mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-12-17 23:38:35 +00:00
454 lines
16 KiB
C++
454 lines
16 KiB
C++
// algebra.h - originally written and placed in the public domain by Wei Dai
|
|
|
|
/// \file algebra.h
|
|
/// \brief Classes for performing mathematics over different fields
|
|
|
|
#ifndef CRYPTOPP_ALGEBRA_H
|
|
#define CRYPTOPP_ALGEBRA_H
|
|
|
|
#include "config.h"
|
|
#include "misc.h"
|
|
#include "integer.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
class Integer;
|
|
|
|
/// \brief Abstract group
|
|
/// \tparam T element class or type
|
|
/// \details <tt>const Element&</tt> returned by member functions are references
|
|
/// to internal data members. Since each object may have only
|
|
/// one such data member for holding results, the following code
|
|
/// will produce incorrect results:
|
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
|
/// But this should be fine:
|
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
virtual ~AbstractGroup() {}
|
|
|
|
/// \brief Compare two elements for equality
|
|
/// \param a first element
|
|
/// \param b second element
|
|
/// \returns true if the elements are equal, false otherwise
|
|
/// \details Equal() tests the elements for equality using <tt>a==b</tt>
|
|
virtual bool Equal(const Element &a, const Element &b) const =0;
|
|
|
|
/// \brief Provides the Identity element
|
|
/// \returns the Identity element
|
|
virtual const Element& Identity() const =0;
|
|
|
|
/// \brief Adds elements in the group
|
|
/// \param a first element
|
|
/// \param b second element
|
|
/// \returns the sum of <tt>a</tt> and <tt>b</tt>
|
|
virtual const Element& Add(const Element &a, const Element &b) const =0;
|
|
|
|
/// \brief Inverts the element in the group
|
|
/// \param a first element
|
|
/// \returns the inverse of the element
|
|
virtual const Element& Inverse(const Element &a) const =0;
|
|
|
|
/// \brief Determine if inversion is fast
|
|
/// \returns true if inversion is fast, false otherwise
|
|
virtual bool InversionIsFast() const {return false;}
|
|
|
|
/// \brief Doubles an element in the group
|
|
/// \param a the element
|
|
/// \returns the element doubled
|
|
virtual const Element& Double(const Element &a) const;
|
|
|
|
/// \brief Subtracts elements in the group
|
|
/// \param a first element
|
|
/// \param b second element
|
|
/// \returns the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
|
|
virtual const Element& Subtract(const Element &a, const Element &b) const;
|
|
|
|
/// \brief TODO
|
|
/// \param a first element
|
|
/// \param b second element
|
|
/// \returns TODO
|
|
virtual Element& Accumulate(Element &a, const Element &b) const;
|
|
|
|
/// \brief Reduces an element in the congruence class
|
|
/// \param a element to reduce
|
|
/// \param b the congruence class
|
|
/// \returns the reduced element
|
|
virtual Element& Reduce(Element &a, const Element &b) const;
|
|
|
|
/// \brief Performs a scalar multiplication
|
|
/// \param a multiplicand
|
|
/// \param e multiplier
|
|
/// \returns the product
|
|
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
|
|
|
|
/// \brief TODO
|
|
/// \param x first multiplicand
|
|
/// \param e1 the first multiplier
|
|
/// \param y second multiplicand
|
|
/// \param e2 the second multiplier
|
|
/// \returns TODO
|
|
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
|
|
|
/// \brief Multiplies a base to multiple exponents in a group
|
|
/// \param results an array of Elements
|
|
/// \param base the base to raise to the exponents
|
|
/// \param exponents an array of exponents
|
|
/// \param exponentsCount the number of exponents in the array
|
|
/// \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the
|
|
/// result at the respective position in the results array.
|
|
/// \details SimultaneousMultiply() must be implemented in a derived class.
|
|
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
|
|
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
|
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
|
};
|
|
|
|
/// \brief Abstract ring
|
|
/// \tparam T element class or type
|
|
/// \details <tt>const Element&</tt> returned by member functions are references
|
|
/// to internal data members. Since each object may have only
|
|
/// one such data member for holding results, the following code
|
|
/// will produce incorrect results:
|
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
|
/// But this should be fine:
|
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
/// \brief Construct an AbstractRing
|
|
AbstractRing() {m_mg.m_pRing = this;}
|
|
|
|
/// \brief Copy construct an AbstractRing
|
|
/// \param source other AbstractRing
|
|
AbstractRing(const AbstractRing &source)
|
|
{CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;}
|
|
|
|
/// \brief Assign an AbstractRing
|
|
/// \param source other AbstractRing
|
|
AbstractRing& operator=(const AbstractRing &source)
|
|
{CRYPTOPP_UNUSED(source); return *this;}
|
|
|
|
/// \brief Determines whether an element is a unit in the group
|
|
/// \param a the element
|
|
/// \returns true if the element is a unit after reduction, false otherwise.
|
|
virtual bool IsUnit(const Element &a) const =0;
|
|
|
|
/// \brief Retrieves the multiplicative identity
|
|
/// \returns the multiplicative identity
|
|
virtual const Element& MultiplicativeIdentity() const =0;
|
|
|
|
/// \brief Multiplies elements in the group
|
|
/// \param a the multiplicand
|
|
/// \param b the multiplier
|
|
/// \returns the product of a and b
|
|
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
|
|
|
|
/// \brief Calculate the multiplicative inverse of an element in the group
|
|
/// \param a the element
|
|
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
|
|
|
|
/// \brief Square an element in the group
|
|
/// \param a the element
|
|
/// \returns the element squared
|
|
virtual const Element& Square(const Element &a) const;
|
|
|
|
/// \brief Divides elements in the group
|
|
/// \param a the dividend
|
|
/// \param b the divisor
|
|
/// \returns the quotient
|
|
virtual const Element& Divide(const Element &a, const Element &b) const;
|
|
|
|
/// \brief Raises a base to an exponent in the group
|
|
/// \param a the base
|
|
/// \param e the exponent
|
|
/// \returns the exponentiation
|
|
virtual Element Exponentiate(const Element &a, const Integer &e) const;
|
|
|
|
/// \brief TODO
|
|
/// \param x first element
|
|
/// \param e1 first exponent
|
|
/// \param y second element
|
|
/// \param e2 second exponent
|
|
/// \returns TODO
|
|
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
|
|
|
|
/// \brief Exponentiates a base to multiple exponents in the Ring
|
|
/// \param results an array of Elements
|
|
/// \param base the base to raise to the exponents
|
|
/// \param exponents an array of exponents
|
|
/// \param exponentsCount the number of exponents in the array
|
|
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
|
|
/// result at the respective position in the results array.
|
|
/// \details SimultaneousExponentiate() must be implemented in a derived class.
|
|
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
|
|
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
|
|
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
|
|
|
/// \brief Retrieves the multiplicative group
|
|
/// \returns the multiplicative group
|
|
virtual const AbstractGroup<T>& MultiplicativeGroup() const
|
|
{return m_mg;}
|
|
|
|
private:
|
|
class MultiplicativeGroupT : public AbstractGroup<T>
|
|
{
|
|
public:
|
|
const AbstractRing<T>& GetRing() const
|
|
{return *m_pRing;}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return GetRing().Equal(a, b);}
|
|
|
|
const Element& Identity() const
|
|
{return GetRing().MultiplicativeIdentity();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return GetRing().Multiply(a, b);}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return a = GetRing().Multiply(a, b);}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return GetRing().MultiplicativeInverse(a);}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return GetRing().Divide(a, b);}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return a = GetRing().Divide(a, b);}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return GetRing().Square(a);}
|
|
|
|
Element ScalarMultiply(const Element &a, const Integer &e) const
|
|
{return GetRing().Exponentiate(a, e);}
|
|
|
|
Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
|
|
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
|
|
|
|
void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
|
|
{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
|
|
|
|
const AbstractRing<T> *m_pRing;
|
|
};
|
|
|
|
MultiplicativeGroupT m_mg;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Base and exponent
|
|
/// \tparam T base class or type
|
|
/// \tparam E exponent class or type
|
|
template <class T, class E = Integer>
|
|
struct BaseAndExponent
|
|
{
|
|
public:
|
|
BaseAndExponent() {}
|
|
BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
|
|
bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
|
|
T base;
|
|
E exponent;
|
|
};
|
|
|
|
// VC60 workaround: incomplete member template support
|
|
template <class Element, class Iterator>
|
|
Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
|
|
template <class Element, class Iterator>
|
|
Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Abstract Euclidean domain
|
|
/// \tparam T element class or type
|
|
/// \details <tt>const Element&</tt> returned by member functions are references
|
|
/// to internal data members. Since each object may have only
|
|
/// one such data member for holding results, the following code
|
|
/// will produce incorrect results:
|
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
|
/// But this should be fine:
|
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
|
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
/// \brief Performs the division algorithm on two elements in the ring
|
|
/// \param r the remainder
|
|
/// \param q the quotient
|
|
/// \param a the dividend
|
|
/// \param d the divisor
|
|
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
|
|
|
|
/// \brief Performs a modular reduction in the ring
|
|
/// \param a the element
|
|
/// \param b the modulus
|
|
/// \returns the result of <tt>a%b</tt>.
|
|
virtual const Element& Mod(const Element &a, const Element &b) const =0;
|
|
|
|
/// \brief Calculates the greatest common denominator in the ring
|
|
/// \param a the first element
|
|
/// \param b the second element
|
|
/// \returns the the greatest common denominator of a and b.
|
|
virtual const Element& Gcd(const Element &a, const Element &b) const;
|
|
|
|
protected:
|
|
mutable Element result;
|
|
};
|
|
|
|
// ********************************************************
|
|
|
|
/// \brief Euclidean domain
|
|
/// \tparam T element class or type
|
|
/// \details <tt>const Element&</tt> returned by member functions are references
|
|
/// to internal data members. Since each object may have only
|
|
/// one such data member for holding results, the following code
|
|
/// will produce incorrect results:
|
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
|
/// But this should be fine:
|
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
|
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
|
|
{
|
|
public:
|
|
typedef T Element;
|
|
|
|
EuclideanDomainOf() {}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return a==b;}
|
|
|
|
const Element& Identity() const
|
|
{return Element::Zero();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return result = a+b;}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return a+=b;}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return result = -a;}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return result = a-b;}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return a-=b;}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return result = a.Doubled();}
|
|
|
|
const Element& MultiplicativeIdentity() const
|
|
{return Element::One();}
|
|
|
|
const Element& Multiply(const Element &a, const Element &b) const
|
|
{return result = a*b;}
|
|
|
|
const Element& Square(const Element &a) const
|
|
{return result = a.Squared();}
|
|
|
|
bool IsUnit(const Element &a) const
|
|
{return a.IsUnit();}
|
|
|
|
const Element& MultiplicativeInverse(const Element &a) const
|
|
{return result = a.MultiplicativeInverse();}
|
|
|
|
const Element& Divide(const Element &a, const Element &b) const
|
|
{return result = a/b;}
|
|
|
|
const Element& Mod(const Element &a, const Element &b) const
|
|
{return result = a%b;}
|
|
|
|
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
|
|
{Element::Divide(r, q, a, d);}
|
|
|
|
bool operator==(const EuclideanDomainOf<T> &rhs) const
|
|
{CRYPTOPP_UNUSED(rhs); return true;}
|
|
|
|
private:
|
|
mutable Element result;
|
|
};
|
|
|
|
/// \brief Quotient ring
|
|
/// \tparam T element class or type
|
|
/// \details <tt>const Element&</tt> returned by member functions are references
|
|
/// to internal data members. Since each object may have only
|
|
/// one such data member for holding results, the following code
|
|
/// will produce incorrect results:
|
|
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
|
|
/// But this should be fine:
|
|
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
|
|
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
|
|
{
|
|
public:
|
|
typedef T EuclideanDomain;
|
|
typedef typename T::Element Element;
|
|
|
|
QuotientRing(const EuclideanDomain &domain, const Element &modulus)
|
|
: m_domain(domain), m_modulus(modulus) {}
|
|
|
|
const EuclideanDomain & GetDomain() const
|
|
{return m_domain;}
|
|
|
|
const Element& GetModulus() const
|
|
{return m_modulus;}
|
|
|
|
bool Equal(const Element &a, const Element &b) const
|
|
{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
|
|
|
|
const Element& Identity() const
|
|
{return m_domain.Identity();}
|
|
|
|
const Element& Add(const Element &a, const Element &b) const
|
|
{return m_domain.Add(a, b);}
|
|
|
|
Element& Accumulate(Element &a, const Element &b) const
|
|
{return m_domain.Accumulate(a, b);}
|
|
|
|
const Element& Inverse(const Element &a) const
|
|
{return m_domain.Inverse(a);}
|
|
|
|
const Element& Subtract(const Element &a, const Element &b) const
|
|
{return m_domain.Subtract(a, b);}
|
|
|
|
Element& Reduce(Element &a, const Element &b) const
|
|
{return m_domain.Reduce(a, b);}
|
|
|
|
const Element& Double(const Element &a) const
|
|
{return m_domain.Double(a);}
|
|
|
|
bool IsUnit(const Element &a) const
|
|
{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
|
|
|
|
const Element& MultiplicativeIdentity() const
|
|
{return m_domain.MultiplicativeIdentity();}
|
|
|
|
const Element& Multiply(const Element &a, const Element &b) const
|
|
{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
|
|
|
|
const Element& Square(const Element &a) const
|
|
{return m_domain.Mod(m_domain.Square(a), m_modulus);}
|
|
|
|
const Element& MultiplicativeInverse(const Element &a) const;
|
|
|
|
bool operator==(const QuotientRing<T> &rhs) const
|
|
{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
|
|
|
|
protected:
|
|
EuclideanDomain m_domain;
|
|
Element m_modulus;
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
|
|
#include "algebra.cpp"
|
|
#endif
|
|
|
|
#endif
|