mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 09:59:42 +00:00
5603661eec
We tweaked ChaCha to arrive at the IETF's implementation specified by RFC 7539. We are not sure how to handle block counter wrap. At the moment the caller is responsible for managing it. We were not able to find a reference implementation so we disable SIMD implementations like SSE, AVX, NEON and Power4. We need the wide block tests for corner cases to ensure our implementation is correct.
769 lines
34 KiB
C++
769 lines
34 KiB
C++
// xed25519.h - written and placed in public domain by Jeffrey Walton
|
|
// Crypto++ specific implementation wrapped around Andrew
|
|
// Moon's public domain curve25519-donna and ed25519-donna,
|
|
// https://github.com/floodyberry/curve25519-donna and
|
|
// https://github.com/floodyberry/ed25519-donna.
|
|
|
|
// Typically the key agreement classes encapsulate their data more
|
|
// than x25519 does below. They are a little more accessible
|
|
// due to crypto_box operations.
|
|
|
|
/// \file xed25519.h
|
|
/// \brief Classes for x25519 and ed25519 operations
|
|
/// \details This implementation integrates Andrew Moon's public domain code
|
|
/// for curve25519-donna and ed25519-donna.
|
|
/// \details Moving keys into and out of the library proceeds as follows.
|
|
/// If an Integer class is accepted or returned, then the data is in big
|
|
/// endian format. That is, the MSB is at byte position 0, and the LSB
|
|
/// is at byte position 31. The Integer will work as expected, just like
|
|
/// an int or a long.
|
|
/// \details If a byte array is accepted, then the byte array is in little
|
|
/// endian format. That is, the LSB is at byte position 0, and the MSB is
|
|
/// at byte position 31. This follows the implementation where byte 0 is
|
|
/// clamed with 248. That is my_arr[0] &= 248 to mask the lower 3 bits.
|
|
/// \details PKCS8 and X509 keys encoded using ASN.1 follow little endian
|
|
/// arrays. The format is specified in <A HREF=
|
|
/// "https:///tools.ietf.org/html/draft-ietf-curdle-pkix">draft-ietf-curdle-pkix</A>.
|
|
/// \details If you have a little endian array and you want to wrap it in
|
|
/// an Integer using big endian then you can perform the following:
|
|
/// <pre>Integer x(my_arr, SECRET_KEYLENGTH, UNSIGNED, LITTLE_ENDIAN_ORDER);</pre>
|
|
/// \sa Andrew Moon's x22519 GitHub <A
|
|
/// HREF="https://github.com/floodyberry/curve25519-donna">curve25519-donna</A>,
|
|
/// ed22519 GitHub <A
|
|
/// HREF="https://github.com/floodyberry/ed25519-donna">ed25519-donna</A>, and
|
|
/// <A HREF="https:///tools.ietf.org/html/draft-ietf-curdle-pkix">draft-ietf-curdle-pkix</A>
|
|
/// \since Crypto++ 8.0
|
|
|
|
#ifndef CRYPTOPP_XED25519_H
|
|
#define CRYPTOPP_XED25519_H
|
|
|
|
#include "cryptlib.h"
|
|
#include "pubkey.h"
|
|
#include "oids.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
class Integer;
|
|
struct ed25519Signer;
|
|
struct ed25519Verifier;
|
|
|
|
// ******************** x25519 Agreement ************************* //
|
|
|
|
/// \brief x25519 with key validation
|
|
/// \since Crypto++ 8.0
|
|
class x25519 : public SimpleKeyAgreementDomain, public CryptoParameters, public PKCS8PrivateKey
|
|
{
|
|
public:
|
|
/// \brief Size of the private key
|
|
/// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
|
|
CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
|
|
/// \brief Size of the public key
|
|
/// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
|
|
CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
|
|
/// \brief Size of the shared key
|
|
/// \details SHARED_KEYLENGTH is the size of the shared key, in bytes.
|
|
CRYPTOPP_CONSTANT(SHARED_KEYLENGTH = 32)
|
|
|
|
virtual ~x25519() {}
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details This constructor creates a x25519 object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
x25519(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param x private key
|
|
/// \details This constructor creates a x25519 object using existing parameters.
|
|
/// The public key is calculated from the private key.
|
|
x25519(const byte x[SECRET_KEYLENGTH]);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details This constructor creates a x25519 object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
x25519(const Integer &y, const Integer &x);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param x private key
|
|
/// \details This constructor creates a x25519 object using existing parameters.
|
|
/// The public key is calculated from the private key.
|
|
x25519(const Integer &x);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param rng RandomNumberGenerator derived class
|
|
/// \details This constructor creates a new x25519 using the random number generator.
|
|
x25519(RandomNumberGenerator &rng);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param params public and private key
|
|
/// \details This constructor creates a x25519 object using existing parameters.
|
|
/// The <tt>params</tt> can be created with <tt>Save</tt>.
|
|
/// \note The public key is not validated.
|
|
x25519(BufferedTransformation ¶ms);
|
|
|
|
/// \brief Create a x25519 object
|
|
/// \param oid an object identifier
|
|
/// \details This constructor creates a new x25519 using the specified OID. The public
|
|
/// and private points are uninitialized.
|
|
x25519(const OID &oid);
|
|
|
|
/// \brief Clamp a private key
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details ClampKeys() clamps a private key and then regenerates the
|
|
/// public key from the private key.
|
|
void ClampKeys(byte y[PUBLIC_KEYLENGTH], byte x[SECRET_KEYLENGTH]) const;
|
|
|
|
/// \brief Determine if private key is clamped
|
|
/// \param x private key
|
|
bool IsClamped(const byte x[SECRET_KEYLENGTH]) const;
|
|
|
|
/// \brief Test if a key has small order
|
|
/// \param y public key
|
|
bool IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const;
|
|
|
|
/// \brief Get the Object Identifier
|
|
/// \returns the Object Identifier
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208.
|
|
OID GetAlgorithmID() const {
|
|
return m_oid.Empty() ? ASN1::X25519() : m_oid;
|
|
}
|
|
|
|
/// \brief Set the Object Identifier
|
|
/// \param oid the new Object Identifier
|
|
void SetAlgorithmID(const OID& oid) {
|
|
m_oid = oid;
|
|
}
|
|
|
|
// CryptoParameters
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
|
void AssignFrom(const NameValuePairs &source);
|
|
|
|
// CryptoParameters
|
|
CryptoParameters & AccessCryptoParameters() {return *this;}
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \details Save() will write the OID associated with algorithm or scheme.
|
|
/// In the case of public and private keys, this function writes the
|
|
/// subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208, which is the old format.
|
|
/// The old format provides the best interop, and keys will work
|
|
/// with OpenSSL.
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Save(BufferedTransformation &bt) const {
|
|
DEREncode(bt, 0);
|
|
}
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \param v1 flag indicating v1
|
|
/// \details Save() will write the OID associated with algorithm or scheme.
|
|
/// In the case of public and private keys, this function writes the
|
|
/// subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208.
|
|
/// \details v1 means INTEGER 0 is written. INTEGER 0 means
|
|
/// RFC 5208 format, which is the old format. The old format provides
|
|
/// the best interop, and keys will work with OpenSSL. The other
|
|
/// option uses INTEGER 1. INTEGER 1 means RFC 5958 format,
|
|
/// which is the new format.
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Save(BufferedTransformation &bt, bool v1) const {
|
|
DEREncode(bt, v1 ? 0 : 1);
|
|
}
|
|
|
|
/// \brief BER decode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Load(BufferedTransformation &bt) {
|
|
BERDecode(bt);
|
|
}
|
|
|
|
// PKCS8PrivateKey
|
|
void BERDecode(BufferedTransformation &bt);
|
|
void DEREncode(BufferedTransformation &bt) const { DEREncode(bt, 0); }
|
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
|
void DEREncodePrivateKey(BufferedTransformation &bt) const;
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \param version indicates version
|
|
/// \details DEREncode() will write the OID associated with algorithm or
|
|
/// scheme. In the case of public and private keys, this function writes
|
|
/// the subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208.
|
|
/// \details The value of version is written as the INTEGER. INTEGER 0 means
|
|
/// RFC 5208 format, which is the old format. The old format provides
|
|
/// the best interop, and keys will work with OpenSSL. The INTEGER 1
|
|
/// means RFC 5958 format, which is the new format.
|
|
void DEREncode(BufferedTransformation &bt, int version) const;
|
|
|
|
/// \brief Determine if OID is valid for this object
|
|
/// \details BERDecodeAndCheckAlgorithmID() parses the OID from
|
|
/// <tt>bt</tt> and determines if it valid for this object. The
|
|
/// problem in practice is there are multiple OIDs available to
|
|
/// denote curve25519 operations. The OIDs include an old GNU
|
|
/// OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
|
|
/// and OIDs specified in draft-ietf-curdle-pkix.
|
|
/// \details By default BERDecodeAndCheckAlgorithmID() accepts an
|
|
/// OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::X25519()</tt>.
|
|
/// <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
|
|
/// curve25519 operations". <tt>ASN1::X25519()</tt> is specific and says
|
|
/// "this key is valid for x25519 key exchange."
|
|
void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);
|
|
|
|
// DL_PrivateKey
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms);
|
|
|
|
// SimpleKeyAgreementDomain
|
|
unsigned int AgreedValueLength() const {return SHARED_KEYLENGTH;}
|
|
unsigned int PrivateKeyLength() const {return SECRET_KEYLENGTH;}
|
|
unsigned int PublicKeyLength() const {return PUBLIC_KEYLENGTH;}
|
|
|
|
// SimpleKeyAgreementDomain
|
|
void GeneratePrivateKey(RandomNumberGenerator &rng, byte *privateKey) const;
|
|
void GeneratePublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const;
|
|
bool Agree(byte *agreedValue, const byte *privateKey, const byte *otherPublicKey, bool validateOtherPublicKey=true) const;
|
|
|
|
protected:
|
|
FixedSizeSecBlock<byte, SECRET_KEYLENGTH> m_sk;
|
|
FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
|
|
OID m_oid; // preferred OID
|
|
};
|
|
|
|
// ****************** ed25519 Signer *********************** //
|
|
|
|
/// \brief ed25519 message accumulator
|
|
/// \details ed25519 buffers the entire message, and does not
|
|
/// digest the message incrementally. You should be careful with
|
|
/// large messages like files on-disk. The behavior is by design
|
|
/// because Bernstein feels small messages should be authenticated;
|
|
/// and larger messages will be digested by the application.
|
|
/// \details The accumulator is used for signing and verification.
|
|
/// The first 64-bytes of storage is reserved for the signature.
|
|
/// During signing the signature storage is unused. During
|
|
/// verification the first 64 bytes holds the signature. The
|
|
/// signature is provided by the PK_Verifier framework and the
|
|
/// call to PK_Signer::InputSignature. Member functions data()
|
|
/// and size() refer to the accumulated message. Member function
|
|
/// signature() refers to the signature with an implicit size of
|
|
/// SIGNATURE_LENGTH bytes.
|
|
/// \details Applications which digest large messages, like an ISO
|
|
/// disk file, should take care because the design effectively
|
|
/// disgorges the format operation from the signing operation.
|
|
/// Put another way, be careful to ensure what you are signing is
|
|
/// is in fact a digest of the intended message, and not a different
|
|
/// message digest supplied by an attacker.
|
|
struct ed25519_MessageAccumulator : public PK_MessageAccumulator
|
|
{
|
|
CRYPTOPP_CONSTANT(RESERVE_SIZE=2048+64)
|
|
CRYPTOPP_CONSTANT(SIGNATURE_LENGTH=64)
|
|
|
|
/// \brief Create a message accumulator
|
|
ed25519_MessageAccumulator() {
|
|
Restart();
|
|
}
|
|
|
|
/// \brief Create a message accumulator
|
|
/// \details ed25519 does not use a RNG. You can safely use
|
|
/// NullRNG() because IsProbablistic returns false.
|
|
ed25519_MessageAccumulator(RandomNumberGenerator &rng) {
|
|
CRYPTOPP_UNUSED(rng); Restart();
|
|
}
|
|
|
|
/// \brief Add data to the accumulator
|
|
/// \param msg pointer to the data to accumulate
|
|
/// \param len the size of the data, in bytes
|
|
void Update(const byte* msg, size_t len) {
|
|
if (msg && len)
|
|
m_msg.insert(m_msg.end(), msg, msg+len);
|
|
}
|
|
|
|
/// \brief Reset the accumulator
|
|
void Restart() {
|
|
m_msg.reserve(RESERVE_SIZE);
|
|
m_msg.resize(SIGNATURE_LENGTH);
|
|
}
|
|
|
|
/// \brief Retrieve pointer to signature buffer
|
|
/// \returns pointer to signature buffer
|
|
byte* signature() {
|
|
return &m_msg[0];
|
|
}
|
|
|
|
/// \brief Retrieve pointer to signature buffer
|
|
/// \returns pointer to signature buffer
|
|
const byte* signature() const {
|
|
return &m_msg[0];
|
|
}
|
|
|
|
/// \brief Retrieve pointer to data buffer
|
|
/// \returns pointer to data buffer
|
|
const byte* data() const {
|
|
return &m_msg[0]+SIGNATURE_LENGTH;
|
|
}
|
|
|
|
/// \brief Retrieve size of data buffer
|
|
/// \returns size of the data buffer, in bytes
|
|
size_t size() const {
|
|
return m_msg.size()-SIGNATURE_LENGTH;
|
|
}
|
|
|
|
protected:
|
|
// TODO: Find an equivalent Crypto++ structure.
|
|
std::vector<byte, AllocatorWithCleanup<byte> > m_msg;
|
|
};
|
|
|
|
/// \brief Ed25519 private key
|
|
/// \details ed25519PrivateKey is somewhat of a hack. It needed to
|
|
/// provide DL_PrivateKey interface to fit into the existing
|
|
/// framework, but it lacks a lot of the internals of a true
|
|
/// DL_PrivateKey. The missing pieces include GroupParameters
|
|
/// and Point, which provide the low level field operations
|
|
/// found in traditional implementations like NIST curves over
|
|
/// prime and binary fields.
|
|
/// \details ed25519PrivateKey is also unusual because the
|
|
/// class members of interest are byte arrays and not Integers.
|
|
/// In addition, the byte arrays are little-endian meaning
|
|
/// LSB is at element 0 and the MSB is at element 31.
|
|
/// If you call GetPrivateExponent() then the little-endian byte
|
|
/// array is converted to a big-endian Integer() so it can be
|
|
/// returned the way a caller expects. And calling
|
|
/// SetPrivateExponent perfoms a similar internal conversion.
|
|
/// \since Crypto++ 8.0
|
|
struct ed25519PrivateKey : public PKCS8PrivateKey
|
|
{
|
|
/// \brief Size of the private key
|
|
/// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
|
|
CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
|
|
/// \brief Size of the public key
|
|
/// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
|
|
CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
|
|
/// \brief Size of the siganture
|
|
/// \details SIGNATURE_LENGTH is the size of the signature, in bytes.
|
|
/// ed25519 is a DL-based signature scheme. The signature is the
|
|
/// concatenation of <tt>r || s</tt>.
|
|
CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)
|
|
|
|
// CryptoMaterial
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
|
void AssignFrom(const NameValuePairs &source);
|
|
|
|
// GroupParameters
|
|
OID GetAlgorithmID() const {
|
|
return m_oid.Empty() ? ASN1::Ed25519() : m_oid;
|
|
}
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \details Save() will write the OID associated with algorithm or scheme.
|
|
/// In the case of public and private keys, this function writes the
|
|
/// subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-Ed25519</tt>.
|
|
/// The default private key format is RFC 5208, which is the old format.
|
|
/// The old format provides the best interop, and keys will work
|
|
/// with OpenSSL.
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Save(BufferedTransformation &bt) const {
|
|
DEREncode(bt, 0);
|
|
}
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \param v1 flag indicating v1
|
|
/// \details Save() will write the OID associated with algorithm or scheme.
|
|
/// In the case of public and private keys, this function writes the
|
|
/// subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-Ed25519</tt>.
|
|
/// The default private key format is RFC 5208.
|
|
/// \details v1 means INTEGER 0 is written. INTEGER 0 means
|
|
/// RFC 5208 format, which is the old format. The old format provides
|
|
/// the best interop, and keys will work with OpenSSL. The other
|
|
/// option uses INTEGER 1. INTEGER 1 means RFC 5958 format,
|
|
/// which is the new format.
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Save(BufferedTransformation &bt, bool v1) const {
|
|
DEREncode(bt, v1 ? 0 : 1);
|
|
}
|
|
|
|
/// \brief BER decode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Load(BufferedTransformation &bt) {
|
|
BERDecode(bt);
|
|
}
|
|
|
|
/// \brief Initializes a public key from this key
|
|
/// \param pub reference to a public key
|
|
void MakePublicKey(PublicKey &pub) const;
|
|
|
|
// PKCS8PrivateKey
|
|
void BERDecode(BufferedTransformation &bt);
|
|
void DEREncode(BufferedTransformation &bt) const { DEREncode(bt, 0); }
|
|
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
|
void DEREncodePrivateKey(BufferedTransformation &bt) const;
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \param version indicates version
|
|
/// \details DEREncode() will write the OID associated with algorithm or
|
|
/// scheme. In the case of public and private keys, this function writes
|
|
/// the subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208.
|
|
/// \details The value of version is written as the INTEGER. INTEGER 0 means
|
|
/// RFC 5208 format, which is the old format. The old format provides
|
|
/// the best interop, and keys will work with OpenSSL. The INTEGER 1
|
|
/// means RFC 5958 format, which is the new format.
|
|
void DEREncode(BufferedTransformation &bt, int version) const;
|
|
|
|
/// \brief Determine if OID is valid for this object
|
|
/// \details BERDecodeAndCheckAlgorithmID() parses the OID from
|
|
/// <tt>bt</tt> and determines if it valid for this object. The
|
|
/// problem in practice is there are multiple OIDs available to
|
|
/// denote curve25519 operations. The OIDs include an old GNU
|
|
/// OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
|
|
/// and OIDs specified in draft-ietf-curdle-pkix.
|
|
/// \details By default BERDecodeAndCheckAlgorithmID() accepts an
|
|
/// OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::Ed25519()</tt>.
|
|
/// <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
|
|
/// curve25519 operations". <tt>ASN1::Ed25519()</tt> is specific and says
|
|
/// "this key is valid for ed25519 signing."
|
|
void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);
|
|
|
|
// PKCS8PrivateKey
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms);
|
|
void SetPrivateExponent(const byte x[SECRET_KEYLENGTH]);
|
|
void SetPrivateExponent(const Integer &x);
|
|
const Integer& GetPrivateExponent() const;
|
|
|
|
/// \brief Clamp a private key
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details ClampKeys() clamps a private key and then regenerates the
|
|
/// public key from the private key.
|
|
void ClampKeys(byte y[PUBLIC_KEYLENGTH], byte x[SECRET_KEYLENGTH]) const;
|
|
|
|
/// \brief Determine if private key is clamped
|
|
/// \param x private key
|
|
bool IsClamped(const byte x[SECRET_KEYLENGTH]) const;
|
|
|
|
/// \brief Test if a key has small order
|
|
/// \param y public key
|
|
bool IsSmallOrder(const byte y[PUBLIC_KEYLENGTH]) const;
|
|
|
|
/// \brief Retrieve private key byte array
|
|
/// \returns the private key byte array
|
|
/// \details GetPrivateKeyBytePtr() is used by signing code to call ed25519_sign.
|
|
const byte* GetPrivateKeyBytePtr() const {
|
|
return m_sk.begin();
|
|
}
|
|
|
|
/// \brief Retrieve public key byte array
|
|
/// \returns the public key byte array
|
|
/// \details GetPublicKeyBytePtr() is used by signing code to call ed25519_sign.
|
|
const byte* GetPublicKeyBytePtr() const {
|
|
return m_pk.begin();
|
|
}
|
|
|
|
protected:
|
|
FixedSizeSecBlock<byte, SECRET_KEYLENGTH> m_sk;
|
|
FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
|
|
OID m_oid; // preferred OID
|
|
mutable Integer m_x; // for DL_PrivateKey
|
|
};
|
|
|
|
/// \brief Ed25519 signature algorithm
|
|
/// \since Crypto++ 8.0
|
|
struct ed25519Signer : public PK_Signer
|
|
{
|
|
/// \brief Size of the private key
|
|
/// \details SECRET_KEYLENGTH is the size of the private key, in bytes.
|
|
CRYPTOPP_CONSTANT(SECRET_KEYLENGTH = 32)
|
|
/// \brief Size of the public key
|
|
/// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
|
|
CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
|
|
/// \brief Size of the siganture
|
|
/// \details SIGNATURE_LENGTH is the size of the signature, in bytes.
|
|
/// ed25519 is a DL-based signature scheme. The signature is the
|
|
/// concatenation of <tt>r || s</tt>.
|
|
CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)
|
|
typedef Integer Element;
|
|
|
|
virtual ~ed25519Signer() {}
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
ed25519Signer() {}
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details This constructor creates a ed25519Signer object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
ed25519Signer(const byte y[PUBLIC_KEYLENGTH], const byte x[SECRET_KEYLENGTH]);
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param x private key
|
|
/// \details This constructor creates a ed25519Signer object using existing parameters.
|
|
/// The public key is calculated from the private key.
|
|
ed25519Signer(const byte x[SECRET_KEYLENGTH]);
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param y public key
|
|
/// \param x private key
|
|
/// \details This constructor creates a ed25519Signer object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
ed25519Signer(const Integer &y, const Integer &x);
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param x private key
|
|
/// \details This constructor creates a ed25519Signer object using existing parameters.
|
|
/// The public key is calculated from the private key.
|
|
ed25519Signer(const Integer &x);
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param rng RandomNumberGenerator derived class
|
|
/// \details This constructor creates a new ed25519Signer using the random number generator.
|
|
ed25519Signer(RandomNumberGenerator &rng);
|
|
|
|
/// \brief Create a ed25519Signer object
|
|
/// \param params public and private key
|
|
/// \details This constructor creates a ed25519Signer object using existing parameters.
|
|
/// The <tt>params</tt> can be created with <tt>Save</tt>.
|
|
/// \note The public key is not validated.
|
|
ed25519Signer(BufferedTransformation ¶ms);
|
|
|
|
// DL_ObjectImplBase
|
|
PrivateKey& AccessKey() { return m_key; }
|
|
PrivateKey& AccessPrivateKey() { return m_key; }
|
|
|
|
const PrivateKey& GetKey() const { return m_key; }
|
|
const PrivateKey& GetPrivateKey() const { return m_key; }
|
|
|
|
// DL_SignatureSchemeBase
|
|
size_t SignatureLength() const { return SIGNATURE_LENGTH; }
|
|
size_t MaxRecoverableLength() const { return 0; }
|
|
size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const {
|
|
CRYPTOPP_UNUSED(signatureLength); return 0;
|
|
}
|
|
|
|
bool IsProbabilistic() const { return false; }
|
|
bool AllowNonrecoverablePart() const { return false; }
|
|
bool RecoverablePartFirst() const { return false; }
|
|
|
|
PK_MessageAccumulator* NewSignatureAccumulator(RandomNumberGenerator &rng) const {
|
|
return new ed25519_MessageAccumulator(rng);
|
|
}
|
|
|
|
void InputRecoverableMessage(PK_MessageAccumulator &messageAccumulator, const byte *recoverableMessage, size_t recoverableMessageLength) const {
|
|
CRYPTOPP_UNUSED(messageAccumulator); CRYPTOPP_UNUSED(recoverableMessage);
|
|
CRYPTOPP_UNUSED(recoverableMessageLength);
|
|
throw NotImplemented("ed25519Signer: this object does not support recoverable messages");
|
|
}
|
|
|
|
size_t SignAndRestart(RandomNumberGenerator &rng, PK_MessageAccumulator &messageAccumulator, byte *signature, bool restart) const;
|
|
|
|
protected:
|
|
ed25519PrivateKey m_key;
|
|
};
|
|
|
|
// ****************** ed25519 Verifier *********************** //
|
|
|
|
/// \brief Ed25519 public key
|
|
/// \details ed25519PublicKey is somewhat of a hack. It needed to
|
|
/// provide DL_PublicKey interface to fit into the existing
|
|
/// framework, but it lacks a lot of the internals of a true
|
|
/// DL_PublicKey. The missing pieces include GroupParameters
|
|
/// and Point, which provide the low level field operations
|
|
/// found in traditional implementations like NIST curves over
|
|
/// prime and binary fields.
|
|
/// \details ed25519PublicKey is also unusual because the
|
|
/// class members of interest are byte arrays and not Integers.
|
|
/// In addition, the byte arrays are little-endian meaning
|
|
/// LSB is at element 0 and the MSB is at element 31.
|
|
/// If you call GetPublicElement() then the little-endian byte
|
|
/// array is converted to a big-endian Integer() so it can be
|
|
/// returned the way a caller expects. And calling
|
|
/// SetPublicElement() perfoms a similar internal conversion.
|
|
/// \since Crypto++ 8.0
|
|
struct ed25519PublicKey : public X509PublicKey
|
|
{
|
|
/// \brief Size of the public key
|
|
/// \details PUBLIC_KEYLENGTH is the size of the public key, in bytes.
|
|
CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
|
|
typedef Integer Element;
|
|
|
|
OID GetAlgorithmID() const {
|
|
return m_oid.Empty() ? ASN1::Ed25519() : m_oid;
|
|
}
|
|
|
|
/// \brief DER encode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \details Save() will write the OID associated with algorithm or scheme.
|
|
/// In the case of public and private keys, this function writes the
|
|
/// subjectPubicKeyInfo parts.
|
|
/// \details The default OID is from RFC 8410 using <tt>id-X25519</tt>.
|
|
/// The default private key format is RFC 5208, which is the old format.
|
|
/// The old format provides the best interop, and keys will work
|
|
/// with OpenSSL.
|
|
void Save(BufferedTransformation &bt) const {
|
|
BEREncode(bt);
|
|
}
|
|
|
|
/// \brief BER decode ASN.1 object
|
|
/// \param bt BufferedTransformation object
|
|
/// \sa <A HREF="https://tools.ietf.org/rfc/rfc5958.txt">RFC 5958, Asymmetric
|
|
/// Key Packages</A>
|
|
void Load(BufferedTransformation &bt) {
|
|
BERDecode(bt);
|
|
}
|
|
|
|
// X509PublicKey
|
|
void BERDecode(BufferedTransformation &bt);
|
|
void DEREncode(BufferedTransformation &bt) const;
|
|
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
|
|
void DEREncodePublicKey(BufferedTransformation &bt) const;
|
|
|
|
/// \brief Determine if OID is valid for this object
|
|
/// \details BERDecodeAndCheckAlgorithmID() parses the OID from
|
|
/// <tt>bt</tt> and determines if it valid for this object. The
|
|
/// problem in practice is there are multiple OIDs available to
|
|
/// denote curve25519 operations. The OIDs include an old GNU
|
|
/// OID used by SSH, OIDs specified in draft-josefsson-pkix-newcurves,
|
|
/// and OIDs specified in draft-ietf-curdle-pkix.
|
|
/// \details By default BERDecodeAndCheckAlgorithmID() accepts an
|
|
/// OID set by the user, <tt>ASN1::curve25519()</tt> and <tt>ASN1::Ed25519()</tt>.
|
|
/// <tt>ASN1::curve25519()</tt> is generic and says "this key is valid for
|
|
/// curve25519 operations". <tt>ASN1::Ed25519()</tt> is specific and says
|
|
/// "this key is valid for ed25519 signing."
|
|
void BERDecodeAndCheckAlgorithmID(BufferedTransformation& bt);
|
|
|
|
bool Validate(RandomNumberGenerator &rng, unsigned int level) const;
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
|
void AssignFrom(const NameValuePairs &source);
|
|
|
|
// DL_PublicKey
|
|
void SetPublicElement(const byte y[PUBLIC_KEYLENGTH]);
|
|
void SetPublicElement(const Element &y);
|
|
const Element& GetPublicElement() const;
|
|
|
|
/// \brief Retrieve public key byte array
|
|
/// \returns the public key byte array
|
|
/// \details GetPublicKeyBytePtr() is used by signing code to call ed25519_sign.
|
|
const byte* GetPublicKeyBytePtr() const {
|
|
return m_pk.begin();
|
|
}
|
|
|
|
protected:
|
|
FixedSizeSecBlock<byte, PUBLIC_KEYLENGTH> m_pk;
|
|
OID m_oid; // preferred OID
|
|
mutable Integer m_y; // for DL_PublicKey
|
|
};
|
|
|
|
/// \brief Ed25519 signature verification algorithm
|
|
/// \since Crypto++ 8.0
|
|
struct ed25519Verifier : public PK_Verifier
|
|
{
|
|
CRYPTOPP_CONSTANT(PUBLIC_KEYLENGTH = 32)
|
|
CRYPTOPP_CONSTANT(SIGNATURE_LENGTH = 64)
|
|
typedef Integer Element;
|
|
|
|
virtual ~ed25519Verifier() {}
|
|
|
|
/// \brief Create a ed25519Verifier object
|
|
ed25519Verifier() {}
|
|
|
|
/// \brief Create a ed25519Verifier object
|
|
/// \param y public key
|
|
/// \details This constructor creates a ed25519Verifier object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
ed25519Verifier(const byte y[PUBLIC_KEYLENGTH]);
|
|
|
|
/// \brief Create a ed25519Verifier object
|
|
/// \param y public key
|
|
/// \details This constructor creates a ed25519Verifier object using existing parameters.
|
|
/// \note The public key is not validated.
|
|
ed25519Verifier(const Integer &y);
|
|
|
|
/// \brief Create a ed25519Verifier object
|
|
/// \param params public and private key
|
|
/// \details This constructor creates a ed25519Verifier object using existing parameters.
|
|
/// The <tt>params</tt> can be created with <tt>Save</tt>.
|
|
/// \note The public key is not validated.
|
|
ed25519Verifier(BufferedTransformation ¶ms);
|
|
|
|
/// \brief Create a ed25519Verifier object
|
|
/// \param signer ed25519 signer object
|
|
/// \details This constructor creates a ed25519Verifier object using existing parameters.
|
|
/// The <tt>params</tt> can be created with <tt>Save</tt>.
|
|
/// \note The public key is not validated.
|
|
ed25519Verifier(const ed25519Signer& signer);
|
|
|
|
// DL_ObjectImplBase
|
|
PublicKey& AccessKey() { return m_key; }
|
|
PublicKey& AccessPublicKey() { return m_key; }
|
|
|
|
const PublicKey& GetKey() const { return m_key; }
|
|
const PublicKey& GetPublicKey() const { return m_key; }
|
|
|
|
// DL_SignatureSchemeBase
|
|
size_t SignatureLength() const { return SIGNATURE_LENGTH; }
|
|
size_t MaxRecoverableLength() const { return 0; }
|
|
size_t MaxRecoverableLengthFromSignatureLength(size_t signatureLength) const {
|
|
CRYPTOPP_UNUSED(signatureLength); return 0;
|
|
}
|
|
|
|
bool IsProbabilistic() const { return false; }
|
|
bool AllowNonrecoverablePart() const { return false; }
|
|
bool RecoverablePartFirst() const { return false; }
|
|
|
|
ed25519_MessageAccumulator* NewVerificationAccumulator() const {
|
|
return new ed25519_MessageAccumulator;
|
|
}
|
|
|
|
void InputSignature(PK_MessageAccumulator &messageAccumulator, const byte *signature, size_t signatureLength) const {
|
|
CRYPTOPP_ASSERT(signature != NULLPTR);
|
|
CRYPTOPP_ASSERT(signatureLength == SIGNATURE_LENGTH);
|
|
ed25519_MessageAccumulator& accum = static_cast<ed25519_MessageAccumulator&>(messageAccumulator);
|
|
if (signature && signatureLength)
|
|
std::memcpy(accum.signature(), signature, STDMIN((size_t)SIGNATURE_LENGTH, signatureLength));
|
|
}
|
|
|
|
bool VerifyAndRestart(PK_MessageAccumulator &messageAccumulator) const;
|
|
|
|
DecodingResult RecoverAndRestart(byte *recoveredMessage, PK_MessageAccumulator &messageAccumulator) const {
|
|
CRYPTOPP_UNUSED(recoveredMessage); CRYPTOPP_UNUSED(messageAccumulator);
|
|
throw NotImplemented("ed25519Verifier: this object does not support recoverable messages");
|
|
}
|
|
|
|
protected:
|
|
ed25519PublicKey m_key;
|
|
};
|
|
|
|
/// \brief Ed25519 signature scheme
|
|
/// \since Crypto++ 8.0
|
|
struct ed25519
|
|
{
|
|
typedef ed25519Signer Signer;
|
|
typedef ed25519Verifier Verifier;
|
|
};
|
|
|
|
NAMESPACE_END // CryptoPP
|
|
|
|
#endif // CRYPTOPP_XED25519_H
|