ext-cryptopp/gfpcrypt.h
Jeffrey Walton c3871aec94 Revert "Clear Visual Studio warnings (Issue 412)"
This reverts commit eb3b27a6a5. The change broke GCC 4.8 and unknown version of Clang on OS X. UB reported the OS X break, and JW found duplicated the break on a ARM CubieTruck with GCC 4.8.
2017-06-02 05:06:56 -04:00

962 lines
40 KiB
C++

// gfpcrypt.h - originally written and placed in the public domain by Wei Dai
// RFC6979 deterministic signatures (DL_Algorithm_DSA_RFC6979) added by by Douglas Roark
// ECGDSA (DL_Algorithm_GDSA_ISO15946) added by Jeffrey Walton
//! \file gfpcrypt.h
//! \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
#ifndef CRYPTOPP_GFPCRYPT_H
#define CRYPTOPP_GFPCRYPT_H
#include "config.h"
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4189)
#endif
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "modexppc.h"
#include "algparam.h"
#include "smartptr.h"
#include "sha.h"
#include "asn.h"
#include "hmac.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
//! \class DL_GroupParameters_IntegerBased
//! \brief Integer-based GroupParameters specialization
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
{
typedef DL_GroupParameters_IntegerBased ThisClass;
public:
virtual ~DL_GroupParameters_IntegerBased() {}
//! \brief Initialize a group parameters over integers
//! \param params the group parameters
void Initialize(const DL_GroupParameters_IntegerBased &params)
{Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
//! \brief Create a group parameters over integers
//! \param rng a RandomNumberGenerator derived class
//! \param pbits the size of p, in bits
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
{GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
//! \brief Initialize a group parameters over integers
//! \param p the modulus
//! \param g the generator
void Initialize(const Integer &p, const Integer &g)
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
//! \brief Initialize a group parameters over integers
//! \param p the modulus
//! \param q the subgroup order
//! \param g the generator
void Initialize(const Integer &p, const Integer &q, const Integer &g)
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
// ASN1Object interface
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
// GeneratibleCryptoMaterial interface
/*! parameters: (ModulusSize, SubgroupOrderSize (optional)) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// DL_GroupParameters
const Integer & GetSubgroupOrder() const {return m_q;}
Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
// Cygwin i386 crash at -O3; see http://github.com/weidai11/cryptopp/issues/40.
void EncodeElement(bool reversible, const Element &element, byte *encoded) const;
unsigned int GetEncodedElementSize(bool reversible) const;
Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
Integer ConvertElementToInteger(const Element &element) const
{return element;}
Integer GetMaxExponent() const;
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
OID GetAlgorithmID() const;
virtual const Integer & GetModulus() const =0;
virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
void SetSubgroupOrder(const Integer &q)
{m_q = q; ParametersChanged();}
protected:
Integer ComputeGroupOrder(const Integer &modulus) const
{return modulus-(GetFieldType() == 1 ? 1 : -1);}
// GF(p) = 1, GF(p^2) = 2
virtual int GetFieldType() const =0;
virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
private:
Integer m_q;
};
//! \class DL_GroupParameters_IntegerBasedImpl
//! \brief Integer-based GroupParameters default implementation
//! \tparam GROUP_PRECOMP group parameters precomputation specialization
//! \tparam BASE_PRECOMP base class precomputation specialization
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element> >
class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
{
typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
public:
typedef typename GROUP_PRECOMP::Element Element;
virtual ~DL_GroupParameters_IntegerBasedImpl() {}
// GeneratibleCryptoMaterial interface
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
void AssignFrom(const NameValuePairs &source)
{AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
// IntegerGroupParameters
const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
{this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
// non-inherited
bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
{return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
{return !operator==(rhs);}
};
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
//! \class DL_GroupParameters_GFP
//! \brief GF(p) group parameters
class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
{
public:
virtual ~DL_GroupParameters_GFP() {}
// DL_GroupParameters
bool IsIdentity(const Integer &element) const {return element == Integer::One();}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
// NameValuePairs interface
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
}
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const;
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
protected:
int GetFieldType() const {return 1;}
};
//! \class DL_GroupParameters_GFP
//! \brief GF(p) group parameters that default to safe primes
class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
{
public:
typedef NoCofactorMultiplication DefaultCofactorOption;
virtual ~DL_GroupParameters_GFP_DefaultSafePrime() {}
protected:
unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
};
//! \class DL_Algorithm_GDSA
//! \brief GDSA algorithm
//! \tparam T FieldElement type or class
template <class T>
class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
virtual ~DL_Algorithm_GDSA() {}
void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
r %= q;
Integer kInv = k.InverseMod(q);
s = (kInv * (x*r + e)) % q;
CRYPTOPP_ASSERT(!!r && !!s);
}
bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q || s<1)
return false;
Integer w = s.InverseMod(q);
Integer u1 = (e * w) % q;
Integer u2 = (r * w) % q;
// verify r == (g^u1 * y^u2 mod p) mod q
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
}
};
//! \class DL_Algorithm_DSA_RFC6979
//! \brief DSA signature algorithm based on RFC 6979
//! \tparam T FieldElement type or class
//! \tparam H HashTransformation derived class
//! \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
//! Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
//! \since Crypto++ 6.0
template <class T, class H>
class DL_Algorithm_DSA_RFC6979 : public DL_Algorithm_GDSA<T>, public DeterministicSignatureAlgorithm
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";}
virtual ~DL_Algorithm_DSA_RFC6979() {}
bool IsProbabilistic() const
{return false;}
bool IsDeterministic() const
{return true;}
// Deterministic K
Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
{
static const byte zero = 0, one = 1;
const size_t qlen = q.BitCount();
const size_t rlen = BitsToBytes(qlen);
// Step (a) - formatted E(m)
SecByteBlock BH(e.MinEncodedSize());
e.Encode(BH, BH.size());
BH = bits2octets(BH, q);
// Step (a) - private key to byte array
SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize()));
x.Encode(BX, BX.size());
// Step (b)
SecByteBlock V(H::DIGESTSIZE);
std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one);
// Step (c)
SecByteBlock K(H::DIGESTSIZE);
std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero);
// Step (d)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.Update(&zero, 1);
m_hmac.Update(BX, BX.size());
m_hmac.Update(BH, BH.size());
m_hmac.TruncatedFinal(K, K.size());
// Step (e)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
// Step (f)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.Update(&one, 1);
m_hmac.Update(BX, BX.size());
m_hmac.Update(BH, BH.size());
m_hmac.TruncatedFinal(K, K.size());
// Step (g)
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
Integer k;
SecByteBlock temp(rlen);
for (;;)
{
// We want qlen bits, but we support only hash functions with an output length
// multiple of 8; hence, we will gather rlen bits, i.e., rolen octets.
size_t toff = 0;
while (toff < rlen)
{
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
size_t cc = STDMIN(V.size(), temp.size() - toff);
memcpy_s(temp+toff, temp.size() - toff, V, cc);
toff += cc;
}
k = bits2int(temp, qlen);
if (k > 0 && k < q)
break;
// k is not in the proper range; update K and V, and loop.
m_hmac.Update(V, V.size());
m_hmac.Update(&zero, 1);
m_hmac.TruncatedFinal(K, K.size());
m_hmac.SetKey(K, K.size());
m_hmac.Update(V, V.size());
m_hmac.TruncatedFinal(V, V.size());
}
return k;
}
protected:
#if 0
// Determine bits without converting to an Integer
inline unsigned int BitCount(const byte* buffer, size_t size) const
{
unsigned int idx = 0;
while (idx < size && buffer[idx] == 0) { idx++; }
return (size-idx)*8 - (8-BitPrecision(buffer[idx]));
}
#endif
Integer bits2int(const SecByteBlock& bits, size_t qlen) const
{
Integer ret(bits, bits.size());
size_t blen = bits.size()*8;
if (blen > qlen)
ret >>= blen - qlen;
return ret;
}
// RFC 6979 support function. Takes an integer and converts it into bytes that
// are the same length as an elliptic curve's order.
SecByteBlock int2octets(const Integer& val, size_t rlen) const
{
SecByteBlock block(val.MinEncodedSize());
val.Encode(block, val.MinEncodedSize());
if (block.size() == rlen)
return block;
// The least significant bytes are the ones we need to preserve.
SecByteBlock t(rlen);
if (block.size() > rlen)
{
size_t offset = block.size() - rlen;
memcpy(t, block + offset, rlen);
}
else // block.size() < rlen
{
size_t offset = rlen - block.size();
memset(t, '\x00', offset);
memcpy(t + offset, block, rlen - offset);
}
return t;
}
// Turn a stream of bits into a set of bytes with the same length as an elliptic
// curve's order.
SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const
{
Integer b2 = bits2int(in, in.size()*8);
Integer b1 = b2 - q;
return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount());
}
private:
mutable H m_hash;
mutable HMAC<H> m_hmac;
};
//! \class DL_Algorithm_GDSA_ISO15946
//! \brief German Digital Signature Algorithm
//! \tparam T FieldElement type or class
//! \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the
//! signature algorithm is only defined over elliptic curves. However, The library design is such that the
//! generic algorithm reside in <tt>gfpcrypt.h</tt>.
//! \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">
//! The Digital Signature Scheme ECGDSA (October 24, 2006)</A>
template <class T>
class DL_Algorithm_GDSA_ISO15946 : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";}
virtual ~DL_Algorithm_GDSA_ISO15946() {}
void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
// r = x(k * G) mod q
r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
// s = (k * r - h(m)) * d_A mod q
s = (k * r - e) * x % q;
CRYPTOPP_ASSERT(!!r && !!s);
}
bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q || s<1)
return false;
const Integer& rInv = r.InverseMod(q);
const Integer u1 = (rInv * e) % q;
const Integer u2 = (rInv * s) % q;
// verify x(G^u1 + P_A^u2) mod q
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
}
};
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA1>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA224>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA256>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA384>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA512>;
//! \class DL_Algorithm_NR
//! \brief NR algorithm
//! \tparam T FieldElement type or class
template <class T>
class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
{
public:
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";}
virtual ~DL_Algorithm_NR() {}
void Sign(const DL_GroupParameters<T> &params, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
r = (r + e) % q;
s = (k - x*r) % q;
CRYPTOPP_ASSERT(!!r);
}
bool Verify(const DL_GroupParameters<T> &params, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
{
const Integer &q = params.GetSubgroupOrder();
if (r>=q || r<1 || s>=q)
return false;
// check r == (m_g^s * m_y^r + m) mod m_q
return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
}
};
//! \class DL_PublicKey_GFP
//! \brief Discrete Log (DL) public key in GF(p) groups
//! \tparam GP GroupParameters derived class
//! \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10.
template <class GP>
class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
{
public:
virtual ~DL_PublicKey_GFP() {}
//! \brief Initialize a public key over GF(p)
//! \param params the group parameters
//! \param y the public element
void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &y)
{this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
//! \brief Initialize a public key over GF(p)
//! \param p the modulus
//! \param g the generator
//! \param y the public element
void Initialize(const Integer &p, const Integer &g, const Integer &y)
{this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
//! \brief Initialize a public key over GF(p)
//! \param p the modulus
//! \param q the subgroup order
//! \param g the generator
//! \param y the public element
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
{this->SetPublicElement(Integer(bt));}
void DEREncodePublicKey(BufferedTransformation &bt) const
{this->GetPublicElement().DEREncode(bt);}
};
//! \class DL_PrivateKey_GFP
//! \brief Discrete Log (DL) private key in GF(p) groups
//! \tparam GP GroupParameters derived class
template <class GP>
class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
{
public:
virtual ~DL_PrivateKey_GFP() {}
//! \brief Create a private key
//! \param rng a RandomNumberGenerator derived class
//! \param modulusBits the size of the modulus, in bits
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
{this->GenerateRandomWithKeySize(rng, modulusBits);}
//! \brief Create a private key
//! \param rng a RandomNumberGenerator derived class
//! \param p the modulus
//! \param g the generator
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
//! \brief Create a private key
//! \param rng a RandomNumberGenerator derived class
//! \param p the modulus
//! \param q the subgroup order
//! \param g the generator
//! \details This function overload of Initialize() creates a new private key because it
//! takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
//! then use one of the other Initialize() overloads.
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
//! \brief Initialize a private key over GF(p)
//! \param params the group parameters
//! \param x the private exponent
void Initialize(const DL_GroupParameters_IntegerBased &params, const Integer &x)
{this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
//! \brief Initialize a private key over GF(p)
//! \param p the modulus
//! \param g the generator
//! \param x the private exponent
void Initialize(const Integer &p, const Integer &g, const Integer &x)
{this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
//! \brief Initialize a private key over GF(p)
//! \param p the modulus
//! \param q the subgroup order
//! \param g the generator
//! \param x the private exponent
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
};
//! \class DL_SignatureKeys_GFP
//! \brief Discrete Log (DL) signing/verification keys in GF(p) groups
struct DL_SignatureKeys_GFP
{
typedef DL_GroupParameters_GFP GroupParameters;
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};
//! \class DL_CryptoKeys_GFP
//! \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups
struct DL_CryptoKeys_GFP
{
typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
};
//! \class DL_PublicKey_GFP_OldFormat
//! \brief Discrete Log (DL) public key in GF(p) groups
//! \tparam BASE GroupParameters derived class
//! \deprecated This implementation uses a non-standard Crypto++ key format. New implementations
//! should use DL_PublicKey_GFP and DL_PrivateKey_GFP
template <class BASE>
class DL_PublicKey_GFP_OldFormat : public BASE
{
public:
virtual ~DL_PublicKey_GFP_OldFormat() {}
void BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
Integer v1(seq);
Integer v2(seq);
Integer v3(seq);
if (seq.EndReached())
{
this->AccessGroupParameters().Initialize(v1, v1/2, v2);
this->SetPublicElement(v3);
}
else
{
Integer v4(seq);
this->AccessGroupParameters().Initialize(v1, v2, v3);
this->SetPublicElement(v4);
}
seq.MessageEnd();
}
void DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
this->GetGroupParameters().GetModulus().DEREncode(seq);
if (this->GetGroupParameters().GetCofactor() != 2)
this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
this->GetGroupParameters().GetGenerator().DEREncode(seq);
this->GetPublicElement().DEREncode(seq);
seq.MessageEnd();
}
};
//! \class DL_PrivateKey_GFP_OldFormat
//! \brief Discrete Log (DL) private key in GF(p) groups
//! \tparam BASE GroupParameters derived class
//! \deprecated This implementation uses a non-standard Crypto++ key format. New implementations
//! should use DL_PublicKey_GFP and DL_PrivateKey_GFP
template <class BASE>
class DL_PrivateKey_GFP_OldFormat : public BASE
{
public:
virtual ~DL_PrivateKey_GFP_OldFormat() {}
void BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
Integer v1(seq);
Integer v2(seq);
Integer v3(seq);
Integer v4(seq);
if (seq.EndReached())
{
this->AccessGroupParameters().Initialize(v1, v1/2, v2);
this->SetPrivateExponent(v4 % (v1/2)); // some old keys may have x >= q
}
else
{
Integer v5(seq);
this->AccessGroupParameters().Initialize(v1, v2, v3);
this->SetPrivateExponent(v5);
}
seq.MessageEnd();
}
void DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
this->GetGroupParameters().GetModulus().DEREncode(seq);
if (this->GetGroupParameters().GetCofactor() != 2)
this->GetGroupParameters().GetSubgroupOrder().DEREncode(seq);
this->GetGroupParameters().GetGenerator().DEREncode(seq);
this->GetGroupParameters().ExponentiateBase(this->GetPrivateExponent()).DEREncode(seq);
this->GetPrivateExponent().DEREncode(seq);
seq.MessageEnd();
}
};
//! \class GDSA
//! \brief DSA signature scheme
//! \tparam H HashTransformation derived class
//! \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
//! \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
template <class H>
struct GDSA : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_GDSA<Integer>,
DL_SignatureMessageEncodingMethod_DSA,
H>
{
};
//! \class NR
//! \brief NR signature scheme
//! \tparam H HashTransformation derived class
//! \sa <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
template <class H>
struct NR : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_NR<Integer>,
DL_SignatureMessageEncodingMethod_NR,
H>
{
};
//! \class DL_GroupParameters_DSA
//! \brief DSA group parameters
//! \details These are GF(p) group parameters that are allowed by the DSA standard
//! \sa DL_Keys_DSA
class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
{
public:
virtual ~DL_GroupParameters_DSA() {}
/*! also checks that the lengths of p and q are allowed by the DSA standard */
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
/*! parameters: (ModulusSize), or (Modulus, SubgroupOrder, SubgroupGenerator) */
/*! ModulusSize must be between DSA::MIN_PRIME_LENGTH and DSA::MAX_PRIME_LENGTH, and divisible by DSA::PRIME_LENGTH_MULTIPLE */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
{return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
enum {MIN_PRIME_LENGTH = 1024, MAX_PRIME_LENGTH = 3072, PRIME_LENGTH_MULTIPLE = 1024};
};
template <class H>
class DSA2;
//! \class DL_Keys_DSA
//! \brief DSA keys
//! \sa DL_GroupParameters_DSA
struct DL_Keys_DSA
{
typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> > PrivateKey;
};
//! \class DSA2
//! \brief DSA signature scheme
//! \tparam H HashTransformation derived class
//! \details The class is named DSA2 instead of DSA for backwards compatibility because DSA was a non-template class.
//! \sa <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3
//! \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
template <class H>
class DSA2 : public DL_SS<
DL_Keys_DSA,
DL_Algorithm_GDSA<Integer>,
DL_SignatureMessageEncodingMethod_DSA,
H,
DSA2<H> >
{
public:
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
};
//! \class DSA_RFC6979
//! \brief DSA deterministic signature scheme
//! \tparam H HashTransformation derived class
//! \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
//! \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
template <class H>
struct DSA_RFC6979 : public DL_SS<
DL_SignatureKeys_GFP,
DL_Algorithm_DSA_RFC6979<Integer, H>,
DL_SignatureMessageEncodingMethod_DSA,
H,
DSA_RFC6979<H> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();}
};
//! DSA with SHA-1, typedef'd for backwards compatibility
typedef DSA2<SHA1> DSA;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> >;
//! \class DL_EncryptionAlgorithm_Xor
//! \brief P1363 based XOR Encryption Method
//! \tparam MAC MessageAuthenticationCode derived class used for MAC computation
//! \tparam DHAES_MODE flag indicating DHAES mode
//! \tparam LABEL_OCTETS flag indicating the label is octet count
//! \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an
//! early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated
//! Ecryption Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with
//! <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with
//! <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=ture</tt> and <tt>LABEL_OCTETS=false</tt>.
//! \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters.
//! \since Crypto++ 4.0
template <class MAC, bool DHAES_MODE, bool LABEL_OCTETS=false>
class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
{
public:
virtual ~DL_EncryptionAlgorithm_Xor() {}
bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
size_t GetSymmetricKeyLength(size_t plaintextLength) const
{return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
{return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
{return SaturatingSubtract(ciphertextLength, static_cast<size_t>(MAC::DIGESTSIZE));}
void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs &parameters) const
{
CRYPTOPP_UNUSED(rng);
const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
if (DHAES_MODE)
{
macKey = key;
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
}
else
{
cipherKey = key;
macKey = key + plaintextLength;
}
ConstByteArrayParameter encodingParameters;
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
if (plaintextLength) // Coverity finding
xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
MAC mac(macKey);
mac.Update(ciphertext, plaintextLength);
mac.Update(encodingParameters.begin(), encodingParameters.size());
if (DHAES_MODE)
{
byte L[8];
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
mac.Update(L, 8);
}
mac.Final(ciphertext + plaintextLength);
}
DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs &parameters) const
{
size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
const byte *cipherKey, *macKey;
if (DHAES_MODE)
{
macKey = key;
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
}
else
{
cipherKey = key;
macKey = key + plaintextLength;
}
ConstByteArrayParameter encodingParameters;
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
MAC mac(macKey);
mac.Update(ciphertext, plaintextLength);
mac.Update(encodingParameters.begin(), encodingParameters.size());
if (DHAES_MODE)
{
byte L[8];
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
mac.Update(L, 8);
}
if (!mac.Verify(ciphertext + plaintextLength))
return DecodingResult();
if (plaintextLength) // Coverity finding
xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
return DecodingResult(plaintextLength);
}
};
//! _
template <class T, bool DHAES_MODE, class KDF>
class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
{
public:
virtual ~DL_KeyDerivationAlgorithm_P1363() {}
bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
void Derive(const DL_GroupParameters<T> &params, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs &parameters) const
{
SecByteBlock agreedSecret;
if (DHAES_MODE)
{
agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
}
else
{
agreedSecret.New(params.GetEncodedElementSize(false));
params.EncodeElement(false, agreedElement, agreedSecret);
}
ConstByteArrayParameter derivationParameters;
parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
}
};
//! \class DLIES
//! \brief Discrete Log Integrated Encryption Scheme
//! \tparam COFACTOR_OPTION \ref CofactorMultiplicationOption "cofactor multiplication option"
//! \tparam HASH HashTransformation derived class used for key drivation and MAC computation
//! \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label
//! \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
//! \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM)
//! with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
//! <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
//! You should prefer an Integrated Encryption Scheme over homegrown schemes.
//! \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
//! SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
//! Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with
//! <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
//! \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES
//! template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
//! \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
//! <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
//! SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
//! security provided by the MAC. The hash is also used in the key derivation function as a PRF.
//! \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor.
//! <pre>
//! AutoSeededRandomPool prng;
//! DL_PrivateKey_GFP<DL_GroupParameters_GFP> key;
//! key.Initialize(prng, 2048);
//!
//! DLIES<SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
//! DLIES<SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
//! </pre>
//! \sa ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">Discrete Log Integrated Encryption Scheme (DLIES)</a>,
//! Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
//! Curve Integrated Encryption Schemes</A>
//! \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS=false>
struct DLIES
: public DL_ES<
DL_CryptoKeys_GFP,
DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
DLIES<> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
};
NAMESPACE_END
#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif
#endif