ext-cryptopp/adv-simd.h
Jeffrey Walton c601213ce1
Sync CRYPTOPP_{BIG|LITTLE}_ENDIAN with Autotools
Autotools sets up its config.h file with the '#define XXX 0' or '#define XXX 1' pattern. This check-in makes the sources Autotools aware. We need to verify CMake does the same
2018-10-28 04:24:22 -04:00

2382 lines
101 KiB
C++

// adv-simd.h - written and placed in the public domain by Jeffrey Walton
/// \file adv-simd.h
/// \brief Template for AdvancedProcessBlocks and SIMD processing
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
// have a commom pattern. Namely, they have a specialized implementation of
// AdvancedProcessBlocks which processes multiple block using hardware
// acceleration. After several implementations we noticed a lot of copy and
// paste occuring. adv-simd.h provides a template to avoid the copy and paste.
//
// There are 11 templates provided in this file. The number following the
// function name, 64 or 128, is the block size. The name following the block
// size is the arrangement and acceleration. For example 4x1_SSE means Intel
// SSE using two encrypt (or decrypt) functions: one that operates on 4 SIMD
// words, and one that operates on 1 SIMD words.
//
// The distinction between SIMD words versus cipher blocks is important
// because 64-bit ciphers use one SIMD word for two cipher blocks. For
// example, AdvancedProcessBlocks64_6x2_ALTIVEC operates on 6 and 2 SIMD
// words, which is 12 and 4 cipher blocks. The function will do the right
// thing even if there is only one 64-bit block to encrypt.
//
// * AdvancedProcessBlocks64_2x1_SSE
// * AdvancedProcessBlocks64_4x1_SSE
// * AdvancedProcessBlocks128_4x1_SSE
// * AdvancedProcessBlocks64_6x2_SSE
// * AdvancedProcessBlocks128_6x2_SSE
// * AdvancedProcessBlocks64_6x2_NEON
// * AdvancedProcessBlocks128_4x1_NEON
// * AdvancedProcessBlocks128_6x2_NEON
// * AdvancedProcessBlocks64_6x2_ALTIVEC
// * AdvancedProcessBlocks128_4x1_ALTIVEC
// * AdvancedProcessBlocks128_6x1_ALTIVEC
//
// If an arrangement ends in 2, like 6x2, then the template will handle the
// single block case by padding with 0's and using the two SIMD word
// function. This happens at most one time when processing multiple blocks.
// The extra processing of a zero block is trivial and worth the tradeoff.
//
// The MAYBE_CONST macro present on x86 is a SunCC workaround. Some versions
// of SunCC lose/drop the const-ness in the F1 and F4 functions. It eventually
// results in a failed link due to the const/non-const mismatch.
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#define CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#include "config.h"
#include "misc.h"
#include "stdcpp.h"
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <emmintrin.h>
# include <xmmintrin.h>
#endif
// SunCC needs CRYPTOPP_SSSE3_AVAILABLE, too
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <emmintrin.h>
# include <pmmintrin.h>
# include <xmmintrin.h>
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc-simd.h"
#endif
// ************************ All block ciphers *********************** //
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::BlockTransformation;
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput)
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel)
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter)
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection)
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers)
ANONYMOUS_NAMESPACE_END
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam F6 function to process 6 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_6x2_NEON processes 6 and 2 NEON SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks64_6x2_NEON(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_t s_one = {0, 0, 0, 1<<24};
const uint32x4_t s_two = {0, 2<<24, 0, 2<<24};
#else
// TODO: verify these constants on ARM-BE
const uint32x4_t s_one = {0, 0, 0, 1};
const uint32x4_t s_two = {0, 2, 0, 2};
#endif
const size_t blockSize = 8;
const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? neonBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - neonBlockSize);
xorBlocks = PtrAdd(xorBlocks, length - neonBlockSize);
outBlocks = PtrAdd(outBlocks, length - neonBlockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(s_one, vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = vaddq_u32(s_two, block0);
block2 = vaddq_u32(s_two, block1);
block3 = vaddq_u32(s_two, block2);
block4 = vaddq_u32(s_two, block3);
block5 = vaddq_u32(s_two, block4);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(s_two, block5))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block4));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block5));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(s_one, vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = vaddq_u32(s_two, block0);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(s_two, block1))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks = PtrSub(inBlocks, inIncrement);
xorBlocks = PtrSub(xorBlocks, xorIncrement);
outBlocks = PtrSub(outBlocks, outIncrement);
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = {0};
const uint8x8_t v = vld1_u8(inBlocks);
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
if (xorInput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
vst1_u8(const_cast<byte*>(outBlocks),
vget_low_u8(vreinterpretq_u8_u32(block)));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 6 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x1_NEON processes 6 and 2 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F6 must use the
/// same word type.
template <typename F1, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x1_NEON(F1 func1, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_t s_one = {0, 0, 0, 1<<24};
const uint32x4_t s_two = {0, 2<<24, 0, 2<<24};
#else
// TODO: verify these constants on ARM-BE
const uint32x4_t s_one = {0, 0, 0, 1};
const uint32x4_t s_two = {0, 2, 0, 2};
#endif
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
block2 = vaddq_u64(block1, one);
block3 = vaddq_u64(block2, one);
block4 = vaddq_u64(block3, one);
block5 = vaddq_u64(block4, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block;
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \tparam V vector type of the NEON datatype
/// \details AdvancedProcessBlocks128_4x1_NEON processes 4 and 1 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. V is the vector type and it is
/// usually uint32x4_t or uint64x2_t. F1, F4, W and V must use the same word and
/// vector type. The V parameter is used to avoid template argument
/// deduction/substitution failures.
template <typename F1, typename F4, typename W, typename V>
inline size_t AdvancedProcessBlocks128_4x1_NEON(F1 func1, F4 func4,
const V& unused, const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_UNUSED(unused);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_t s_one = {0, 0, 0, 1<<24};
const uint32x4_t s_two = {0, 2<<24, 0, 2<<24};
#else
// TODO: verify these constants on ARM-BE
const uint32x4_t s_one = {0, 0, 0, 1};
const uint32x4_t s_two = {0, 2, 0, 2};
#endif
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
uint64x2_t block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
block2 = vaddq_u64(block1, one);
block3 = vaddq_u64(block2, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block3, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4((V&)block0, (V&)block1, (V&)block2, (V&)block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1( (V&)block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_NEON processes 6 and 2 NEON SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_NEON(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_t s_one = {0, 0, 0, 1<<24};
const uint32x4_t s_two = {0, 2<<24, 0, 2<<24};
#else
// TODO: verify these constants on ARM-BE
const uint32x4_t s_one = {0, 0, 0, 1};
const uint32x4_t s_two = {0, 2, 0, 2};
#endif
const size_t blockSize = 16;
// const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
block2 = vaddq_u64(block1, one);
block3 = vaddq_u64(block2, one);
block4 = vaddq_u64(block3, one);
block5 = vaddq_u64(block4, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t one = vreinterpretq_u64_u32(s_one);
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, one);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, one)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks = PtrAdd(outBlocks, outIncrement);
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// *************************** Intel SSE ************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
// Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224
#if (__SUNPRO_CC >= 0x5130)
# define MAYBE_CONST
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
#else
# define MAYBE_CONST const
# define MAYBE_UNCONST_CAST(T, x) (x)
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 1 and 2 blocks
/// \tparam F1 function to process 1 64-bit block
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_2x1_SSE processes 2 and 1 SSE SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F2 must use the
/// same word type.
template <typename F1, typename F2, typename W>
inline size_t AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - xmmBlockSize);
xorBlocks = PtrAdd(xorBlocks, length - xmmBlockSize);
outBlocks = PtrAdd(outBlocks, length - xmmBlockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
double temp[2];
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = _mm_add_epi32(s_two, block0);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks = PtrSub(inBlocks, inIncrement);
xorBlocks = PtrSub(xorBlocks, xorIncrement);
outBlocks = PtrSub(outBlocks, outIncrement);
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
double temp[2];
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam F6 function to process 6 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_6x2_SSE processes 6 and 2 SSE SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - xmmBlockSize);
xorBlocks = PtrAdd(xorBlocks, length - xmmBlockSize);
outBlocks = PtrAdd(outBlocks, length - xmmBlockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
double temp[2];
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = _mm_add_epi32(s_two, block0);
block2 = _mm_add_epi32(s_two, block1);
block3 = _mm_add_epi32(s_two, block2);
block4 = _mm_add_epi32(s_two, block3);
block5 = _mm_add_epi32(s_two, block4);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi32(s_two, block5)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*xmmBlockSize;
}
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = _mm_add_epi32(s_two, block0);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks = PtrSub(inBlocks, inIncrement);
xorBlocks = PtrSub(xorBlocks, xorIncrement);
outBlocks = PtrSub(outBlocks, outIncrement);
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
double temp[2];
__m128i block, zero = _mm_setzero_si128();
std::memcpy(temp, inBlocks, blockSize);
block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block,
_mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block,
_mm_castpd_si128(_mm_load_sd(temp)));
}
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_SSE processes 6 and 2 SSE SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
block4 = _mm_add_epi32(block3, s_one);
block5 = _mm_add_epi32(block4, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_SSE processes 4 and 1 SSE SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, s_one));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 64-bit block
/// \tparam F4 function to process 6 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_4x1_SSE processes 4 and 1 SSE SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks64_4x1_SSE(F1 func1, F4 func4,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter | BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - xmmBlockSize);
xorBlocks = PtrAdd(xorBlocks, length - xmmBlockSize);
outBlocks = PtrAdd(outBlocks, length - xmmBlockSize);
inIncrement = 0 - inIncrement;
xorIncrement = 0 - xorIncrement;
outIncrement = 0 - outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*xmmBlockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
double temp[2];
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
block1 = _mm_add_epi32(s_two, block0);
block2 = _mm_add_epi32(s_two, block1);
block3 = _mm_add_epi32(s_two, block2);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block3)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks = PtrAdd(outBlocks, outIncrement);
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks = PtrSub(inBlocks, inIncrement);
xorBlocks = PtrSub(xorBlocks, xorIncrement);
outBlocks = PtrSub(outBlocks, outIncrement);
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
double temp[2];
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_SSSE3_AVAILABLE
// *********************** Altivec/Power 4 ********************** //
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_6x2_Altivec processes 6 and 2 Altivec SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks64_6x2_ALTIVEC(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
#if (CRYPTOPP_LITTLE_ENDIAN)
enum {LowOffset=8, HighOffset=0};
const uint32x4_p s_one = {1,0,0,0};
const uint32x4_p s_two = {2,0,2,0};
#else
enum {LowOffset=8, HighOffset=0};
const uint32x4_p s_one = {0,0,0,1};
const uint32x4_p s_two = {0,2,0,2};
#endif
const size_t blockSize = 8;
const size_t vsxBlockSize = 16;
CRYPTOPP_ALIGN_DATA(16) uint8_t temp[16];
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : vsxBlockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? vsxBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : vsxBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - vsxBlockSize);
xorBlocks = PtrAdd(xorBlocks, length - vsxBlockSize);
outBlocks = PtrAdd(outBlocks, length - vsxBlockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*vsxBlockSize)
{
uint32x4_p block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// There is no easy way to load 8-bytes into a vector. It is
// even harder without POWER8 due to lack of 64-bit elements.
std::memcpy(temp+LowOffset, inBlocks, 8);
std::memcpy(temp+HighOffset, inBlocks, 8);
uint32x4_p ctr = (uint32x4_p)VectorLoadBE(temp);
// For 64-bit block ciphers we need to load the CTR block,
// which is 8 bytes. After the dup load we have two counters
// in the Altivec word. Then we need to increment the low ctr
// by 0 and the high ctr by 1.
block0 = VectorAdd(s_one, ctr);
// After initial increment of {0,1} remaining counters
// increment by {2,2}.
block1 = VectorAdd(s_two, block0);
block2 = VectorAdd(s_two, block1);
block3 = VectorAdd(s_two, block2);
block4 = VectorAdd(s_two, block3);
block5 = VectorAdd(s_two, block4);
// Update the counter in the caller.
const_cast<byte*>(inBlocks)[7] += 12;
}
else
{
block0 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = VectorXor(block4, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = VectorXor(block5, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = VectorXor(block4, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = VectorXor(block5, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
VectorStoreBE(block0, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block1, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block2, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block3, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block4, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block5, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*vsxBlockSize;
}
while (length >= 2*vsxBlockSize)
{
uint32x4_p block0, block1;
if (flags & BT_InBlockIsCounter)
{
// There is no easy way to load 8-bytes into a vector. It is
// even harder without POWER8 due to lack of 64-bit elements.
std::memcpy(temp+LowOffset, inBlocks, 8);
std::memcpy(temp+HighOffset, inBlocks, 8);
uint32x4_p ctr = (uint32x4_p)VectorLoadBE(temp);
// For 64-bit block ciphers we need to load the CTR block,
// which is 8 bytes. After the dup load we have two counters
// in the Altivec word. Then we need to increment the low ctr
// by 0 and the high ctr by 1.
block0 = VectorAdd(s_one, ctr);
// After initial increment of {0,1} remaining counters
// increment by {2,2}.
block1 = VectorAdd(s_two, block0);
// Update the counter in the caller.
const_cast<byte*>(inBlocks)[7] += 4;
}
else
{
block0 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
VectorStoreBE(block0, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block1, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 2*vsxBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks = PtrSub(inBlocks, inIncrement);
xorBlocks = PtrSub(xorBlocks, xorIncrement);
outBlocks = PtrSub(outBlocks, outIncrement);
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_p block, zero = {0};
// There is no easy way to load 8-bytes into a vector. It is
// even harder without POWER8 due to lack of 64-bit elements.
// The high 8 bytes are "don't care" but it if we don't
// initialize the block then it generates warnings.
std::memcpy(temp+LowOffset, inBlocks, 8);
std::memcpy(temp+HighOffset, inBlocks, 8); // don't care
block = (uint32x4_p)VectorLoadBE(temp);
if (xorInput)
{
std::memcpy(temp+LowOffset, xorBlocks, 8);
std::memcpy(temp+HighOffset, xorBlocks, 8); // don't care
uint32x4_p x = (uint32x4_p)VectorLoadBE(temp);
block = VectorXor(block, x);
}
// Update the counter in the caller.
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
std::memcpy(temp+LowOffset, xorBlocks, 8);
std::memcpy(temp+HighOffset, xorBlocks, 8); // don't care
uint32x4_p x = (uint32x4_p)VectorLoadBE(temp);
block = VectorXor(block, x);
}
VectorStoreBE(block, temp);
std::memcpy(outBlocks, temp+LowOffset, 8);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_ALTIVEC processes 4 and 1 Altivec SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_ALTIVEC(F1 func1, F4 func4,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_p s_one = {1,0,0,0};
#else
const uint32x4_p s_one = {0,0,0,1};
#endif
const size_t blockSize = 16;
// const size_t vsxBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
uint32x4_p block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
block0 = VectorLoadBE(inBlocks);
block1 = VectorAdd(block0, s_one);
block2 = VectorAdd(block1, s_one);
block3 = VectorAdd(block2, s_one);
// Hack due to big-endian loads used by POWER8 (and maybe ARM-BE).
// CTR_ModePolicy::OperateKeystream is wired such that after
// returning from this function CTR_ModePolicy will detect wrap on
// on the last counter byte and increment the next to last byte.
// The problem is, with a big-endian load, inBlocks[15] is really
// located at index 15. The vector addition using a 32-bit element
// generates a carry into inBlocks[14] and then CTR_ModePolicy
// increments inBlocks[14] too.
const_cast<byte*>(inBlocks)[15] += 6;
}
else
{
block0 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func4(block0, block1, block2, block3, subKeys, rounds);
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
VectorStoreBE(block0, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block1, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block2, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block3, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
uint32x4_p block = VectorLoadBE(inBlocks);
if (xorInput)
block = VectorXor(block, VectorLoadBE(xorBlocks));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, rounds);
if (xorOutput)
block = VectorXor(block, VectorLoadBE(xorBlocks));
VectorStoreBE(block, outBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 6 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x1_ALTIVEC processes 6 and 1 Altivec SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F6 must use the
/// same word type.
template <typename F1, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x1_ALTIVEC(F1 func1, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if (CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_p s_one = {1,0,0,0};
#else
const uint32x4_p s_one = {0,0,0,1};
#endif
const size_t blockSize = 16;
// const size_t vsxBlockSize = 16;
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks = PtrAdd(inBlocks, length - blockSize);
xorBlocks = PtrAdd(xorBlocks, length - blockSize);
outBlocks = PtrAdd(outBlocks, length - blockSize);
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint32x4_p block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
block0 = VectorLoadBE(inBlocks);
block1 = VectorAdd(block0, s_one);
block2 = VectorAdd(block1, s_one);
block3 = VectorAdd(block2, s_one);
block4 = VectorAdd(block3, s_one);
block5 = VectorAdd(block4, s_one);
// Hack due to big-endian loads used by POWER8 (and maybe ARM-BE).
// CTR_ModePolicy::OperateKeystream is wired such that after
// returning from this function CTR_ModePolicy will detect wrap on
// on the last counter byte and increment the next to last byte.
// The problem is, with a big-endian load, inBlocks[15] is really
// located at index 15. The vector addition using a 32-bit element
// generates a carry into inBlocks[14] and then CTR_ModePolicy
// increments inBlocks[14] too.
//
// To find this bug we needed a test case with a ctr of 0xNN...FA.
// The last octet is 0xFA and adding 6 creates the wrap to trigger
// the issue. If the last octet was 0xFC then 4 would trigger it.
// We dumb-lucked into the test with SPECK-128. The test case of
// interest is the one with IV 348ECA9766C09F04 826520DE47A212FA.
uint8x16_p temp = VectorAdd((uint8x16_p)block5, (uint8x16_p)s_one);
VectorStoreBE(temp, const_cast<byte*>(inBlocks));
}
else
{
block0 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block1 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block2 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block3 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block4 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
block5 = VectorLoadBE(inBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = VectorXor(block4, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = VectorXor(block5, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
func6(block0, block1, block2, block3, block4, block5, subKeys, rounds);
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block1 = VectorXor(block1, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block2 = VectorXor(block2, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block3 = VectorXor(block3, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block4 = VectorXor(block4, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
block5 = VectorXor(block5, VectorLoadBE(xorBlocks));
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
}
VectorStoreBE(block0, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block1, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block2, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block3, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block4, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
VectorStoreBE(block5, outBlocks);
outBlocks = PtrAdd(outBlocks, outIncrement);
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint32x4_p block = VectorLoadBE(inBlocks);
if (xorInput)
block = VectorXor(block, VectorLoadBE(xorBlocks));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, rounds);
if (xorOutput)
block = VectorXor(block, VectorLoadBE(xorBlocks));
VectorStoreBE(block, outBlocks);
inBlocks = PtrAdd(inBlocks, inIncrement);
outBlocks = PtrAdd(outBlocks, outIncrement);
xorBlocks = PtrAdd(xorBlocks, xorIncrement);
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
#endif // CRYPTOPP_ADVANCED_SIMD_TEMPLATES