ext-cryptopp/filters.cpp
2003-04-22 00:12:41 +00:00

898 lines
26 KiB
C++

// filters.cpp - written and placed in the public domain by Wei Dai
#include "pch.h"
#include "filters.h"
#include "mqueue.h"
#include "fltrimpl.h"
#include "argnames.h"
#include <memory>
#include <functional>
NAMESPACE_BEGIN(CryptoPP)
Filter::Filter(BufferedTransformation *attachment)
: m_attachment(attachment), m_continueAt(0)
{
}
BufferedTransformation * Filter::NewDefaultAttachment() const
{
return new MessageQueue;
}
BufferedTransformation * Filter::AttachedTransformation()
{
if (m_attachment.get() == NULL)
m_attachment.reset(NewDefaultAttachment());
return m_attachment.get();
}
const BufferedTransformation *Filter::AttachedTransformation() const
{
if (m_attachment.get() == NULL)
const_cast<Filter *>(this)->m_attachment.reset(NewDefaultAttachment());
return m_attachment.get();
}
void Filter::Detach(BufferedTransformation *newOut)
{
m_attachment.reset(newOut);
NotifyAttachmentChange();
}
void Filter::Insert(Filter *filter)
{
filter->m_attachment.reset(m_attachment.release());
m_attachment.reset(filter);
NotifyAttachmentChange();
}
unsigned int Filter::CopyRangeTo2(BufferedTransformation &target, unsigned long &begin, unsigned long end, const std::string &channel, bool blocking) const
{
return AttachedTransformation()->CopyRangeTo2(target, begin, end, channel, blocking);
}
unsigned int Filter::TransferTo2(BufferedTransformation &target, unsigned long &transferBytes, const std::string &channel, bool blocking)
{
return AttachedTransformation()->TransferTo2(target, transferBytes, channel, blocking);
}
void Filter::Initialize(const NameValuePairs &parameters, int propagation)
{
m_continueAt = 0;
IsolatedInitialize(parameters);
PropagateInitialize(parameters, propagation);
}
bool Filter::Flush(bool hardFlush, int propagation, bool blocking)
{
switch (m_continueAt)
{
case 0:
if (IsolatedFlush(hardFlush, blocking))
return true;
case 1:
if (OutputFlush(1, hardFlush, propagation, blocking))
return true;
}
return false;
}
bool Filter::MessageSeriesEnd(int propagation, bool blocking)
{
switch (m_continueAt)
{
case 0:
if (IsolatedMessageSeriesEnd(blocking))
return true;
case 1:
if (ShouldPropagateMessageSeriesEnd() && OutputMessageSeriesEnd(1, propagation, blocking))
return true;
}
return false;
}
void Filter::PropagateInitialize(const NameValuePairs &parameters, int propagation, const std::string &channel)
{
if (propagation)
AttachedTransformation()->ChannelInitialize(channel, parameters, propagation-1);
}
unsigned int Filter::Output(int outputSite, const byte *inString, unsigned int length, int messageEnd, bool blocking, const std::string &channel)
{
if (messageEnd)
messageEnd--;
unsigned int result = AttachedTransformation()->Put2(inString, length, messageEnd, blocking);
m_continueAt = result ? outputSite : 0;
return result;
}
bool Filter::OutputFlush(int outputSite, bool hardFlush, int propagation, bool blocking, const std::string &channel)
{
if (propagation && AttachedTransformation()->ChannelFlush(channel, hardFlush, propagation-1, blocking))
{
m_continueAt = outputSite;
return true;
}
m_continueAt = 0;
return false;
}
bool Filter::OutputMessageSeriesEnd(int outputSite, int propagation, bool blocking, const std::string &channel)
{
if (propagation && AttachedTransformation()->ChannelMessageSeriesEnd(channel, propagation-1, blocking))
{
m_continueAt = outputSite;
return true;
}
m_continueAt = 0;
return false;
}
// *************************************************************
unsigned int MeterFilter::Put2(const byte *begin, unsigned int length, int messageEnd, bool blocking)
{
if (m_transparent)
{
FILTER_BEGIN;
m_currentMessageBytes += length;
m_totalBytes += length;
if (messageEnd)
{
m_currentMessageBytes = 0;
m_currentSeriesMessages++;
m_totalMessages++;
}
FILTER_OUTPUT(1, begin, length, messageEnd);
FILTER_END_NO_MESSAGE_END;
}
return 0;
}
bool MeterFilter::IsolatedMessageSeriesEnd(bool blocking)
{
m_currentMessageBytes = 0;
m_currentSeriesMessages = 0;
m_totalMessageSeries++;
return false;
}
// *************************************************************
void FilterWithBufferedInput::BlockQueue::ResetQueue(unsigned int blockSize, unsigned int maxBlocks)
{
m_buffer.New(blockSize * maxBlocks);
m_blockSize = blockSize;
m_maxBlocks = maxBlocks;
m_size = 0;
m_begin = m_buffer;
}
byte *FilterWithBufferedInput::BlockQueue::GetBlock()
{
if (m_size >= m_blockSize)
{
byte *ptr = m_begin;
if ((m_begin+=m_blockSize) == m_buffer.end())
m_begin = m_buffer;
m_size -= m_blockSize;
return ptr;
}
else
return NULL;
}
byte *FilterWithBufferedInput::BlockQueue::GetContigousBlocks(unsigned int &numberOfBytes)
{
numberOfBytes = STDMIN(numberOfBytes, STDMIN((unsigned int)(m_buffer.end()-m_begin), m_size));
byte *ptr = m_begin;
m_begin += numberOfBytes;
m_size -= numberOfBytes;
if (m_size == 0 || m_begin == m_buffer.end())
m_begin = m_buffer;
return ptr;
}
unsigned int FilterWithBufferedInput::BlockQueue::GetAll(byte *outString)
{
unsigned int size = m_size;
unsigned int numberOfBytes = m_maxBlocks*m_blockSize;
const byte *ptr = GetContigousBlocks(numberOfBytes);
memcpy(outString, ptr, numberOfBytes);
memcpy(outString+numberOfBytes, m_begin, m_size);
m_size = 0;
return size;
}
void FilterWithBufferedInput::BlockQueue::Put(const byte *inString, unsigned int length)
{
assert(m_size + length <= m_buffer.size());
byte *end = (m_size < (unsigned int)(m_buffer.end()-m_begin)) ? m_begin + m_size : m_begin + m_size - m_buffer.size();
unsigned int len = STDMIN(length, (unsigned int)(m_buffer.end()-end));
memcpy(end, inString, len);
if (len < length)
memcpy(m_buffer, inString+len, length-len);
m_size += length;
}
FilterWithBufferedInput::FilterWithBufferedInput(BufferedTransformation *attachment)
: Filter(attachment)
{
}
FilterWithBufferedInput::FilterWithBufferedInput(unsigned int firstSize, unsigned int blockSize, unsigned int lastSize, BufferedTransformation *attachment)
: Filter(attachment), m_firstSize(firstSize), m_blockSize(blockSize), m_lastSize(lastSize)
, m_firstInputDone(false)
{
if (m_firstSize < 0 || m_blockSize < 1 || m_lastSize < 0)
throw InvalidArgument("FilterWithBufferedInput: invalid buffer size");
m_queue.ResetQueue(1, m_firstSize);
}
void FilterWithBufferedInput::IsolatedInitialize(const NameValuePairs &parameters)
{
InitializeDerivedAndReturnNewSizes(parameters, m_firstSize, m_blockSize, m_lastSize);
if (m_firstSize < 0 || m_blockSize < 1 || m_lastSize < 0)
throw InvalidArgument("FilterWithBufferedInput: invalid buffer size");
m_queue.ResetQueue(1, m_firstSize);
m_firstInputDone = false;
}
bool FilterWithBufferedInput::IsolatedFlush(bool hardFlush, bool blocking)
{
if (!blocking)
throw BlockingInputOnly("FilterWithBufferedInput");
if (hardFlush)
ForceNextPut();
FlushDerived();
return false;
}
unsigned int FilterWithBufferedInput::PutMaybeModifiable(byte *inString, unsigned int length, int messageEnd, bool blocking, bool modifiable)
{
if (!blocking)
throw BlockingInputOnly("FilterWithBufferedInput");
if (length != 0)
{
unsigned int newLength = m_queue.CurrentSize() + length;
if (!m_firstInputDone && newLength >= m_firstSize)
{
unsigned int len = m_firstSize - m_queue.CurrentSize();
m_queue.Put(inString, len);
FirstPut(m_queue.GetContigousBlocks(m_firstSize));
assert(m_queue.CurrentSize() == 0);
m_queue.ResetQueue(m_blockSize, (2*m_blockSize+m_lastSize-2)/m_blockSize);
inString += len;
newLength -= m_firstSize;
m_firstInputDone = true;
}
if (m_firstInputDone)
{
if (m_blockSize == 1)
{
while (newLength > m_lastSize && m_queue.CurrentSize() > 0)
{
unsigned int len = newLength - m_lastSize;
byte *ptr = m_queue.GetContigousBlocks(len);
NextPutModifiable(ptr, len);
newLength -= len;
}
if (newLength > m_lastSize)
{
unsigned int len = newLength - m_lastSize;
NextPutMaybeModifiable(inString, len, modifiable);
inString += len;
newLength -= len;
}
}
else
{
while (newLength >= m_blockSize + m_lastSize && m_queue.CurrentSize() >= m_blockSize)
{
NextPutModifiable(m_queue.GetBlock(), m_blockSize);
newLength -= m_blockSize;
}
if (newLength >= m_blockSize + m_lastSize && m_queue.CurrentSize() > 0)
{
assert(m_queue.CurrentSize() < m_blockSize);
unsigned int len = m_blockSize - m_queue.CurrentSize();
m_queue.Put(inString, len);
inString += len;
NextPutModifiable(m_queue.GetBlock(), m_blockSize);
newLength -= m_blockSize;
}
if (newLength >= m_blockSize + m_lastSize)
{
unsigned int len = RoundDownToMultipleOf(newLength - m_lastSize, m_blockSize);
NextPutMaybeModifiable(inString, len, modifiable);
inString += len;
newLength -= len;
}
}
}
m_queue.Put(inString, newLength - m_queue.CurrentSize());
}
if (messageEnd)
{
if (!m_firstInputDone && m_firstSize==0)
FirstPut(NULL);
SecByteBlock temp(m_queue.CurrentSize());
m_queue.GetAll(temp);
LastPut(temp, temp.size());
m_firstInputDone = false;
m_queue.ResetQueue(1, m_firstSize);
Output(1, NULL, 0, messageEnd, blocking);
}
return 0;
}
void FilterWithBufferedInput::ForceNextPut()
{
if (!m_firstInputDone)
return;
if (m_blockSize > 1)
{
while (m_queue.CurrentSize() >= m_blockSize)
NextPutModifiable(m_queue.GetBlock(), m_blockSize);
}
else
{
unsigned int len;
while ((len = m_queue.CurrentSize()) > 0)
NextPutModifiable(m_queue.GetContigousBlocks(len), len);
}
}
void FilterWithBufferedInput::NextPutMultiple(const byte *inString, unsigned int length)
{
assert(m_blockSize > 1); // m_blockSize = 1 should always override this function
while (length > 0)
{
assert(length >= m_blockSize);
NextPutSingle(inString);
inString += m_blockSize;
length -= m_blockSize;
}
}
// *************************************************************
void Redirector::ChannelInitialize(const std::string &channel, const NameValuePairs &parameters, int propagation)
{
if (channel.empty())
{
m_target = parameters.GetValueWithDefault("RedirectionTargetPointer", (BufferedTransformation*)NULL);
m_behavior = parameters.GetIntValueWithDefault("RedirectionBehavior", PASS_EVERYTHING);
}
if (m_target && GetPassSignals())
m_target->ChannelInitialize(channel, parameters, propagation);
}
// *************************************************************
ProxyFilter::ProxyFilter(BufferedTransformation *filter, unsigned int firstSize, unsigned int lastSize, BufferedTransformation *attachment)
: FilterWithBufferedInput(firstSize, 1, lastSize, attachment), m_filter(filter)
{
if (m_filter.get())
m_filter->Attach(new OutputProxy(*this, false));
}
bool ProxyFilter::IsolatedFlush(bool hardFlush, bool blocking)
{
return m_filter.get() ? m_filter->Flush(hardFlush, -1, blocking) : false;
}
void ProxyFilter::SetFilter(Filter *filter)
{
m_filter.reset(filter);
if (filter)
{
OutputProxy *proxy;
std::auto_ptr<OutputProxy> temp(proxy = new OutputProxy(*this, false));
m_filter->TransferAllTo(*proxy);
m_filter->Attach(temp.release());
}
}
void ProxyFilter::NextPutMultiple(const byte *s, unsigned int len)
{
if (m_filter.get())
m_filter->Put(s, len);
}
// *************************************************************
unsigned int ArraySink::Put2(const byte *begin, unsigned int length, int messageEnd, bool blocking)
{
memcpy(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
m_total += length;
return 0;
}
byte * ArraySink::CreatePutSpace(unsigned int &size)
{
size = m_size - m_total;
return m_buf + m_total;
}
void ArraySink::IsolatedInitialize(const NameValuePairs &parameters)
{
ByteArrayParameter array;
if (!parameters.GetValue(Name::OutputBuffer(), array))
throw InvalidArgument("ArraySink: missing OutputBuffer argument");
m_buf = array.begin();
m_size = array.size();
m_total = 0;
}
unsigned int ArrayXorSink::Put2(const byte *begin, unsigned int length, int messageEnd, bool blocking)
{
xorbuf(m_buf+m_total, begin, STDMIN(length, SaturatingSubtract(m_size, m_total)));
m_total += length;
return 0;
}
// *************************************************************
unsigned int StreamTransformationFilter::LastBlockSize(StreamTransformation &c, BlockPaddingScheme padding)
{
if (c.MinLastBlockSize() > 0)
return c.MinLastBlockSize();
else if (c.MandatoryBlockSize() > 1 && !c.IsForwardTransformation() && padding != NO_PADDING && padding != ZEROS_PADDING)
return c.MandatoryBlockSize();
else
return 0;
}
StreamTransformationFilter::StreamTransformationFilter(StreamTransformation &c, BufferedTransformation *attachment, BlockPaddingScheme padding)
: FilterWithBufferedInput(0, c.MandatoryBlockSize(), LastBlockSize(c, padding), attachment)
, m_cipher(c)
{
assert(c.MinLastBlockSize() == 0 || c.MinLastBlockSize() > c.MandatoryBlockSize());
bool isBlockCipher = (c.MandatoryBlockSize() > 1 && c.MinLastBlockSize() == 0);
if (padding == DEFAULT_PADDING)
{
if (isBlockCipher)
m_padding = PKCS_PADDING;
else
m_padding = NO_PADDING;
}
else
m_padding = padding;
if (!isBlockCipher && (m_padding == PKCS_PADDING || m_padding == ONE_AND_ZEROS_PADDING))
throw InvalidArgument("StreamTransformationFilter: PKCS_PADDING and ONE_AND_ZEROS_PADDING cannot be used with " + c.AlgorithmName());
}
void StreamTransformationFilter::FirstPut(const byte *inString)
{
m_optimalBufferSize = m_cipher.OptimalBlockSize();
m_optimalBufferSize = STDMAX(m_optimalBufferSize, RoundDownToMultipleOf(4096U, m_optimalBufferSize));
}
void StreamTransformationFilter::NextPutMultiple(const byte *inString, unsigned int length)
{
if (!length)
return;
unsigned int s = m_cipher.MandatoryBlockSize();
do
{
unsigned int len = m_optimalBufferSize;
byte *space = HelpCreatePutSpace(*AttachedTransformation(), NULL_CHANNEL, s, length, len);
if (len < length)
{
if (len == m_optimalBufferSize)
len -= m_cipher.GetOptimalBlockSizeUsed();
len = RoundDownToMultipleOf(len, s);
}
else
len = length;
m_cipher.ProcessString(space, inString, len);
AttachedTransformation()->PutModifiable(space, len);
inString += len;
length -= len;
}
while (length > 0);
}
void StreamTransformationFilter::NextPutModifiable(byte *inString, unsigned int length)
{
m_cipher.ProcessString(inString, length);
AttachedTransformation()->PutModifiable(inString, length);
}
void StreamTransformationFilter::LastPut(const byte *inString, unsigned int length)
{
byte *space = NULL;
switch (m_padding)
{
case NO_PADDING:
case ZEROS_PADDING:
if (length > 0)
{
unsigned int minLastBlockSize = m_cipher.MinLastBlockSize();
bool isForwardTransformation = m_cipher.IsForwardTransformation();
if (isForwardTransformation && m_padding == ZEROS_PADDING && (minLastBlockSize == 0 || length < minLastBlockSize))
{
// do padding
unsigned int blockSize = STDMAX(minLastBlockSize, m_cipher.MandatoryBlockSize());
space = HelpCreatePutSpace(*AttachedTransformation(), NULL_CHANNEL, blockSize);
memcpy(space, inString, length);
memset(space + length, 0, blockSize - length);
m_cipher.ProcessLastBlock(space, space, blockSize);
AttachedTransformation()->Put(space, blockSize);
}
else
{
if (minLastBlockSize == 0)
{
if (isForwardTransformation)
throw InvalidDataFormat("StreamTransformationFilter: plaintext length is not a multiple of block size and NO_PADDING is specified");
else
throw InvalidCiphertext("StreamTransformationFilter: ciphertext length is not a multiple of block size");
}
space = HelpCreatePutSpace(*AttachedTransformation(), NULL_CHANNEL, length, m_optimalBufferSize);
m_cipher.ProcessLastBlock(space, inString, length);
AttachedTransformation()->Put(space, length);
}
}
break;
case PKCS_PADDING:
case ONE_AND_ZEROS_PADDING:
unsigned int s;
s = m_cipher.MandatoryBlockSize();
assert(s > 1);
space = HelpCreatePutSpace(*AttachedTransformation(), NULL_CHANNEL, s, m_optimalBufferSize);
if (m_cipher.IsForwardTransformation())
{
assert(length < s);
memcpy(space, inString, length);
if (m_padding == PKCS_PADDING)
{
assert(s < 256);
byte pad = s-length;
memset(space+length, pad, s-length);
}
else
{
space[length] = 1;
memset(space+length+1, 0, s-length-1);
}
m_cipher.ProcessData(space, space, s);
AttachedTransformation()->Put(space, s);
}
else
{
if (length != s)
throw InvalidCiphertext("StreamTransformationFilter: ciphertext length is not a multiple of block size");
m_cipher.ProcessData(space, inString, s);
if (m_padding == PKCS_PADDING)
{
byte pad = space[s-1];
if (pad < 1 || pad > s || std::find_if(space+s-pad, space+s, std::bind2nd(std::not_equal_to<byte>(), pad)) != space+s)
throw InvalidCiphertext("StreamTransformationFilter: invalid PKCS #7 block padding found");
length = s-pad;
}
else
{
while (length > 1 && space[length-1] == '\0')
--length;
if (space[--length] != '\1')
throw InvalidCiphertext("StreamTransformationFilter: invalid ones-and-zeros padding found");
}
AttachedTransformation()->Put(space, length);
}
break;
default:
assert(false);
}
}
// *************************************************************
void HashFilter::IsolatedInitialize(const NameValuePairs &parameters)
{
m_putMessage = parameters.GetValueWithDefault(Name::PutMessage(), false);
m_hashModule.Restart();
}
unsigned int HashFilter::Put2(const byte *inString, unsigned int length, int messageEnd, bool blocking)
{
FILTER_BEGIN;
m_hashModule.Update(inString, length);
if (m_putMessage)
FILTER_OUTPUT(1, inString, length, 0);
if (messageEnd)
{
{
unsigned int size, digestSize = m_hashModule.DigestSize();
m_space = HelpCreatePutSpace(*AttachedTransformation(), NULL_CHANNEL, digestSize, digestSize, size = digestSize);
m_hashModule.Final(m_space);
}
FILTER_OUTPUT(2, m_space, m_hashModule.DigestSize(), messageEnd);
}
FILTER_END_NO_MESSAGE_END;
}
// *************************************************************
HashVerificationFilter::HashVerificationFilter(HashTransformation &hm, BufferedTransformation *attachment, word32 flags)
: FilterWithBufferedInput(attachment)
, m_hashModule(hm)
{
IsolatedInitialize(MakeParameters(Name::HashVerificationFilterFlags(), flags));
}
void HashVerificationFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, unsigned int &firstSize, unsigned int &blockSize, unsigned int &lastSize)
{
m_flags = parameters.GetValueWithDefault(Name::HashVerificationFilterFlags(), (word32)DEFAULT_FLAGS);
m_hashModule.Restart();
unsigned int size = m_hashModule.DigestSize();
m_verified = false;
firstSize = m_flags & HASH_AT_BEGIN ? size : 0;
blockSize = 1;
lastSize = m_flags & HASH_AT_BEGIN ? 0 : size;
}
void HashVerificationFilter::FirstPut(const byte *inString)
{
if (m_flags & HASH_AT_BEGIN)
{
m_expectedHash.New(m_hashModule.DigestSize());
memcpy(m_expectedHash, inString, m_expectedHash.size());
if (m_flags & PUT_HASH)
AttachedTransformation()->Put(inString, m_expectedHash.size());
}
}
void HashVerificationFilter::NextPutMultiple(const byte *inString, unsigned int length)
{
m_hashModule.Update(inString, length);
if (m_flags & PUT_MESSAGE)
AttachedTransformation()->Put(inString, length);
}
void HashVerificationFilter::LastPut(const byte *inString, unsigned int length)
{
if (m_flags & HASH_AT_BEGIN)
{
assert(length == 0);
m_verified = m_hashModule.Verify(m_expectedHash);
}
else
{
m_verified = (length==m_hashModule.DigestSize() && m_hashModule.Verify(inString));
if (m_flags & PUT_HASH)
AttachedTransformation()->Put(inString, length);
}
if (m_flags & PUT_RESULT)
AttachedTransformation()->Put(m_verified);
if ((m_flags & THROW_EXCEPTION) && !m_verified)
throw HashVerificationFailed();
}
// *************************************************************
void SignerFilter::IsolatedInitialize(const NameValuePairs &parameters)
{
m_putMessage = parameters.GetValueWithDefault(Name::PutMessage(), false);
m_messageAccumulator.reset(m_signer.NewSignatureAccumulator(m_rng));
}
unsigned int SignerFilter::Put2(const byte *inString, unsigned int length, int messageEnd, bool blocking)
{
FILTER_BEGIN;
m_messageAccumulator->Update(inString, length);
if (m_putMessage)
FILTER_OUTPUT(1, inString, length, 0);
if (messageEnd)
{
m_buf.New(m_signer.SignatureLength());
m_signer.Sign(m_rng, m_messageAccumulator.release(), m_buf);
FILTER_OUTPUT(2, m_buf, m_buf.size(), messageEnd);
m_messageAccumulator.reset(m_signer.NewSignatureAccumulator(m_rng));
}
FILTER_END_NO_MESSAGE_END;
}
SignatureVerificationFilter::SignatureVerificationFilter(const PK_Verifier &verifier, BufferedTransformation *attachment, word32 flags)
: FilterWithBufferedInput(attachment)
, m_verifier(verifier)
{
IsolatedInitialize(MakeParameters(Name::SignatureVerificationFilterFlags(), flags));
}
void SignatureVerificationFilter::InitializeDerivedAndReturnNewSizes(const NameValuePairs &parameters, unsigned int &firstSize, unsigned int &blockSize, unsigned int &lastSize)
{
m_flags = parameters.GetValueWithDefault(Name::SignatureVerificationFilterFlags(), (word32)DEFAULT_FLAGS);
m_messageAccumulator.reset(m_verifier.NewVerificationAccumulator());
unsigned int size = m_verifier.SignatureLength();
assert(size != 0); // TODO: handle recoverable signature scheme
m_verified = false;
firstSize = m_flags & SIGNATURE_AT_BEGIN ? size : 0;
blockSize = 1;
lastSize = m_flags & SIGNATURE_AT_BEGIN ? 0 : size;
}
void SignatureVerificationFilter::FirstPut(const byte *inString)
{
if (m_flags & SIGNATURE_AT_BEGIN)
{
if (m_verifier.SignatureUpfront())
m_verifier.InputSignature(*m_messageAccumulator, inString, m_verifier.SignatureLength());
else
{
m_signature.New(m_verifier.SignatureLength());
memcpy(m_signature, inString, m_signature.size());
}
if (m_flags & PUT_SIGNATURE)
AttachedTransformation()->Put(inString, m_signature.size());
}
else
{
assert(!m_verifier.SignatureUpfront());
}
}
void SignatureVerificationFilter::NextPutMultiple(const byte *inString, unsigned int length)
{
m_messageAccumulator->Update(inString, length);
if (m_flags & PUT_MESSAGE)
AttachedTransformation()->Put(inString, length);
}
void SignatureVerificationFilter::LastPut(const byte *inString, unsigned int length)
{
if (m_flags & SIGNATURE_AT_BEGIN)
{
assert(length == 0);
m_verifier.InputSignature(*m_messageAccumulator, m_signature, m_signature.size());
m_verified = m_verifier.VerifyAndRestart(*m_messageAccumulator);
}
else
{
m_verifier.InputSignature(*m_messageAccumulator, inString, length);
m_verified = m_verifier.VerifyAndRestart(*m_messageAccumulator);
if (m_flags & PUT_SIGNATURE)
AttachedTransformation()->Put(inString, length);
}
if (m_flags & PUT_RESULT)
AttachedTransformation()->Put(m_verified);
if ((m_flags & THROW_EXCEPTION) && !m_verified)
throw SignatureVerificationFailed();
}
// *************************************************************
unsigned int Source::PumpAll2(bool blocking)
{
// TODO: switch length type
unsigned long i = UINT_MAX;
RETURN_IF_NONZERO(Pump2(i, blocking));
unsigned int j = UINT_MAX;
return PumpMessages2(j, blocking);
}
bool Store::GetNextMessage()
{
if (!m_messageEnd && !AnyRetrievable())
{
m_messageEnd=true;
return true;
}
else
return false;
}
unsigned int Store::CopyMessagesTo(BufferedTransformation &target, unsigned int count, const std::string &channel) const
{
if (m_messageEnd || count == 0)
return 0;
else
{
CopyTo(target, ULONG_MAX, channel);
if (GetAutoSignalPropagation())
target.ChannelMessageEnd(channel, GetAutoSignalPropagation()-1);
return 1;
}
}
void StringStore::StoreInitialize(const NameValuePairs &parameters)
{
ConstByteArrayParameter array;
if (!parameters.GetValue(Name::InputBuffer(), array))
throw InvalidArgument("StringStore: missing InputBuffer argument");
m_store = array.begin();
m_length = array.size();
m_count = 0;
}
unsigned int StringStore::TransferTo2(BufferedTransformation &target, unsigned long &transferBytes, const std::string &channel, bool blocking)
{
unsigned long position = 0;
unsigned int blockedBytes = CopyRangeTo2(target, position, transferBytes, channel, blocking);
m_count += position;
transferBytes = position;
return blockedBytes;
}
unsigned int StringStore::CopyRangeTo2(BufferedTransformation &target, unsigned long &begin, unsigned long end, const std::string &channel, bool blocking) const
{
unsigned int i = (unsigned int)STDMIN((unsigned long)m_count+begin, (unsigned long)m_length);
unsigned int len = (unsigned int)STDMIN((unsigned long)m_length-i, end-begin);
unsigned int blockedBytes = target.ChannelPut2(channel, m_store+i, len, 0, blocking);
if (!blockedBytes)
begin += len;
return blockedBytes;
}
unsigned int RandomNumberStore::TransferTo2(BufferedTransformation &target, unsigned long &transferBytes, const std::string &channel, bool blocking)
{
if (!blocking)
throw NotImplemented("RandomNumberStore: nonblocking transfer is not implemented by this object");
unsigned long transferMax = transferBytes;
for (transferBytes = 0; transferBytes<transferMax && m_count < m_length; ++transferBytes, ++m_count)
target.ChannelPut(channel, m_rng.GenerateByte());
return 0;
}
unsigned int NullStore::CopyRangeTo2(BufferedTransformation &target, unsigned long &begin, unsigned long end, const std::string &channel, bool blocking) const
{
static const byte nullBytes[128] = {0};
while (begin < end)
{
unsigned int len = STDMIN(end-begin, 128UL);
unsigned int blockedBytes = target.ChannelPut2(channel, nullBytes, len, 0, blocking);
if (blockedBytes)
return blockedBytes;
begin += len;
}
return 0;
}
unsigned int NullStore::TransferTo2(BufferedTransformation &target, unsigned long &transferBytes, const std::string &channel, bool blocking)
{
unsigned long begin = 0;
unsigned int blockedBytes = NullStore::CopyRangeTo2(target, begin, transferBytes, channel, blocking);
transferBytes = begin;
m_size -= begin;
return blockedBytes;
}
NAMESPACE_END