ext-cryptopp/blake2.cpp

541 lines
18 KiB
C++

// blake2.cpp - written and placed in the public domain by Jeffrey Walton and Zooko
// Wilcox-O'Hearn. Based on Aumasson, Neves, Wilcox-O'Hearn and Winnerlein's
// reference BLAKE2 implementation at http://github.com/BLAKE2/BLAKE2.
#include "pch.h"
#include "config.h"
#include "cryptlib.h"
#include "argnames.h"
#include "algparam.h"
#include "blake2.h"
#include "cpu.h"
// Uncomment for benchmarking C++ against SSE2 or NEON.
// Do so in both blake2.cpp and blake2-simd.cpp.
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
// Disable NEON/ASIMD for Cortex-A53 and A57. The shifts are too slow and C/C++ is about
// 3 cpb faster than NEON/ASIMD. Also see http://github.com/weidai11/cryptopp/issues/367.
#if (defined(__aarch32__) || defined(__aarch64__)) && defined(CRYPTOPP_SLOW_ARMV8_SHIFT)
# undef CRYPTOPP_ARM_NEON_AVAILABLE
#endif
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotrConstant;
template <class W, bool T_64bit>
struct BLAKE2_IV
{
CRYPTOPP_ALIGN_DATA(16)
static const W iv[8];
};
template <>
const word32 BLAKE2_IV<word32, false>::iv[8] = {
0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL,
0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL
};
template <>
const word64 BLAKE2_IV<word64, true>::iv[8] = {
W64LIT(0x6a09e667f3bcc908), W64LIT(0xbb67ae8584caa73b),
W64LIT(0x3c6ef372fe94f82b), W64LIT(0xa54ff53a5f1d36f1),
W64LIT(0x510e527fade682d1), W64LIT(0x9b05688c2b3e6c1f),
W64LIT(0x1f83d9abfb41bd6b), W64LIT(0x5be0cd19137e2179)
};
CRYPTOPP_ALIGN_DATA(16)
const byte BLAKE2S_SIGMA[10][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
};
CRYPTOPP_ALIGN_DATA(16)
const byte BLAKE2B_SIGMA[12][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 },
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
};
template <unsigned int R, unsigned int N>
inline void BLAKE2B_G(const word64 m[16], word64& a, word64& b, word64& c, word64& d)
{
a = a + b + m[BLAKE2B_SIGMA[R][2*N+0]];
d = rotrConstant<32>(d ^ a);
c = c + d;
b = rotrConstant<24>(b ^ c);
a = a + b + m[BLAKE2B_SIGMA[R][2*N+1]];
d = rotrConstant<16>(d ^ a);
c = c + d;
b = rotrConstant<63>(b ^ c);
}
template <unsigned int R>
inline void BLAKE2B_ROUND(const word64 m[16], word64 v[16])
{
BLAKE2B_G<R,0>(m,v[ 0],v[ 4],v[ 8],v[12]);
BLAKE2B_G<R,1>(m,v[ 1],v[ 5],v[ 9],v[13]);
BLAKE2B_G<R,2>(m,v[ 2],v[ 6],v[10],v[14]);
BLAKE2B_G<R,3>(m,v[ 3],v[ 7],v[11],v[15]);
BLAKE2B_G<R,4>(m,v[ 0],v[ 5],v[10],v[15]);
BLAKE2B_G<R,5>(m,v[ 1],v[ 6],v[11],v[12]);
BLAKE2B_G<R,6>(m,v[ 2],v[ 7],v[ 8],v[13]);
BLAKE2B_G<R,7>(m,v[ 3],v[ 4],v[ 9],v[14]);
}
template <unsigned int R, unsigned int N>
inline void BLAKE2S_G(const word32 m[16], word32& a, word32& b, word32& c, word32& d)
{
a = a + b + m[BLAKE2S_SIGMA[R][2*N+0]];
d = rotrConstant<16>(d ^ a);
c = c + d;
b = rotrConstant<12>(b ^ c);
a = a + b + m[BLAKE2S_SIGMA[R][2*N+1]];
d = rotrConstant<8>(d ^ a);
c = c + d;
b = rotrConstant<7>(b ^ c);
}
template <unsigned int R>
inline void BLAKE2S_ROUND(const word32 m[16], word32 v[])
{
BLAKE2S_G<R,0>(m,v[ 0],v[ 4],v[ 8],v[12]);
BLAKE2S_G<R,1>(m,v[ 1],v[ 5],v[ 9],v[13]);
BLAKE2S_G<R,2>(m,v[ 2],v[ 6],v[10],v[14]);
BLAKE2S_G<R,3>(m,v[ 3],v[ 7],v[11],v[15]);
BLAKE2S_G<R,4>(m,v[ 0],v[ 5],v[10],v[15]);
BLAKE2S_G<R,5>(m,v[ 1],v[ 6],v[11],v[12]);
BLAKE2S_G<R,6>(m,v[ 2],v[ 7],v[ 8],v[13]);
BLAKE2S_G<R,7>(m,v[ 3],v[ 4],v[ 9],v[14]);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
void BLAKE2_Compress32_CXX(const byte* input, BLAKE2_State<word32, false>& state);
void BLAKE2_Compress64_CXX(const byte* input, BLAKE2_State<word64, true>& state);
#if CRYPTOPP_SSE41_AVAILABLE
extern void BLAKE2_Compress32_SSE4(const byte* input, BLAKE2_State<word32, false>& state);
extern void BLAKE2_Compress64_SSE4(const byte* input, BLAKE2_State<word64, true>& state);
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
extern void BLAKE2_Compress32_NEON(const byte* input, BLAKE2_State<word32, false>& state);
extern void BLAKE2_Compress64_NEON(const byte* input, BLAKE2_State<word64, true>& state);
#endif
BLAKE2_ParameterBlock<false>::BLAKE2_ParameterBlock(size_t digestLen, size_t keyLen,
const byte* saltStr, size_t saltLen,
const byte* personalizationStr, size_t personalizationLen)
{
// Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof
digestLength = (byte)digestLen;
keyLength = (byte)keyLen;
fanout = depth = 1;
nodeDepth = innerLength = 0;
memset(leafLength, 0x00, COUNTOF(leafLength));
memset(nodeOffset, 0x00, COUNTOF(nodeOffset));
if (saltStr && saltLen)
{
memcpy_s(salt, COUNTOF(salt), saltStr, saltLen);
const size_t rem = COUNTOF(salt) - saltLen;
const size_t off = COUNTOF(salt) - rem;
if (rem)
memset(salt+off, 0x00, rem);
}
else
{
memset(salt, 0x00, COUNTOF(salt));
}
if (personalizationStr && personalizationLen)
{
memcpy_s(personalization, COUNTOF(personalization), personalizationStr, personalizationLen);
const size_t rem = COUNTOF(personalization) - personalizationLen;
const size_t off = COUNTOF(personalization) - rem;
if (rem)
memset(personalization+off, 0x00, rem);
}
else
{
memset(personalization, 0x00, COUNTOF(personalization));
}
}
BLAKE2_ParameterBlock<true>::BLAKE2_ParameterBlock(size_t digestLen, size_t keyLen,
const byte* saltStr, size_t saltLen,
const byte* personalizationStr, size_t personalizationLen)
{
// Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof
digestLength = (byte)digestLen;
keyLength = (byte)keyLen;
fanout = depth = 1;
nodeDepth = innerLength = 0;
memset(rfu, 0x00, COUNTOF(rfu));
memset(leafLength, 0x00, COUNTOF(leafLength));
memset(nodeOffset, 0x00, COUNTOF(nodeOffset));
if (saltStr && saltLen)
{
memcpy_s(salt, COUNTOF(salt), saltStr, saltLen);
const size_t rem = COUNTOF(salt) - saltLen;
const size_t off = COUNTOF(salt) - rem;
if (rem)
memset(salt+off, 0x00, rem);
}
else
{
memset(salt, 0x00, COUNTOF(salt));
}
if (personalizationStr && personalizationLen)
{
memcpy_s(personalization, COUNTOF(personalization), personalizationStr, personalizationLen);
const size_t rem = COUNTOF(personalization) - personalizationLen;
const size_t off = COUNTOF(personalization) - rem;
if (rem)
memset(personalization+off, 0x00, rem);
}
else
{
memset(personalization, 0x00, COUNTOF(personalization));
}
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::UncheckedSetKey(const byte *key, unsigned int length, const CryptoPP::NameValuePairs& params)
{
if (key && length)
{
AlignedSecByteBlock temp(BLOCKSIZE);
memcpy_s(temp, BLOCKSIZE, key, length);
const size_t rem = BLOCKSIZE - length;
if (rem)
memset(temp+length, 0x00, rem);
m_key.swap(temp);
}
else
{
m_key.resize(0);
}
#if defined(__COVERITY__)
// Avoid Coverity finding SIZEOF_MISMATCH/suspicious_sizeof
ParameterBlock& block = *m_block.data();
memset(m_block.data(), 0x00, sizeof(ParameterBlock));
#else
// Set Head bytes; Tail bytes are set below
ParameterBlock& block = *m_block.data();
memset(m_block.data(), 0x00, T_64bit ? 32 : 16);
#endif
block.keyLength = (byte)length;
block.digestLength = (byte)params.GetIntValueWithDefault(Name::DigestSize(), DIGESTSIZE);
block.fanout = block.depth = 1;
ConstByteArrayParameter t;
if (params.GetValue(Name::Salt(), t) && t.begin() && t.size())
{
memcpy_s(block.salt, COUNTOF(block.salt), t.begin(), t.size());
const size_t rem = COUNTOF(block.salt) - t.size();
const size_t off = COUNTOF(block.salt) - rem;
if (rem)
memset(block.salt+off, 0x00, rem);
}
else
{
memset(block.salt, 0x00, COUNTOF(block.salt));
}
if (params.GetValue(Name::Personalization(), t) && t.begin() && t.size())
{
memcpy_s(block.personalization, COUNTOF(block.personalization), t.begin(), t.size());
const size_t rem = COUNTOF(block.personalization) - t.size();
const size_t off = COUNTOF(block.personalization) - rem;
if (rem)
memset(block.personalization+off, 0x00, rem);
}
else
{
memset(block.personalization, 0x00, COUNTOF(block.personalization));
}
}
template <class W, bool T_64bit>
BLAKE2_Base<W, T_64bit>::BLAKE2_Base() : m_state(1), m_block(1), m_digestSize(DIGESTSIZE), m_treeMode(false)
{
UncheckedSetKey(NULLPTR, 0, g_nullNameValuePairs);
Restart();
}
template <class W, bool T_64bit>
BLAKE2_Base<W, T_64bit>::BLAKE2_Base(bool treeMode, unsigned int digestSize) : m_state(1), m_block(1), m_digestSize(digestSize), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
UncheckedSetKey(NULLPTR, 0, MakeParameters(Name::DigestSize(), (int)digestSize)(Name::TreeMode(), treeMode, false));
Restart();
}
template <class W, bool T_64bit>
BLAKE2_Base<W, T_64bit>::BLAKE2_Base(const byte *key, size_t keyLength, const byte* salt, size_t saltLength,
const byte* personalization, size_t personalizationLength, bool treeMode, unsigned int digestSize)
: m_state(1), m_block(1), m_digestSize(digestSize), m_treeMode(treeMode)
{
CRYPTOPP_ASSERT(keyLength <= MAX_KEYLENGTH);
CRYPTOPP_ASSERT(digestSize <= DIGESTSIZE);
CRYPTOPP_ASSERT(saltLength <= SALTSIZE);
CRYPTOPP_ASSERT(personalizationLength <= PERSONALIZATIONSIZE);
UncheckedSetKey(key, static_cast<unsigned int>(keyLength), MakeParameters(Name::DigestSize(),(int)digestSize)(Name::TreeMode(),treeMode, false)
(Name::Salt(), ConstByteArrayParameter(salt, saltLength))(Name::Personalization(), ConstByteArrayParameter(personalization, personalizationLength)));
Restart();
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::Restart()
{
static const W zero[2] = {0,0};
Restart(*m_block.data(), zero);
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::Restart(const BLAKE2_ParameterBlock<T_64bit>& block, const W counter[2])
{
// We take a parameter block as a parameter to allow customized state.
// Avoid the copy of the parameter block when we are passing our own block.
if (&block != m_block.data())
{
memcpy_s(m_block.data(), sizeof(ParameterBlock), &block, sizeof(ParameterBlock));
m_block.data()->digestLength = (byte)m_digestSize;
m_block.data()->keyLength = (byte)m_key.size();
}
State& state = *m_state.data();
state.t[0] = state.t[1] = 0, state.f[0] = state.f[1] = 0, state.length = 0;
if (counter != NULLPTR)
{
state.t[0] = counter[0];
state.t[1] = counter[1];
}
const W* iv = BLAKE2_IV<W, T_64bit>::iv;
PutBlock<W, LittleEndian, true> put(m_block.data(), &state.h[0]);
put(iv[0])(iv[1])(iv[2])(iv[3])(iv[4])(iv[5])(iv[6])(iv[7]);
// When BLAKE2 is keyed, the input stream is simply {key||message}. Key it
// during Restart to avoid FirstPut and friends. Key size == 0 means no key.
if (m_key.size())
Update(m_key, m_key.size());
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::Update(const byte *input, size_t length)
{
State& state = *m_state.data();
if (state.length + length > BLOCKSIZE)
{
// Complete current block
const size_t fill = BLOCKSIZE - state.length;
memcpy_s(&state.buffer[state.length], fill, input, fill);
IncrementCounter();
Compress(state.buffer);
state.length = 0;
length -= fill, input += fill;
// Compress in-place to avoid copies
while (length > BLOCKSIZE)
{
IncrementCounter();
Compress(input);
length -= BLOCKSIZE, input += BLOCKSIZE;
}
}
// Copy tail bytes
if (input && length)
{
CRYPTOPP_ASSERT(length <= BLOCKSIZE - state.length);
memcpy_s(&state.buffer[state.length], length, input, length);
state.length += static_cast<unsigned int>(length);
}
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::TruncatedFinal(byte *hash, size_t size)
{
this->ThrowIfInvalidTruncatedSize(size);
// Set last block unconditionally
State& state = *m_state.data();
state.f[0] = static_cast<W>(-1);
// Set last node if tree mode
if (m_treeMode)
state.f[1] = static_cast<W>(-1);
// Increment counter for tail bytes only
IncrementCounter(state.length);
memset(state.buffer + state.length, 0x00, BLOCKSIZE - state.length);
Compress(state.buffer);
// Copy to caller buffer
memcpy_s(hash, size, &state.h[0], size);
Restart();
}
template <class W, bool T_64bit>
void BLAKE2_Base<W, T_64bit>::IncrementCounter(size_t count)
{
State& state = *m_state.data();
state.t[0] += static_cast<W>(count);
state.t[1] += !!(state.t[0] < count);
}
template <>
void BLAKE2_Base<word64, true>::Compress(const byte *input)
{
#if CRYPTOPP_SSE41_AVAILABLE
if(HasSSE41())
{
return BLAKE2_Compress64_SSE4(input, *m_state.data());
}
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
if(HasNEON())
{
return BLAKE2_Compress64_NEON(input, *m_state.data());
}
#endif
return BLAKE2_Compress64_CXX(input, *m_state.data());
}
template <>
void BLAKE2_Base<word32, false>::Compress(const byte *input)
{
#if CRYPTOPP_SSE41_AVAILABLE
if(HasSSE41())
{
return BLAKE2_Compress32_SSE4(input, *m_state.data());
}
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
if(HasNEON())
{
return BLAKE2_Compress32_NEON(input, *m_state.data());
}
#endif
return BLAKE2_Compress32_CXX(input, *m_state.data());
}
void BLAKE2_Compress64_CXX(const byte* input, BLAKE2_State<word64, true>& state)
{
word64 m[16], v[16];
GetBlock<word64, LittleEndian, true> get1(input);
get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]);
GetBlock<word64, LittleEndian, true> get2(&state.h[0]);
get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]);
const word64* iv = BLAKE2_IV<word64, true>::iv;
v[ 8] = iv[0];
v[ 9] = iv[1];
v[10] = iv[2];
v[11] = iv[3];
v[12] = state.t[0] ^ iv[4];
v[13] = state.t[1] ^ iv[5];
v[14] = state.f[0] ^ iv[6];
v[15] = state.f[1] ^ iv[7];
BLAKE2B_ROUND<0>(m, v);
BLAKE2B_ROUND<1>(m, v);
BLAKE2B_ROUND<2>(m, v);
BLAKE2B_ROUND<3>(m, v);
BLAKE2B_ROUND<4>(m, v);
BLAKE2B_ROUND<5>(m, v);
BLAKE2B_ROUND<6>(m, v);
BLAKE2B_ROUND<7>(m, v);
BLAKE2B_ROUND<8>(m, v);
BLAKE2B_ROUND<9>(m, v);
BLAKE2B_ROUND<10>(m, v);
BLAKE2B_ROUND<11>(m, v);
for(unsigned int i = 0; i < 8; ++i)
state.h[i] = state.h[i] ^ ConditionalByteReverse(LittleEndian::ToEnum(), v[i] ^ v[i + 8]);
}
void BLAKE2_Compress32_CXX(const byte* input, BLAKE2_State<word32, false>& state)
{
word32 m[16], v[16];
GetBlock<word32, LittleEndian, true> get1(input);
get1(m[0])(m[1])(m[2])(m[3])(m[4])(m[5])(m[6])(m[7])(m[8])(m[9])(m[10])(m[11])(m[12])(m[13])(m[14])(m[15]);
GetBlock<word32, LittleEndian, true> get2(&state.h[0]);
get2(v[0])(v[1])(v[2])(v[3])(v[4])(v[5])(v[6])(v[7]);
const word32* iv = BLAKE2_IV<word32, false>::iv;
v[ 8] = iv[0];
v[ 9] = iv[1];
v[10] = iv[2];
v[11] = iv[3];
v[12] = state.t[0] ^ iv[4];
v[13] = state.t[1] ^ iv[5];
v[14] = state.f[0] ^ iv[6];
v[15] = state.f[1] ^ iv[7];
BLAKE2S_ROUND<0>(m, v);
BLAKE2S_ROUND<1>(m, v);
BLAKE2S_ROUND<2>(m, v);
BLAKE2S_ROUND<3>(m, v);
BLAKE2S_ROUND<4>(m, v);
BLAKE2S_ROUND<5>(m, v);
BLAKE2S_ROUND<6>(m, v);
BLAKE2S_ROUND<7>(m, v);
BLAKE2S_ROUND<8>(m, v);
BLAKE2S_ROUND<9>(m, v);
for(unsigned int i = 0; i < 8; ++i)
state.h[i] = state.h[i] ^ ConditionalByteReverse(LittleEndian::ToEnum(), v[i] ^ v[i + 8]);
}
template class BLAKE2_Base<word32, false>;
template class BLAKE2_Base<word64, true>;
NAMESPACE_END