|
|
using CryptoPP::word64;
|
|
|
|
CRYPTOPP_ALIGN_DATA(16)
|
|
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
|
|
CRYPTOPP_ALIGN_DATA(16)
|
|
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
|
|
|
|
CRYPTOPP_ALIGN_DATA(16)
|
|
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
|
|
|
|
ANONYMOUS_NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
template <typename F2, typename F6>
|
|
inline size_t AdvancedProcessBlocks64_SSE2x6(F2 func2, F6 func6,
|
|
const word32 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 8);
|
|
|
|
const ptrdiff_t blockSize = 8;
|
|
const ptrdiff_t xmmBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? xmmBlockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 6*xmmBlockSize)
|
|
{
|
|
__m128i block0, block1, block2, block3, block4, block5;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
|
|
// After the dup load we have two counters in the XMM word. Then we need
|
|
// to increment the low ctr by 0 and the high ctr by 1.
|
|
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b), _mm_castpd_si128(
|
|
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
|
|
|
|
// After initial increment of {0,1} remaining counters increment by {2,2}.
|
|
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
|
|
block1 = _mm_add_epi32(be2, block0);
|
|
block2 = _mm_add_epi32(be2, block1);
|
|
block3 = _mm_add_epi32(be2, block2);
|
|
block4 = _mm_add_epi32(be2, block3);
|
|
block5 = _mm_add_epi32(be2, block4);
|
|
|
|
// Store the next counter. UBsan false positive; mem_addr can be unaligned.
|
|
_mm_store_sd(reinterpret_cast<double*>(const_cast<byte*>(inBlocks)),
|
|
_mm_castsi128_pd(_mm_add_epi32(be2, block5)));
|
|
}
|
|
else
|
|
{
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
// Coverity finding, appears to be false positive. Assert the condition.
|
|
CRYPTOPP_ASSERT(xorBlocks);
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block0);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block1);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block2);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block3);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block4);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block5);
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 6*xmmBlockSize;
|
|
}
|
|
|
|
while (length >= 2*xmmBlockSize)
|
|
{
|
|
__m128i block0, block1;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
|
|
// After the dup load we have two counters in the XMM word. Then we need
|
|
// to increment the low ctr by 0 and the high ctr by 1.
|
|
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b), _mm_castpd_si128(
|
|
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
|
|
|
|
// After initial increment of {0,1} remaining counters increment by {2,2}.
|
|
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
|
|
block1 = _mm_add_epi32(be2, block0);
|
|
|
|
// Store the next counter. UBsan false positive; mem_addr can be unaligned.
|
|
_mm_store_sd(reinterpret_cast<double*>(const_cast<byte*>(inBlocks)),
|
|
_mm_castsi128_pd(_mm_add_epi64(be2, block1)));
|
|
}
|
|
else
|
|
{
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
// Coverity finding, appears to be false positive. Assert the condition.
|
|
CRYPTOPP_ASSERT(xorBlocks);
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block0);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block1);
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 2*xmmBlockSize;
|
|
}
|
|
}
|
|
|
|
if (length)
|
|
{
|
|
// Adjust to real block size
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inIncrement += inIncrement ? blockSize : 0;
|
|
xorIncrement += xorIncrement ? blockSize : 0;
|
|
outIncrement += outIncrement ? blockSize : 0;
|
|
inBlocks -= inIncrement;
|
|
xorBlocks -= xorIncrement;
|
|
outBlocks -= outIncrement;
|
|
}
|
|
else
|
|
{
|
|
inIncrement -= inIncrement ? blockSize : 0;
|
|
xorIncrement -= xorIncrement ? blockSize : 0;
|
|
outIncrement -= outIncrement ? blockSize : 0;
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
__m128i block, zero = _mm_setzero_si128();
|
|
block = _mm_castpd_si128(
|
|
// UBsan false positive; mem_addr can be unaligned.
|
|
_mm_load_sd(reinterpret_cast<const double*>(inBlocks)));
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
block = _mm_xor_si128(block, _mm_castpd_si128(
|
|
// UBsan false positive; mem_addr can be unaligned.
|
|
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
|
|
}
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[7]++;
|
|
|
|
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block = _mm_xor_si128(block, _mm_castpd_si128(
|
|
// UBsan false positive; mem_addr can be unaligned.
|
|
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
|
|
}
|
|
|
|
// UBsan false positive; mem_addr can be unaligned.
|
|
_mm_store_sd(reinterpret_cast<double*>(outBlocks), _mm_castsi128_pd(block));
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
template <typename F2, typename F6>
|
|
inline size_t AdvancedProcessBlocks128_SSE2x6(F2 func2, F6 func6,
|
|
const word64 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 16);
|
|
|
|
const ptrdiff_t blockSize = 16;
|
|
// const ptrdiff_t xmmBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? blockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 6*blockSize)
|
|
{
|
|
__m128i block0, block1, block2, block3, block4, block5;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
block1 = _mm_add_epi32(block0, be1);
|
|
block2 = _mm_add_epi32(block1, be1);
|
|
block3 = _mm_add_epi32(block2, be1);
|
|
block4 = _mm_add_epi32(block3, be1);
|
|
block5 = _mm_add_epi32(block4, be1);
|
|
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
|
|
}
|
|
else
|
|
{
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
// Coverity finding, appears to be false positive. Assert the condition.
|
|
CRYPTOPP_ASSERT(xorBlocks);
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block0);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block1);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block2);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block3);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block4);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block5);
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 6*blockSize;
|
|
}
|
|
|
|
while (length >= 2*blockSize)
|
|
{
|
|
__m128i block0, block1;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
block1 = _mm_add_epi32(block0, be1);
|
|
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
|
|
}
|
|
else
|
|
{
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
// Coverity finding, appears to be false positive. Assert the condition.
|
|
CRYPTOPP_ASSERT(xorBlocks);
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block0);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block1);
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 2*blockSize;
|
|
}
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
__m128i block, zero = _mm_setzero_si128();
|
|
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
|
|
if (flags & BT_XorInput)
|
|
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[15]++;
|
|
|
|
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block);
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
template <typename F1, typename F4>
|
|
inline size_t AdvancedProcessBlocks128_SSE1x4(F1 func1, F4 func4,
|
|
MAYBE_CONST word32 *subKeys, size_t rounds, const byte *inBlocks,
|
|
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
|
|
{
|
|
CRYPTOPP_ASSERT(subKeys);
|
|
CRYPTOPP_ASSERT(inBlocks);
|
|
CRYPTOPP_ASSERT(outBlocks);
|
|
CRYPTOPP_ASSERT(length >= 16);
|
|
|
|
const ptrdiff_t blockSize = 16;
|
|
// const ptrdiff_t xmmBlockSize = 16;
|
|
|
|
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
|
|
ptrdiff_t xorIncrement = xorBlocks ? blockSize : 0;
|
|
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
|
|
|
|
if (flags & BT_ReverseDirection)
|
|
{
|
|
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
|
|
inIncrement = 0-inIncrement;
|
|
xorIncrement = 0-xorIncrement;
|
|
outIncrement = 0-outIncrement;
|
|
}
|
|
|
|
if (flags & BT_AllowParallel)
|
|
{
|
|
while (length >= 4*blockSize)
|
|
{
|
|
__m128i block0, block1, block2, block3;
|
|
if (flags & BT_InBlockIsCounter)
|
|
{
|
|
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
block1 = _mm_add_epi32(block0, be1);
|
|
block2 = _mm_add_epi32(block1, be1);
|
|
block3 = _mm_add_epi32(block2, be1);
|
|
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1));
|
|
}
|
|
else
|
|
{
|
|
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
inBlocks += inIncrement;
|
|
}
|
|
|
|
if (flags & BT_XorInput)
|
|
{
|
|
// Coverity finding, appears to be false positive. Assert the condition.
|
|
CRYPTOPP_ASSERT(xorBlocks);
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
{
|
|
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
xorBlocks += xorIncrement;
|
|
}
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block0);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block1);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block2);
|
|
outBlocks += outIncrement;
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block3);
|
|
outBlocks += outIncrement;
|
|
|
|
length -= 4*blockSize;
|
|
}
|
|
}
|
|
|
|
while (length >= blockSize)
|
|
{
|
|
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
|
|
|
|
if (flags & BT_XorInput)
|
|
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
|
|
if (flags & BT_InBlockIsCounter)
|
|
const_cast<byte *>(inBlocks)[15]++;
|
|
|
|
func1(block, subKeys, static_cast<unsigned int>(rounds));
|
|
|
|
if (xorBlocks && !(flags & BT_XorInput))
|
|
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
|
|
|
|
_mm_storeu_si128(M128_CAST(outBlocks), block);
|
|
|
|
inBlocks += inIncrement;
|
|
outBlocks += outIncrement;
|
|
xorBlocks += xorIncrement;
|
|
length -= blockSize;
|
|
}
|
|
|
|
return length;
|
|
}
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif // CRYPTOPP_SSSE3_AVAILABLE
|
|
|
|
#endif // CRYPTOPP_ADVANCED_SIMD_TEMPLATES
|