mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 18:09:48 +00:00
c9ef9420e7
This check-in provides the fix for leaks in ECP's Add() and Double(). The fixes were taken from Joost Renes, Craig Costello, and Lejla Batina's [Complete addition formulas for prime order elliptic curves](https://eprint.iacr.org/2015/1060.pdf). The Pull Request includes two additional changes that were related to testing the primary fix. First, an `AuthenticatedKeyAgreementWithRolesValidate` interface was added. It allows us to test key agreement when roles are involved. Roles are "client", "server", "initiator", "recipient", etc. Second, `SetGlobalSeed` was added to `test.cpp` to help with reproducible results. We had code in two different places that set the seed value for the random number generator. But it was sloppy and doing a poor job since results could not be reproduced under some circumstances.
137 lines
4.5 KiB
C++
137 lines
4.5 KiB
C++
// ec2n.h - originally written and placed in the public domain by Wei Dai
|
|
|
|
/// \file ec2n.h
|
|
/// \brief Classes for Elliptic Curves over binary fields
|
|
|
|
#ifndef CRYPTOPP_EC2N_H
|
|
#define CRYPTOPP_EC2N_H
|
|
|
|
#include "cryptlib.h"
|
|
#include "gf2n.h"
|
|
#include "integer.h"
|
|
#include "algebra.h"
|
|
#include "ecpoint.h"
|
|
#include "eprecomp.h"
|
|
#include "smartptr.h"
|
|
#include "pubkey.h"
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(push)
|
|
# pragma warning(disable: 4231 4275)
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
/// \brief Elliptic Curve over GF(2^n)
|
|
class CRYPTOPP_DLL EC2N : public AbstractGroup<EC2NPoint>, public EncodedPoint<EC2NPoint>
|
|
{
|
|
public:
|
|
typedef GF2NP Field;
|
|
typedef Field::Element FieldElement;
|
|
typedef EC2NPoint Point;
|
|
|
|
virtual ~EC2N() {}
|
|
|
|
/// \brief Construct an EC2N
|
|
EC2N() {}
|
|
|
|
/// \brief Construct an EC2N
|
|
/// \param field Field, GF2NP derived class
|
|
/// \param a Field::Element
|
|
/// \param b Field::Element
|
|
EC2N(const Field &field, const Field::Element &a, const Field::Element &b)
|
|
: m_field(field), m_a(a), m_b(b) {}
|
|
|
|
/// \brief Construct an EC2N from BER encoded parameters
|
|
/// \param bt BufferedTransformation derived object
|
|
/// \details This constructor will decode and extract the the fields fieldID and curve of the sequence ECParameters
|
|
EC2N(BufferedTransformation &bt);
|
|
|
|
/// \brief Encode the fields fieldID and curve of the sequence ECParameters
|
|
/// \param bt BufferedTransformation derived object
|
|
void DEREncode(BufferedTransformation &bt) const;
|
|
|
|
bool Equal(const Point &P, const Point &Q) const;
|
|
const Point& Identity() const;
|
|
const Point& Inverse(const Point &P) const;
|
|
bool InversionIsFast() const {return true;}
|
|
const Point& Add(const Point &P, const Point &Q) const;
|
|
const Point& Double(const Point &P) const;
|
|
|
|
Point Multiply(const Integer &k, const Point &P) const
|
|
{return ScalarMultiply(P, k);}
|
|
Point CascadeMultiply(const Integer &k1, const Point &P, const Integer &k2, const Point &Q) const
|
|
{return CascadeScalarMultiply(P, k1, Q, k2);}
|
|
|
|
bool ValidateParameters(RandomNumberGenerator &rng, unsigned int level=3) const;
|
|
bool VerifyPoint(const Point &P) const;
|
|
|
|
unsigned int EncodedPointSize(bool compressed = false) const
|
|
{return 1 + (compressed?1:2)*m_field->MaxElementByteLength();}
|
|
// returns false if point is compressed and not valid (doesn't check if uncompressed)
|
|
bool DecodePoint(Point &P, BufferedTransformation &bt, size_t len) const;
|
|
bool DecodePoint(Point &P, const byte *encodedPoint, size_t len) const;
|
|
void EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const;
|
|
void EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const;
|
|
|
|
Point BERDecodePoint(BufferedTransformation &bt) const;
|
|
void DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const;
|
|
|
|
Integer FieldSize() const {return Integer::Power2(m_field->MaxElementBitLength());}
|
|
const Field & GetField() const {return *m_field;}
|
|
const FieldElement & GetA() const {return m_a;}
|
|
const FieldElement & GetB() const {return m_b;}
|
|
|
|
bool operator==(const EC2N &rhs) const
|
|
{return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;}
|
|
|
|
private:
|
|
clonable_ptr<Field> m_field;
|
|
FieldElement m_a, m_b;
|
|
mutable Point m_R;
|
|
};
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_FixedBasePrecomputationImpl<EC2N::Point>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupPrecomputation<EC2N::Point>;
|
|
|
|
/// \brief Elliptic Curve precomputation
|
|
/// \tparam EC elliptic curve field
|
|
template <class EC> class EcPrecomputation;
|
|
|
|
/// \brief EC2N precomputation specialization
|
|
/// \details Implementation of <tt>DL_GroupPrecomputation<EC2N::Point></tt>
|
|
/// \sa DL_GroupPrecomputation
|
|
template<> class EcPrecomputation<EC2N> : public DL_GroupPrecomputation<EC2N::Point>
|
|
{
|
|
public:
|
|
typedef EC2N EllipticCurve;
|
|
|
|
virtual ~EcPrecomputation() {}
|
|
|
|
// DL_GroupPrecomputation
|
|
const AbstractGroup<Element> & GetGroup() const {return m_ec;}
|
|
Element BERDecodeElement(BufferedTransformation &bt) const {return m_ec.BERDecodePoint(bt);}
|
|
void DEREncodeElement(BufferedTransformation &bt, const Element &v) const {m_ec.DEREncodePoint(bt, v, false);}
|
|
|
|
/// \brief Set the elliptic curve
|
|
/// \param ec ECP derived class
|
|
/// \details SetCurve() is not inherited
|
|
void SetCurve(const EC2N &ec) {m_ec = ec;}
|
|
|
|
/// \brief Get the elliptic curve
|
|
/// \returns EC2N curve
|
|
/// \details GetCurve() is not inherited
|
|
const EC2N & GetCurve() const {return m_ec;}
|
|
|
|
private:
|
|
EC2N m_ec;
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif
|