mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2025-01-19 07:42:15 +00:00
288 lines
11 KiB
C++
288 lines
11 KiB
C++
// osrng.h - originally written and placed in the public domain by Wei Dai
|
|
|
|
/// \file osrng.h
|
|
/// \brief Classes for access to the operating system's random number generators
|
|
|
|
#ifndef CRYPTOPP_OSRNG_H
|
|
#define CRYPTOPP_OSRNG_H
|
|
|
|
#include "config.h"
|
|
|
|
#if !defined(NO_OS_DEPENDENCE) && defined(OS_RNG_AVAILABLE)
|
|
|
|
#include "cryptlib.h"
|
|
#include "randpool.h"
|
|
#include "smartptr.h"
|
|
#include "fips140.h"
|
|
#include "rng.h"
|
|
#include "aes.h"
|
|
#include "sha.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
/// \brief Exception thrown when an operating system error is encountered
|
|
class CRYPTOPP_DLL OS_RNG_Err : public Exception
|
|
{
|
|
public:
|
|
/// \brief Constructs an OS_RNG_Err
|
|
/// \param operation the operation or API call when the error occurs
|
|
OS_RNG_Err(const std::string &operation);
|
|
};
|
|
|
|
#ifdef NONBLOCKING_RNG_AVAILABLE
|
|
|
|
#ifdef CRYPTOPP_WIN32_AVAILABLE
|
|
/// \brief Wrapper for Microsoft crypto service provider
|
|
/// \sa \def USE_MS_CRYPTOAPI, \def USE_MS_CNGAPI
|
|
class CRYPTOPP_DLL MicrosoftCryptoProvider
|
|
{
|
|
public:
|
|
/// \brief Construct a MicrosoftCryptoProvider
|
|
MicrosoftCryptoProvider();
|
|
~MicrosoftCryptoProvider();
|
|
|
|
// type HCRYPTPROV and BCRYPT_ALG_HANDLE, avoid #include <windows.h>
|
|
#if defined(USE_MS_CRYPTOAPI)
|
|
# if defined(__CYGWIN__) && defined(__x86_64__)
|
|
typedef unsigned long long ProviderHandle;
|
|
# elif defined(WIN64) || defined(_WIN64)
|
|
typedef unsigned __int64 ProviderHandle;
|
|
# else
|
|
typedef unsigned long ProviderHandle;
|
|
# endif
|
|
#elif defined(USE_MS_CNGAPI)
|
|
typedef void *PVOID;
|
|
typedef PVOID ProviderHandle;
|
|
#endif // USE_MS_CRYPTOAPI or USE_MS_CNGAPI
|
|
|
|
/// \brief Retrieves the provider handle
|
|
/// \returns CryptoAPI provider handle
|
|
/// \details If USE_MS_CRYPTOAPI is in effect, then CryptAcquireContext()
|
|
/// acquires then handle and CryptReleaseContext() releases the handle
|
|
/// upon destruction. If USE_MS_CNGAPI is in effect, then
|
|
/// BCryptOpenAlgorithmProvider() acquires then handle and
|
|
/// BCryptCloseAlgorithmProvider() releases the handle upon destruction.
|
|
ProviderHandle GetProviderHandle() const {return m_hProvider;}
|
|
|
|
private:
|
|
ProviderHandle m_hProvider;
|
|
};
|
|
|
|
#if defined(_MSC_VER) && defined(USE_MS_CRYPTOAPI)
|
|
# pragma comment(lib, "advapi32.lib")
|
|
#endif
|
|
|
|
#if defined(_MSC_VER) && defined(USE_MS_CNGAPI)
|
|
# pragma comment(lib, "bcrypt.lib")
|
|
#endif
|
|
|
|
#endif // CRYPTOPP_WIN32_AVAILABLE
|
|
|
|
/// \brief Wrapper class for /dev/random and /dev/srandom
|
|
/// \details Encapsulates CryptoAPI's CryptGenRandom() or CryptoNG's BCryptGenRandom()
|
|
/// on Windows, or /dev/urandom on Unix and compatibles.
|
|
class CRYPTOPP_DLL NonblockingRng : public RandomNumberGenerator
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() { return "NonblockingRng"; }
|
|
|
|
~NonblockingRng();
|
|
|
|
/// \brief Construct a NonblockingRng
|
|
NonblockingRng();
|
|
|
|
/// \brief Generate random array of bytes
|
|
/// \param output the byte buffer
|
|
/// \param size the length of the buffer, in bytes
|
|
/// \details GenerateIntoBufferedTransformation() calls are routed to GenerateBlock().
|
|
void GenerateBlock(byte *output, size_t size);
|
|
|
|
protected:
|
|
#ifdef CRYPTOPP_WIN32_AVAILABLE
|
|
MicrosoftCryptoProvider m_Provider;
|
|
#else
|
|
int m_fd;
|
|
#endif
|
|
};
|
|
|
|
#endif
|
|
|
|
#if defined(BLOCKING_RNG_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
|
|
/// \brief Wrapper class for /dev/random and /dev/srandom
|
|
/// \details Encapsulates /dev/random on Linux, OS X and Unix; and /dev/srandom on the BSDs.
|
|
/// \note On Linux the /dev/random interface is effectively deprecated. According to the
|
|
/// Kernel Crypto developers, /dev/urandom or getrandom(2) should be used instead. Also
|
|
/// see <A HREF="https://lkml.org/lkml/2017/7/20/993">[RFC PATCH v12 3/4] Linux Random
|
|
/// Number Generator</A> on the kernel-crypto mailing list.
|
|
class CRYPTOPP_DLL BlockingRng : public RandomNumberGenerator
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() { return "BlockingRng"; }
|
|
|
|
~BlockingRng();
|
|
|
|
/// \brief Construct a BlockingRng
|
|
BlockingRng();
|
|
|
|
/// \brief Generate random array of bytes
|
|
/// \param output the byte buffer
|
|
/// \param size the length of the buffer, in bytes
|
|
/// \details GenerateIntoBufferedTransformation() calls are routed to GenerateBlock().
|
|
void GenerateBlock(byte *output, size_t size);
|
|
|
|
protected:
|
|
int m_fd;
|
|
};
|
|
|
|
#endif
|
|
|
|
/// OS_GenerateRandomBlock
|
|
/// \brief Generate random array of bytes
|
|
/// \param blocking specifies whther a bobcking or non-blocking generator should be used
|
|
/// \param output the byte buffer
|
|
/// \param size the length of the buffer, in bytes
|
|
/// \details OS_GenerateRandomBlock() uses the underlying operating system's
|
|
/// random number generator. On Windows, CryptGenRandom() is called using NonblockingRng.
|
|
/// \details On Unix and compatibles, /dev/urandom is called if blocking is false using
|
|
/// NonblockingRng. If blocking is true, then either /dev/randomd or /dev/srandom is used
|
|
/// by way of BlockingRng, if available.
|
|
CRYPTOPP_DLL void CRYPTOPP_API OS_GenerateRandomBlock(bool blocking, byte *output, size_t size);
|
|
|
|
/// \brief Automatically Seeded Randomness Pool
|
|
/// \details This class seeds itself using an operating system provided RNG.
|
|
/// AutoSeededRandomPool was suggested by Leonard Janke.
|
|
class CRYPTOPP_DLL AutoSeededRandomPool : public RandomPool
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* StaticAlgorithmName() { return "AutoSeededRandomPool"; }
|
|
|
|
~AutoSeededRandomPool() {}
|
|
|
|
/// \brief Construct an AutoSeededRandomPool
|
|
/// \param blocking controls seeding with BlockingRng or NonblockingRng
|
|
/// \param seedSize the size of the seed, in bytes
|
|
/// \details Use blocking to choose seeding with BlockingRng or NonblockingRng.
|
|
/// The parameter is ignored if only one of these is available.
|
|
explicit AutoSeededRandomPool(bool blocking = false, unsigned int seedSize = 32)
|
|
{Reseed(blocking, seedSize);}
|
|
|
|
/// \brief Reseed an AutoSeededRandomPool
|
|
/// \param blocking controls seeding with BlockingRng or NonblockingRng
|
|
/// \param seedSize the size of the seed, in bytes
|
|
void Reseed(bool blocking = false, unsigned int seedSize = 32);
|
|
};
|
|
|
|
/// \tparam BLOCK_CIPHER a block cipher
|
|
/// \brief Automatically Seeded X9.17 RNG
|
|
/// \details AutoSeededX917RNG is from ANSI X9.17 Appendix C, seeded using an OS provided RNG.
|
|
/// If 3-key TripleDES (DES_EDE3) is used, then its a X9.17 conforming generator. If AES is
|
|
/// used, then its a X9.31 conforming generator.
|
|
/// \details Though ANSI X9 prescribes 3-key TripleDES, the template parameter BLOCK_CIPHER can be any
|
|
/// BlockTransformation derived class.
|
|
/// \sa X917RNG, DefaultAutoSeededRNG
|
|
template <class BLOCK_CIPHER>
|
|
class AutoSeededX917RNG : public RandomNumberGenerator, public NotCopyable
|
|
{
|
|
public:
|
|
static std::string StaticAlgorithmName() { return std::string("AutoSeededX917RNG(") + BLOCK_CIPHER::StaticAlgorithmName() + std::string(")"); }
|
|
|
|
~AutoSeededX917RNG() {}
|
|
|
|
/// \brief Construct an AutoSeededX917RNG
|
|
/// \param blocking controls seeding with BlockingRng or NonblockingRng
|
|
/// \param autoSeed controls auto seeding of the generator
|
|
/// \details Use blocking to choose seeding with BlockingRng or NonblockingRng.
|
|
/// The parameter is ignored if only one of these is available.
|
|
/// \sa X917RNG
|
|
explicit AutoSeededX917RNG(bool blocking = false, bool autoSeed = true)
|
|
{if (autoSeed) Reseed(blocking);}
|
|
|
|
/// \brief Reseed an AutoSeededX917RNG
|
|
/// \param blocking controls seeding with BlockingRng or NonblockingRng
|
|
/// \param additionalEntropy additional entropy to add to the generator
|
|
/// \param length the size of the additional entropy, in bytes
|
|
/// \details Internally, the generator uses SHA256 to extract the entropy from
|
|
/// from the seed and then stretch the material for the block cipher's key
|
|
/// and initialization vector.
|
|
void Reseed(bool blocking = false, const byte *additionalEntropy = NULLPTR, size_t length = 0);
|
|
|
|
/// \brief Deterministically reseed an AutoSeededX917RNG for testing
|
|
/// \param key the key to use for the deterministic reseeding
|
|
/// \param keylength the size of the key, in bytes
|
|
/// \param seed the seed to use for the deterministic reseeding
|
|
/// \param timeVector a time vector to use for deterministic reseeding
|
|
/// \details This is a testing interface for testing purposes, and should \a NOT
|
|
/// be used in production.
|
|
void Reseed(const byte *key, size_t keylength, const byte *seed, const byte *timeVector);
|
|
|
|
bool CanIncorporateEntropy() const {return true;}
|
|
void IncorporateEntropy(const byte *input, size_t length) {Reseed(false, input, length);}
|
|
void GenerateIntoBufferedTransformation(BufferedTransformation &target, const std::string &channel, lword length)
|
|
{m_rng->GenerateIntoBufferedTransformation(target, channel, length);}
|
|
|
|
std::string AlgorithmProvider() const;
|
|
|
|
private:
|
|
member_ptr<RandomNumberGenerator> m_rng;
|
|
};
|
|
|
|
template <class BLOCK_CIPHER>
|
|
void AutoSeededX917RNG<BLOCK_CIPHER>::Reseed(const byte *key, size_t keylength, const byte *seed, const byte *timeVector)
|
|
{
|
|
m_rng.reset(new X917RNG(new typename BLOCK_CIPHER::Encryption(key, keylength), seed, timeVector));
|
|
}
|
|
|
|
template <class BLOCK_CIPHER>
|
|
void AutoSeededX917RNG<BLOCK_CIPHER>::Reseed(bool blocking, const byte *input, size_t length)
|
|
{
|
|
SecByteBlock seed(BLOCK_CIPHER::BLOCKSIZE + BLOCK_CIPHER::DEFAULT_KEYLENGTH);
|
|
const byte *key;
|
|
do
|
|
{
|
|
OS_GenerateRandomBlock(blocking, seed, seed.size());
|
|
if (length > 0)
|
|
{
|
|
SHA256 hash;
|
|
hash.Update(seed, seed.size());
|
|
hash.Update(input, length);
|
|
hash.TruncatedFinal(seed, UnsignedMin(hash.DigestSize(), seed.size()));
|
|
}
|
|
key = seed + BLOCK_CIPHER::BLOCKSIZE;
|
|
} // check that seed and key don't have same value
|
|
while (memcmp(key, seed, STDMIN((unsigned int)BLOCK_CIPHER::BLOCKSIZE, (unsigned int)BLOCK_CIPHER::DEFAULT_KEYLENGTH)) == 0);
|
|
|
|
Reseed(key, BLOCK_CIPHER::DEFAULT_KEYLENGTH, seed, NULLPTR);
|
|
}
|
|
|
|
template <class BLOCK_CIPHER>
|
|
std::string AutoSeededX917RNG<BLOCK_CIPHER>::AlgorithmProvider() const
|
|
{
|
|
// Hack for now... We need to instantiate one
|
|
typename BLOCK_CIPHER::Encryption bc;
|
|
return bc.AlgorithmProvider();
|
|
}
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS AutoSeededX917RNG<AES>;
|
|
|
|
#if defined(CRYPTOPP_DOXYGEN_PROCESSING)
|
|
/// \brief A typedef providing a default generator
|
|
/// \details DefaultAutoSeededRNG is a typedef of either AutoSeededX917RNG<AES> or AutoSeededRandomPool.
|
|
/// If CRYPTOPP_ENABLE_COMPLIANCE_WITH_FIPS_140_2 is defined, then DefaultAutoSeededRNG is
|
|
/// AutoSeededX917RNG<AES>. Otherwise, DefaultAutoSeededRNG is AutoSeededRandomPool.
|
|
class DefaultAutoSeededRNG {}
|
|
#else
|
|
// AutoSeededX917RNG<AES> in FIPS mode, otherwise it's AutoSeededRandomPool
|
|
#if CRYPTOPP_ENABLE_COMPLIANCE_WITH_FIPS_140_2
|
|
typedef AutoSeededX917RNG<AES> DefaultAutoSeededRNG;
|
|
#else
|
|
typedef AutoSeededRandomPool DefaultAutoSeededRNG;
|
|
#endif
|
|
#endif // CRYPTOPP_DOXYGEN_PROCESSING
|
|
|
|
NAMESPACE_END
|
|
|
|
#endif
|
|
|
|
#endif
|