ext-cryptopp/fhmqv.h
2023-04-15 16:45:02 -04:00

409 lines
18 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// fhmqv.h - written and placed in the public domain by Jeffrey Walton, Ray Clayton and Uri Blumenthal
// Shamelessly based upon Wei Dai's MQV source files
#ifndef CRYPTOPP_FHMQV_H
#define CRYPTOPP_FHMQV_H
/// \file fhmqv.h
/// \brief Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
/// \since Crypto++ 5.6.4
#include "gfpcrypt.h"
#include "algebra.h"
#include "sha.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
/// \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
/// \since Crypto++ 5.6.4
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption, class HASH = SHA512>
class FHMQV_Domain : public AuthenticatedKeyAgreementDomain
{
public:
typedef GROUP_PARAMETERS GroupParameters;
typedef typename GroupParameters::Element Element;
typedef FHMQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION, HASH> Domain;
virtual ~FHMQV_Domain() {}
/// \brief Construct a FHMQV domain
/// \param clientRole flag indicating initiator or recipient
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
FHMQV_Domain(bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer) {}
/// \brief Construct a FHMQV domain
/// \param params group parameters and options
/// \param clientRole flag indicating initiator or recipient
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
FHMQV_Domain(const GroupParameters &params, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer), m_groupParameters(params) {}
/// \brief Construct a FHMQV domain
/// \param bt BufferedTransformation with group parameters and options
/// \param clientRole flag indicating initiator or recipient
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
FHMQV_Domain(BufferedTransformation &bt, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.BERDecode(bt);}
/// \brief Construct a FHMQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param clientRole flag indicating initiator or recipient
/// \details v1 is passed directly to the GROUP_PARAMETERS object.
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
template <class T1>
FHMQV_Domain(T1 v1, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1);}
/// \brief Construct a FHMQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \param clientRole flag indicating initiator or recipient
/// \details v1 and v2 are passed directly to the GROUP_PARAMETERS object.
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
template <class T1, class T2>
FHMQV_Domain(T1 v1, T2 v2, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2);}
/// \brief Construct a FHMQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \tparam T3 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \param v3 third parameter
/// \param clientRole flag indicating initiator or recipient
/// \details v1, v2 and v3 are passed directly to the GROUP_PARAMETERS object.
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
template <class T1, class T2, class T3>
FHMQV_Domain(T1 v1, T2 v2, T3 v3, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2, v3);}
/// \brief Construct a FHMQV domain
/// \tparam T1 template parameter used as a constructor parameter
/// \tparam T2 template parameter used as a constructor parameter
/// \tparam T3 template parameter used as a constructor parameter
/// \tparam T4 template parameter used as a constructor parameter
/// \param v1 first parameter
/// \param v2 second parameter
/// \param v3 third parameter
/// \param v4 third parameter
/// \param clientRole flag indicating initiator or recipient
/// \details v1, v2, v3 and v4 are passed directly to the GROUP_PARAMETERS object.
/// \details <tt>clientRole = true</tt> indicates initiator, and
/// <tt>clientRole = false</tt> indicates recipient or server.
template <class T1, class T2, class T3, class T4>
FHMQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2, v3, v4);}
public:
/// \brief Retrieves the group parameters for this domain
/// \return the group parameters for this domain as a const reference
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
/// \brief Retrieves the group parameters for this domain
/// \return the group parameters for this domain as a non-const reference
GroupParameters & AccessGroupParameters() {return m_groupParameters;}
/// \brief Retrieves the crypto parameters for this domain
/// \return the crypto parameters for this domain as a non-const reference
CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}
/// \brief Provides the size of the agreed value
/// \return size of agreed value produced in this domain
/// \details The length is calculated using <tt>GetEncodedElementSize(false)</tt>,
/// which means the element is encoded in a non-reversible format. A
/// non-reversible format means its a raw byte array, and it lacks presentation
/// format like an ASN.1 BIT_STRING or OCTET_STRING.
unsigned int AgreedValueLength() const
{return GetAbstractGroupParameters().GetEncodedElementSize(false);}
/// \brief Provides the size of the static private key
/// \return size of static private keys in this domain
/// \details The length is calculated using the byte count of the subgroup order.
unsigned int StaticPrivateKeyLength() const
{return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
/// \brief Provides the size of the static public key
/// \return size of static public keys in this domain
/// \details The length is calculated using <tt>GetEncodedElementSize(true)</tt>,
/// which means the element is encoded in a reversible format. A reversible
/// format means it has a presentation format, and its an ANS.1 encoded element
/// or point.
unsigned int StaticPublicKeyLength() const
{return GetAbstractGroupParameters().GetEncodedElementSize(true);}
/// \brief Generate static private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \details The private key is a random scalar used as an exponent in the range
/// <tt>[1,MaxExponent()]</tt>.
/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
}
/// \brief Generate a static public key from a private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer with the previously generated private key
/// \param publicKey a byte buffer for the generated public key in this domain
/// \details The public key is an element or point on the curve, and its stored
/// in a revrsible format. A reversible format means it has a presentation
/// format, and its an ANS.1 encoded element or point.
/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, publicKey);
}
/// \brief Provides the size of the ephemeral private key
/// \return size of ephemeral private keys in this domain
/// \details An ephemeral private key is a private key and public key.
/// The serialized size is different than a static private key.
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
/// \brief Provides the size of the ephemeral public key
/// \return size of ephemeral public keys in this domain
/// \details An ephemeral public key is a public key.
/// The serialized size is the same as a static public key.
unsigned int EphemeralPublicKeyLength() const{return StaticPublicKeyLength();}
/// \brief Generate ephemeral private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer for the generated private key in this domain
/// \pre <tt>COUNTOF(privateKey) == EphemeralPrivateKeyLength()</tt>
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(rng, Integer::One(), params.GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
}
/// \brief Generate ephemeral public key from a private key in this domain
/// \param rng a RandomNumberGenerator derived class
/// \param privateKey a byte buffer with the previously generated private key
/// \param publicKey a byte buffer for the generated public key in this domain
/// \pre <tt>COUNTOF(publicKey) == EphemeralPublicKeyLength()</tt>
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
std::memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
}
/// \brief Derive agreed value or shared secret
/// \param agreedValue the shared secret
/// \param staticPrivateKey your long term private key
/// \param ephemeralPrivateKey your ephemeral private key
/// \param staticOtherPublicKey couterparty's long term public key
/// \param ephemeralOtherPublicKey couterparty's ephemeral public key
/// \param validateStaticOtherPublicKey flag indicating validation
/// \return true upon success, false in case of failure
/// \details Agree() performs the authenticated key agreement. Agree()
/// derives a shared secret from your private keys and couterparty's
/// public keys. Each instance or run of the protocol should use a new
/// ephemeral key pair.
/// \details The other's ephemeral public key will always be validated at
/// Level 1 to ensure it is a point on the curve.
/// <tt>validateStaticOtherPublicKey</tt> determines how thoroughly other's
/// static public key is validated. If you have previously validated the
/// couterparty's static public key, then use
/// <tt>validateStaticOtherPublicKey=false</tt> to save time.
/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
/// \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
/// \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
/// \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const
{
const byte *XX = NULLPTR, *YY = NULLPTR, *AA = NULLPTR, *BB = NULLPTR;
size_t xxs = 0, yys = 0, aas = 0, bbs = 0;
// Depending on the role, this will hold either A's or B's static
// (long term) public key. AA or BB will then point into tt.
SecByteBlock tt(StaticPublicKeyLength());
try
{
this->GetMaterial().DoQuickSanityCheck();
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
if(m_role == RoleServer)
{
Integer b(staticPrivateKey, StaticPrivateKeyLength());
Element B = params.ExponentiateBase(b);
params.EncodeElement(true, B, tt);
XX = ephemeralOtherPublicKey;
xxs = EphemeralPublicKeyLength();
YY = ephemeralPrivateKey + StaticPrivateKeyLength();
yys = EphemeralPublicKeyLength();
AA = staticOtherPublicKey;
aas = StaticPublicKeyLength();
BB = tt.BytePtr();
bbs = tt.SizeInBytes();
}
else
{
Integer a(staticPrivateKey, StaticPrivateKeyLength());
Element A = params.ExponentiateBase(a);
params.EncodeElement(true, A, tt);
XX = ephemeralPrivateKey + StaticPrivateKeyLength();
xxs = EphemeralPublicKeyLength();
YY = ephemeralOtherPublicKey;
yys = EphemeralPublicKeyLength();
AA = tt.BytePtr();
aas = tt.SizeInBytes();
BB = staticOtherPublicKey;
bbs = StaticPublicKeyLength();
}
Element VV1 = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, true);
const Integer& q = params.GetSubgroupOrder();
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
SecByteBlock dd(len), ee(len);
Hash(NULLPTR, XX, xxs, YY, yys, AA, aas, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
Integer d(dd.BytePtr(), dd.SizeInBytes());
Hash(NULLPTR, YY, yys, XX, xxs, AA, aas, BB, bbs, ee.BytePtr(), ee.SizeInBytes());
Integer e(ee.BytePtr(), ee.SizeInBytes());
Element sigma;
if(m_role == RoleServer)
{
Integer y(ephemeralPrivateKey, StaticPrivateKeyLength());
Integer b(staticPrivateKey, StaticPrivateKeyLength());
Integer s_B = (y + e * b) % q;
Element A = params.DecodeElement(AA, false);
Element X = params.DecodeElement(XX, false);
Element t1 = params.ExponentiateElement(A, d);
Element t2 = m_groupParameters.MultiplyElements(X, t1);
sigma = params.ExponentiateElement(t2, s_B);
}
else
{
Integer x(ephemeralPrivateKey, StaticPrivateKeyLength());
Integer a(staticPrivateKey, StaticPrivateKeyLength());
Integer s_A = (x + d * a) % q;
Element B = params.DecodeElement(BB, false);
Element Y = params.DecodeElement(YY, false);
Element t1 = params.ExponentiateElement(B, e);
Element t2 = m_groupParameters.MultiplyElements(Y, t1);
sigma = params.ExponentiateElement(t2, s_A);
}
Hash(&sigma, XX, xxs, YY, yys, AA, aas, BB, bbs, agreedValue, AgreedValueLength());
}
catch (DL_BadElement &)
{
CRYPTOPP_ASSERT(0);
return false;
}
return true;
}
protected:
inline void Hash(const Element* sigma,
const byte* e1, size_t e1len, const byte* e2, size_t e2len,
const byte* s1, size_t s1len, const byte* s2, size_t s2len,
byte* digest, size_t dlen) const
{
HASH hash;
size_t idx = 0, req = dlen;
size_t blk = STDMIN(dlen, (size_t)HASH::DIGESTSIZE);
if(sigma)
{
//Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
//SecByteBlock sbb(x.MinEncodedSize());
//x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
}
hash.Update(e1, e1len);
hash.Update(e2, e2len);
hash.Update(s1, s1len);
hash.Update(s2, s2len);
hash.TruncatedFinal(digest, blk);
req -= blk;
// All this to catch tail bytes for large curves and small hashes
while(req != 0)
{
hash.Update(&digest[idx], (size_t)HASH::DIGESTSIZE);
idx += (size_t)HASH::DIGESTSIZE;
blk = STDMIN(req, (size_t)HASH::DIGESTSIZE);
hash.TruncatedFinal(&digest[idx], blk);
req -= blk;
}
}
private:
// The paper uses Initiator and Recipient - make it classical.
enum KeyAgreementRole { RoleServer = 1, RoleClient };
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}
GroupParameters m_groupParameters;
KeyAgreementRole m_role;
};
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
/// \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
/// \sa FHMQV, MQV_Domain, FHMQV_Domain, AuthenticatedKeyAgreementDomain
/// \since Crypto++ 5.6.4
typedef FHMQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> FHMQV;
NAMESPACE_END
#endif