ext-cryptopp/ecp.h
2018-01-19 14:31:20 -05:00

150 lines
5.5 KiB
C++

// ecp.h - originally written and placed in the public domain by Wei Dai
/// \file ecp.h
/// \brief Classes for Elliptic Curves over prime fields
#ifndef CRYPTOPP_ECP_H
#define CRYPTOPP_ECP_H
#include "cryptlib.h"
#include "integer.h"
#include "algebra.h"
#include "modarith.h"
#include "ecpoint.h"
#include "eprecomp.h"
#include "smartptr.h"
#include "pubkey.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief Elliptic Curve over GF(p), where p is prime
class CRYPTOPP_DLL ECP : public AbstractGroup<ECPPoint>, public EncodedPoint<ECPPoint>
{
public:
typedef ModularArithmetic Field;
typedef Integer FieldElement;
typedef ECPPoint Point;
virtual ~ECP() {}
/// \brief Construct an ECP
ECP() {}
/// \brief Copy construct an ECP
/// \param ecp the other ECP object
/// \param convertToMontgomeryRepresentation flag indicating if the curve should be converted to a MontgomeryRepresentation
/// \sa ModularArithmetic, MontgomeryRepresentation
ECP(const ECP &ecp, bool convertToMontgomeryRepresentation = false);
/// \brief Construct an ECP
/// \param modulus the prime modulus
/// \param a Field::Element
/// \param b Field::Element
ECP(const Integer &modulus, const FieldElement &a, const FieldElement &b)
: m_fieldPtr(new Field(modulus)), m_a(a.IsNegative() ? modulus+a : a), m_b(b) {}
/// \brief Construct an ECP from BER encoded parameters
/// \param bt BufferedTransformation derived object
/// \details This constructor will decode and extract the the fields fieldID and curve of the sequence ECParameters
ECP(BufferedTransformation &bt);
/// \brief Encode the fields fieldID and curve of the sequence ECParameters
/// \param bt BufferedTransformation derived object
void DEREncode(BufferedTransformation &bt) const;
bool Equal(const Point &P, const Point &Q) const;
const Point& Identity() const;
const Point& Inverse(const Point &P) const;
bool InversionIsFast() const {return true;}
const Point& Add(const Point &P, const Point &Q) const;
const Point& Double(const Point &P) const;
Point ScalarMultiply(const Point &P, const Integer &k) const;
Point CascadeScalarMultiply(const Point &P, const Integer &k1, const Point &Q, const Integer &k2) const;
void SimultaneousMultiply(Point *results, const Point &base, const Integer *exponents, unsigned int exponentsCount) const;
Point Multiply(const Integer &k, const Point &P) const
{return ScalarMultiply(P, k);}
Point CascadeMultiply(const Integer &k1, const Point &P, const Integer &k2, const Point &Q) const
{return CascadeScalarMultiply(P, k1, Q, k2);}
bool ValidateParameters(RandomNumberGenerator &rng, unsigned int level=3) const;
bool VerifyPoint(const Point &P) const;
unsigned int EncodedPointSize(bool compressed = false) const
{return 1 + (compressed?1:2)*GetField().MaxElementByteLength();}
// returns false if point is compressed and not valid (doesn't check if uncompressed)
bool DecodePoint(Point &P, BufferedTransformation &bt, size_t len) const;
bool DecodePoint(Point &P, const byte *encodedPoint, size_t len) const;
void EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const;
void EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const;
Point BERDecodePoint(BufferedTransformation &bt) const;
void DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const;
Integer FieldSize() const {return GetField().GetModulus();}
const Field & GetField() const {return *m_fieldPtr;}
const FieldElement & GetA() const {return m_a;}
const FieldElement & GetB() const {return m_b;}
bool operator==(const ECP &rhs) const
{return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;}
private:
clonable_ptr<Field> m_fieldPtr;
FieldElement m_a, m_b;
mutable Point m_R;
};
CRYPTOPP_DLL_TEMPLATE_CLASS DL_FixedBasePrecomputationImpl<ECP::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupPrecomputation<ECP::Point>;
/// \brief Elliptic Curve precomputation
/// \tparam EC elliptic curve field
template <class EC> class EcPrecomputation;
/// \brief ECP precomputation specialization
/// \details Implementation of <tt>DL_GroupPrecomputation<ECP::Point></tt> with input and output
/// conversions for Montgomery modular multiplication.
/// \sa DL_GroupPrecomputation, ModularArithmetic, MontgomeryRepresentation
template<> class EcPrecomputation<ECP> : public DL_GroupPrecomputation<ECP::Point>
{
public:
typedef ECP EllipticCurve;
virtual ~EcPrecomputation() {}
// DL_GroupPrecomputation
bool NeedConversions() const {return true;}
Element ConvertIn(const Element &P) const
{return P.identity ? P : ECP::Point(m_ec->GetField().ConvertIn(P.x), m_ec->GetField().ConvertIn(P.y));};
Element ConvertOut(const Element &P) const
{return P.identity ? P : ECP::Point(m_ec->GetField().ConvertOut(P.x), m_ec->GetField().ConvertOut(P.y));}
const AbstractGroup<Element> & GetGroup() const {return *m_ec;}
Element BERDecodeElement(BufferedTransformation &bt) const {return m_ec->BERDecodePoint(bt);}
void DEREncodeElement(BufferedTransformation &bt, const Element &v) const {m_ec->DEREncodePoint(bt, v, false);}
// non-inherited
void SetCurve(const ECP &ec)
{
m_ec.reset(new ECP(ec, true));
m_ecOriginal = ec;
}
const ECP & GetCurve() const {return *m_ecOriginal;}
private:
value_ptr<ECP> m_ec, m_ecOriginal;
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif