mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 09:59:42 +00:00
436 lines
14 KiB
C++
436 lines
14 KiB
C++
#ifndef CRYPTOPP_INTEGER_H
|
|
#define CRYPTOPP_INTEGER_H
|
|
|
|
/** \file */
|
|
|
|
#include "cryptlib.h"
|
|
#include "secblock.h"
|
|
|
|
#include <iosfwd>
|
|
#include <algorithm>
|
|
|
|
#ifdef _M_IX86
|
|
# if (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 500)) || (defined(__ICL) && (__ICL >= 500))
|
|
# define SSE2_INTRINSICS_AVAILABLE
|
|
# elif defined(_MSC_VER)
|
|
// _mm_free seems to be the only way to tell if the Processor Pack is installed or not
|
|
# include <malloc.h>
|
|
# if defined(_mm_free)
|
|
# define SSE2_INTRINSICS_AVAILABLE
|
|
# endif
|
|
# endif
|
|
#endif
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
#ifdef SSE2_INTRINSICS_AVAILABLE
|
|
template <class T>
|
|
class AlignedAllocator : public AllocatorBase<T>
|
|
{
|
|
public:
|
|
CRYPTOPP_INHERIT_ALLOCATOR_TYPES
|
|
|
|
pointer allocate(size_type n, const void *);
|
|
void deallocate(void *p, size_type n);
|
|
pointer reallocate(T *p, size_type oldSize, size_type newSize, bool preserve)
|
|
{
|
|
return StandardReallocate(*this, p, oldSize, newSize, preserve);
|
|
}
|
|
};
|
|
typedef SecBlock<word, AlignedAllocator<word> > SecAlignedWordBlock;
|
|
#else
|
|
typedef SecWordBlock SecAlignedWordBlock;
|
|
#endif
|
|
|
|
//! multiple precision integer and basic arithmetics
|
|
/*! This class can represent positive and negative integers
|
|
with absolute value less than (256**sizeof(word)) ** (256**sizeof(int)).
|
|
\nosubgrouping
|
|
*/
|
|
class Integer : public ASN1Object
|
|
{
|
|
public:
|
|
//! \name ENUMS, EXCEPTIONS, and TYPEDEFS
|
|
//@{
|
|
//! division by zero exception
|
|
class DivideByZero : public Exception
|
|
{
|
|
public:
|
|
DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {}
|
|
};
|
|
|
|
//!
|
|
class RandomNumberNotFound : public Exception
|
|
{
|
|
public:
|
|
RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {}
|
|
};
|
|
|
|
//!
|
|
enum Signedness {
|
|
//!
|
|
UNSIGNED,
|
|
//!
|
|
SIGNED};
|
|
|
|
//!
|
|
enum RandomNumberType {
|
|
//!
|
|
ANY,
|
|
//!
|
|
PRIME};
|
|
//@}
|
|
|
|
//! \name CREATORS
|
|
//@{
|
|
//! creates the zero integer
|
|
Integer();
|
|
|
|
//! copy constructor
|
|
Integer(const Integer& t);
|
|
|
|
//! convert from signed long
|
|
Integer(signed long value);
|
|
|
|
//! convert from string
|
|
/*! str can be in base 2, 8, 10, or 16. Base is determined by a
|
|
case insensitive suffix of 'h', 'o', or 'b'. No suffix means base 10.
|
|
*/
|
|
explicit Integer(const char *str);
|
|
explicit Integer(const wchar_t *str);
|
|
|
|
//! convert from big-endian byte array
|
|
Integer(const byte *encodedInteger, unsigned int byteCount, Signedness s=UNSIGNED);
|
|
|
|
//! convert from big-endian form stored in a BufferedTransformation
|
|
Integer(BufferedTransformation &bt, unsigned int byteCount, Signedness s=UNSIGNED);
|
|
|
|
//! convert from BER encoded byte array stored in a BufferedTransformation object
|
|
explicit Integer(BufferedTransformation &bt);
|
|
|
|
//! create a random integer
|
|
/*! The random integer created is uniformly distributed over [0, 2**bitcount). */
|
|
Integer(RandomNumberGenerator &rng, unsigned int bitcount);
|
|
|
|
//! avoid calling constructors for these frequently used integers
|
|
static const Integer &Zero();
|
|
//! avoid calling constructors for these frequently used integers
|
|
static const Integer &One();
|
|
//! avoid calling constructors for these frequently used integers
|
|
static const Integer &Two();
|
|
|
|
//! create a random integer of special type
|
|
/*! Ideally, the random integer created should be uniformly distributed
|
|
over {x | min <= x <= max and x is of rnType and x % mod == equiv}.
|
|
However the actual distribution may not be uniform because sequential
|
|
search is used to find an appropriate number from a random starting
|
|
point.
|
|
May return (with very small probability) a pseudoprime when a prime
|
|
is requested and max > lastSmallPrime*lastSmallPrime (lastSmallPrime
|
|
is declared in nbtheory.h).
|
|
\throw RandomNumberNotFound if the set is empty.
|
|
*/
|
|
Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One());
|
|
|
|
//! return the integer 2**e
|
|
static Integer Power2(unsigned int e);
|
|
//@}
|
|
|
|
//! \name ENCODE/DECODE
|
|
//@{
|
|
//! minimum number of bytes to encode this integer
|
|
/*! MinEncodedSize of 0 is 1 */
|
|
unsigned int MinEncodedSize(Signedness=UNSIGNED) const;
|
|
//! encode in big-endian format
|
|
/*! unsigned means encode absolute value, signed means encode two's complement if negative.
|
|
if outputLen < MinEncodedSize, the most significant bytes will be dropped
|
|
if outputLen > MinEncodedSize, the most significant bytes will be padded
|
|
*/
|
|
unsigned int Encode(byte *output, unsigned int outputLen, Signedness=UNSIGNED) const;
|
|
//!
|
|
unsigned int Encode(BufferedTransformation &bt, unsigned int outputLen, Signedness=UNSIGNED) const;
|
|
|
|
//! encode using Distinguished Encoding Rules, put result into a BufferedTransformation object
|
|
void DEREncode(BufferedTransformation &bt) const;
|
|
|
|
//! encode absolute value as big-endian octet string
|
|
void DEREncodeAsOctetString(BufferedTransformation &bt, unsigned int length) const;
|
|
|
|
//! encode absolute value in OpenPGP format, return length of output
|
|
unsigned int OpenPGPEncode(byte *output, unsigned int bufferSize) const;
|
|
//! encode absolute value in OpenPGP format, put result into a BufferedTransformation object
|
|
unsigned int OpenPGPEncode(BufferedTransformation &bt) const;
|
|
|
|
//!
|
|
void Decode(const byte *input, unsigned int inputLen, Signedness=UNSIGNED);
|
|
//!
|
|
//* Precondition: bt.MaxRetrievable() >= inputLen
|
|
void Decode(BufferedTransformation &bt, unsigned int inputLen, Signedness=UNSIGNED);
|
|
|
|
//!
|
|
void BERDecode(const byte *input, unsigned int inputLen);
|
|
//!
|
|
void BERDecode(BufferedTransformation &bt);
|
|
|
|
//! decode nonnegative value as big-endian octet string
|
|
void BERDecodeAsOctetString(BufferedTransformation &bt, unsigned int length);
|
|
|
|
class OpenPGPDecodeErr : public Exception
|
|
{
|
|
public:
|
|
OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {}
|
|
};
|
|
|
|
//!
|
|
void OpenPGPDecode(const byte *input, unsigned int inputLen);
|
|
//!
|
|
void OpenPGPDecode(BufferedTransformation &bt);
|
|
//@}
|
|
|
|
//! \name ACCESSORS
|
|
//@{
|
|
//! return true if *this can be represented as a signed long
|
|
bool IsConvertableToLong() const;
|
|
//! return equivalent signed long if possible, otherwise undefined
|
|
signed long ConvertToLong() const;
|
|
|
|
//! number of significant bits = floor(log2(abs(*this))) + 1
|
|
unsigned int BitCount() const;
|
|
//! number of significant bytes = ceiling(BitCount()/8)
|
|
unsigned int ByteCount() const;
|
|
//! number of significant words = ceiling(ByteCount()/sizeof(word))
|
|
unsigned int WordCount() const;
|
|
|
|
//! return the i-th bit, i=0 being the least significant bit
|
|
bool GetBit(unsigned int i) const;
|
|
//! return the i-th byte
|
|
byte GetByte(unsigned int i) const;
|
|
//! return n lowest bits of *this >> i
|
|
unsigned long GetBits(unsigned int i, unsigned int n) const;
|
|
|
|
//!
|
|
bool IsZero() const {return !*this;}
|
|
//!
|
|
bool NotZero() const {return !IsZero();}
|
|
//!
|
|
bool IsNegative() const {return sign == NEGATIVE;}
|
|
//!
|
|
bool NotNegative() const {return !IsNegative();}
|
|
//!
|
|
bool IsPositive() const {return NotNegative() && NotZero();}
|
|
//!
|
|
bool NotPositive() const {return !IsPositive();}
|
|
//!
|
|
bool IsEven() const {return GetBit(0) == 0;}
|
|
//!
|
|
bool IsOdd() const {return GetBit(0) == 1;}
|
|
//@}
|
|
|
|
//! \name MANIPULATORS
|
|
//@{
|
|
//!
|
|
Integer& operator=(const Integer& t);
|
|
|
|
//!
|
|
Integer& operator+=(const Integer& t);
|
|
//!
|
|
Integer& operator-=(const Integer& t);
|
|
//!
|
|
Integer& operator*=(const Integer& t) {return *this = Times(t);}
|
|
//!
|
|
Integer& operator/=(const Integer& t) {return *this = DividedBy(t);}
|
|
//!
|
|
Integer& operator%=(const Integer& t) {return *this = Modulo(t);}
|
|
//!
|
|
Integer& operator/=(word t) {return *this = DividedBy(t);}
|
|
//!
|
|
Integer& operator%=(word t) {return *this = Modulo(t);}
|
|
|
|
//!
|
|
Integer& operator<<=(unsigned int);
|
|
//!
|
|
Integer& operator>>=(unsigned int);
|
|
|
|
//!
|
|
void Randomize(RandomNumberGenerator &rng, unsigned int bitcount);
|
|
//!
|
|
void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max);
|
|
//! set this Integer to a random element of {x | min <= x <= max and x is of rnType and x % mod == equiv}
|
|
/*! returns false if the set is empty */
|
|
bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One());
|
|
|
|
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs);
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs)
|
|
{
|
|
if (!GenerateRandomNoThrow(rng, params))
|
|
throw RandomNumberNotFound();
|
|
}
|
|
|
|
//! set the n-th bit to value
|
|
void SetBit(unsigned int n, bool value=1);
|
|
//! set the n-th byte to value
|
|
void SetByte(unsigned int n, byte value);
|
|
|
|
//!
|
|
void Negate();
|
|
//!
|
|
void SetPositive() {sign = POSITIVE;}
|
|
//!
|
|
void SetNegative() {if (!!(*this)) sign = NEGATIVE;}
|
|
|
|
//!
|
|
void swap(Integer &a);
|
|
//@}
|
|
|
|
//! \name UNARY OPERATORS
|
|
//@{
|
|
//!
|
|
bool operator!() const;
|
|
//!
|
|
Integer operator+() const {return *this;}
|
|
//!
|
|
Integer operator-() const;
|
|
//!
|
|
Integer& operator++();
|
|
//!
|
|
Integer& operator--();
|
|
//!
|
|
Integer operator++(int) {Integer temp = *this; ++*this; return temp;}
|
|
//!
|
|
Integer operator--(int) {Integer temp = *this; --*this; return temp;}
|
|
//@}
|
|
|
|
//! \name BINARY OPERATORS
|
|
//@{
|
|
//! signed comparison
|
|
/*! \retval -1 if *this < a
|
|
\retval 0 if *this = a
|
|
\retval 1 if *this > a
|
|
*/
|
|
int Compare(const Integer& a) const;
|
|
|
|
//!
|
|
Integer Plus(const Integer &b) const;
|
|
//!
|
|
Integer Minus(const Integer &b) const;
|
|
//!
|
|
Integer Times(const Integer &b) const;
|
|
//!
|
|
Integer DividedBy(const Integer &b) const;
|
|
//!
|
|
Integer Modulo(const Integer &b) const;
|
|
//!
|
|
Integer DividedBy(word b) const;
|
|
//!
|
|
word Modulo(word b) const;
|
|
|
|
//!
|
|
Integer operator>>(unsigned int n) const {return Integer(*this)>>=n;}
|
|
//!
|
|
Integer operator<<(unsigned int n) const {return Integer(*this)<<=n;}
|
|
//@}
|
|
|
|
//! \name OTHER ARITHMETIC FUNCTIONS
|
|
//@{
|
|
//!
|
|
Integer AbsoluteValue() const;
|
|
//!
|
|
Integer Doubled() const {return Plus(*this);}
|
|
//!
|
|
Integer Squared() const {return Times(*this);}
|
|
//! extract square root, if negative return 0, else return floor of square root
|
|
Integer SquareRoot() const;
|
|
//! return whether this integer is a perfect square
|
|
bool IsSquare() const;
|
|
|
|
//! is 1 or -1
|
|
bool IsUnit() const;
|
|
//! return inverse if 1 or -1, otherwise return 0
|
|
Integer MultiplicativeInverse() const;
|
|
|
|
//! modular multiplication
|
|
friend Integer a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
|
|
//! modular exponentiation
|
|
friend Integer a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);
|
|
|
|
//! calculate r and q such that (a == d*q + r) && (0 <= r < abs(d))
|
|
static void Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
|
|
//! use a faster division algorithm when divisor is short
|
|
static void Divide(word &r, Integer &q, const Integer &a, word d);
|
|
|
|
//! returns same result as Divide(r, q, a, Power2(n)), but faster
|
|
static void DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
|
|
|
|
//! greatest common divisor
|
|
static Integer Gcd(const Integer &a, const Integer &n);
|
|
//! calculate multiplicative inverse of *this mod n
|
|
Integer InverseMod(const Integer &n) const;
|
|
//!
|
|
word InverseMod(word n) const;
|
|
//@}
|
|
|
|
//! \name INPUT/OUTPUT
|
|
//@{
|
|
//!
|
|
friend std::istream& operator>>(std::istream& in, Integer &a);
|
|
//!
|
|
friend std::ostream& operator<<(std::ostream& out, const Integer &a);
|
|
//@}
|
|
|
|
private:
|
|
friend class ModularArithmetic;
|
|
friend class MontgomeryRepresentation;
|
|
friend class HalfMontgomeryRepresentation;
|
|
|
|
Integer(word value, unsigned int length);
|
|
|
|
int PositiveCompare(const Integer &t) const;
|
|
friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b);
|
|
friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b);
|
|
friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b);
|
|
friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor);
|
|
|
|
enum Sign {POSITIVE=0, NEGATIVE=1};
|
|
|
|
SecAlignedWordBlock reg;
|
|
Sign sign;
|
|
};
|
|
|
|
//!
|
|
inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;}
|
|
//!
|
|
inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;}
|
|
//!
|
|
inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;}
|
|
//!
|
|
inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;}
|
|
//!
|
|
inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;}
|
|
//!
|
|
inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;}
|
|
//!
|
|
inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);}
|
|
//!
|
|
inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);}
|
|
//!
|
|
inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);}
|
|
|
|
NAMESPACE_END
|
|
|
|
NAMESPACE_BEGIN(std)
|
|
template<> inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b)
|
|
{
|
|
a.swap(b);
|
|
}
|
|
NAMESPACE_END
|
|
|
|
#endif
|