ext-cryptopp/chacha_avx.cpp
2018-12-05 19:53:14 -05:00

384 lines
15 KiB
C++

// chacha_avx.cpp - written and placed in the public domain by
// Jack Lloyd and Jeffrey Walton
//
// This source file uses intrinsics and built-ins to gain access to
// AVX2 instructions. A separate source file is needed because
// additional CXXFLAGS are required to enable the appropriate
// instructions sets in some build configurations.
//
// AVX2 implementation based on Botan's chacha_avx.cpp. Many thanks
// to Jack Lloyd and the Botan team for allowing us to use it.
//
// Here are some relative numbers for ChaCha8:
// * Intel Skylake, 3.0 GHz: AVX2 at 4411 MB/s; 0.57 cpb.
// * Intel Broadwell, 2.3 GHz: AVX2 at 3828 MB/s; 0.58 cpb.
// * AMD Bulldozer, 3.3 GHz: AVX2 at 1680 MB/s; 1.47 cpb.
#include "pch.h"
#include "config.h"
#include "chacha.h"
#include "misc.h"
#if defined(CRYPTOPP_AVX2_AVAILABLE)
# include <xmmintrin.h>
# include <emmintrin.h>
# include <immintrin.h>
#endif
// Squash MS LNK4221 and libtool warnings
extern const char CHACHA_AVX_FNAME[] = __FILE__;
// Sun Studio 12.4 OK, 12.5 and 12.6 compile error.
#if (__SUNPRO_CC >= 0x5140) && (__SUNPRO_CC <= 0x5150)
# define MAYBE_CONST
#else
# define MAYBE_CONST const
#endif
// VS2017 and global optimization bug. TODO, figure out when
// we can re-enable full optimizations for VS2017. Also see
// https://github.com/weidai11/cryptopp/issues/649 and
// https://github.com/weidai11/cryptopp/issues/735. The
// 649 issue affects AES but it is the same here. The 735
// issue is ChaCha AVX2 cut-in where it surfaced again.
#if (_MSC_VER >= 1910)
# ifndef CRYPTOPP_DEBUG
# pragma optimize("", off)
# pragma optimize("ts", on)
# endif
#endif
ANONYMOUS_NAMESPACE_BEGIN
#if (CRYPTOPP_AVX2_AVAILABLE)
template <unsigned int R>
inline __m256i RotateLeft(const __m256i val)
{
return _mm256_or_si256(_mm256_slli_epi32(val, R), _mm256_srli_epi32(val, 32-R));
}
template <>
inline __m256i RotateLeft<8>(const __m256i val)
{
const __m256i mask = _mm256_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3,
14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
return _mm256_shuffle_epi8(val, mask);
}
template <>
inline __m256i RotateLeft<16>(const __m256i val)
{
const __m256i mask = _mm256_set_epi8(13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2,
13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2);
return _mm256_shuffle_epi8(val, mask);
}
#endif // CRYPTOPP_AVX2_AVAILABLE
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_AVX2_AVAILABLE)
void ChaCha_OperateKeystream_AVX2(const word32 *state, const byte* input, byte *output, unsigned int rounds)
{
MAYBE_CONST __m128i* state_mm = (MAYBE_CONST __m128i*)(state);
MAYBE_CONST __m256i* input_mm = (MAYBE_CONST __m256i*)(input);
__m256i* output_mm = reinterpret_cast<__m256i*>(output);
const __m256i state0 = _mm256_broadcastsi128_si256(_mm_loadu_si128(state_mm + 0));
const __m256i state1 = _mm256_broadcastsi128_si256(_mm_loadu_si128(state_mm + 1));
const __m256i state2 = _mm256_broadcastsi128_si256(_mm_loadu_si128(state_mm + 2));
const __m256i state3 = _mm256_broadcastsi128_si256(_mm_loadu_si128(state_mm + 3));
const __m256i CTR0 = _mm256_set_epi32(0, 0, 0, 0, 0, 0, 0, 4);
const __m256i CTR1 = _mm256_set_epi32(0, 0, 0, 1, 0, 0, 0, 5);
const __m256i CTR2 = _mm256_set_epi32(0, 0, 0, 2, 0, 0, 0, 6);
const __m256i CTR3 = _mm256_set_epi32(0, 0, 0, 3, 0, 0, 0, 7);
__m256i X0_0 = state0;
__m256i X0_1 = state1;
__m256i X0_2 = state2;
__m256i X0_3 = _mm256_add_epi64(state3, CTR0);
__m256i X1_0 = state0;
__m256i X1_1 = state1;
__m256i X1_2 = state2;
__m256i X1_3 = _mm256_add_epi64(state3, CTR1);
__m256i X2_0 = state0;
__m256i X2_1 = state1;
__m256i X2_2 = state2;
__m256i X2_3 = _mm256_add_epi64(state3, CTR2);
__m256i X3_0 = state0;
__m256i X3_1 = state1;
__m256i X3_2 = state2;
__m256i X3_3 = _mm256_add_epi64(state3, CTR3);
for (int i = static_cast<int>(rounds); i > 0; i -= 2)
{
X0_0 = _mm256_add_epi32(X0_0, X0_1);
X1_0 = _mm256_add_epi32(X1_0, X1_1);
X2_0 = _mm256_add_epi32(X2_0, X2_1);
X3_0 = _mm256_add_epi32(X3_0, X3_1);
X0_3 = _mm256_xor_si256(X0_3, X0_0);
X1_3 = _mm256_xor_si256(X1_3, X1_0);
X2_3 = _mm256_xor_si256(X2_3, X2_0);
X3_3 = _mm256_xor_si256(X3_3, X3_0);
X0_3 = RotateLeft<16>(X0_3);
X1_3 = RotateLeft<16>(X1_3);
X2_3 = RotateLeft<16>(X2_3);
X3_3 = RotateLeft<16>(X3_3);
X0_2 = _mm256_add_epi32(X0_2, X0_3);
X1_2 = _mm256_add_epi32(X1_2, X1_3);
X2_2 = _mm256_add_epi32(X2_2, X2_3);
X3_2 = _mm256_add_epi32(X3_2, X3_3);
X0_1 = _mm256_xor_si256(X0_1, X0_2);
X1_1 = _mm256_xor_si256(X1_1, X1_2);
X2_1 = _mm256_xor_si256(X2_1, X2_2);
X3_1 = _mm256_xor_si256(X3_1, X3_2);
X0_1 = RotateLeft<12>(X0_1);
X1_1 = RotateLeft<12>(X1_1);
X2_1 = RotateLeft<12>(X2_1);
X3_1 = RotateLeft<12>(X3_1);
X0_0 = _mm256_add_epi32(X0_0, X0_1);
X1_0 = _mm256_add_epi32(X1_0, X1_1);
X2_0 = _mm256_add_epi32(X2_0, X2_1);
X3_0 = _mm256_add_epi32(X3_0, X3_1);
X0_3 = _mm256_xor_si256(X0_3, X0_0);
X1_3 = _mm256_xor_si256(X1_3, X1_0);
X2_3 = _mm256_xor_si256(X2_3, X2_0);
X3_3 = _mm256_xor_si256(X3_3, X3_0);
X0_3 = RotateLeft<8>(X0_3);
X1_3 = RotateLeft<8>(X1_3);
X2_3 = RotateLeft<8>(X2_3);
X3_3 = RotateLeft<8>(X3_3);
X0_2 = _mm256_add_epi32(X0_2, X0_3);
X1_2 = _mm256_add_epi32(X1_2, X1_3);
X2_2 = _mm256_add_epi32(X2_2, X2_3);
X3_2 = _mm256_add_epi32(X3_2, X3_3);
X0_1 = _mm256_xor_si256(X0_1, X0_2);
X1_1 = _mm256_xor_si256(X1_1, X1_2);
X2_1 = _mm256_xor_si256(X2_1, X2_2);
X3_1 = _mm256_xor_si256(X3_1, X3_2);
X0_1 = RotateLeft<7>(X0_1);
X1_1 = RotateLeft<7>(X1_1);
X2_1 = RotateLeft<7>(X2_1);
X3_1 = RotateLeft<7>(X3_1);
X0_1 = _mm256_shuffle_epi32(X0_1, _MM_SHUFFLE(0, 3, 2, 1));
X0_2 = _mm256_shuffle_epi32(X0_2, _MM_SHUFFLE(1, 0, 3, 2));
X0_3 = _mm256_shuffle_epi32(X0_3, _MM_SHUFFLE(2, 1, 0, 3));
X1_1 = _mm256_shuffle_epi32(X1_1, _MM_SHUFFLE(0, 3, 2, 1));
X1_2 = _mm256_shuffle_epi32(X1_2, _MM_SHUFFLE(1, 0, 3, 2));
X1_3 = _mm256_shuffle_epi32(X1_3, _MM_SHUFFLE(2, 1, 0, 3));
X2_1 = _mm256_shuffle_epi32(X2_1, _MM_SHUFFLE(0, 3, 2, 1));
X2_2 = _mm256_shuffle_epi32(X2_2, _MM_SHUFFLE(1, 0, 3, 2));
X2_3 = _mm256_shuffle_epi32(X2_3, _MM_SHUFFLE(2, 1, 0, 3));
X3_1 = _mm256_shuffle_epi32(X3_1, _MM_SHUFFLE(0, 3, 2, 1));
X3_2 = _mm256_shuffle_epi32(X3_2, _MM_SHUFFLE(1, 0, 3, 2));
X3_3 = _mm256_shuffle_epi32(X3_3, _MM_SHUFFLE(2, 1, 0, 3));
X0_0 = _mm256_add_epi32(X0_0, X0_1);
X1_0 = _mm256_add_epi32(X1_0, X1_1);
X2_0 = _mm256_add_epi32(X2_0, X2_1);
X3_0 = _mm256_add_epi32(X3_0, X3_1);
X0_3 = _mm256_xor_si256(X0_3, X0_0);
X1_3 = _mm256_xor_si256(X1_3, X1_0);
X2_3 = _mm256_xor_si256(X2_3, X2_0);
X3_3 = _mm256_xor_si256(X3_3, X3_0);
X0_3 = RotateLeft<16>(X0_3);
X1_3 = RotateLeft<16>(X1_3);
X2_3 = RotateLeft<16>(X2_3);
X3_3 = RotateLeft<16>(X3_3);
X0_2 = _mm256_add_epi32(X0_2, X0_3);
X1_2 = _mm256_add_epi32(X1_2, X1_3);
X2_2 = _mm256_add_epi32(X2_2, X2_3);
X3_2 = _mm256_add_epi32(X3_2, X3_3);
X0_1 = _mm256_xor_si256(X0_1, X0_2);
X1_1 = _mm256_xor_si256(X1_1, X1_2);
X2_1 = _mm256_xor_si256(X2_1, X2_2);
X3_1 = _mm256_xor_si256(X3_1, X3_2);
X0_1 = RotateLeft<12>(X0_1);
X1_1 = RotateLeft<12>(X1_1);
X2_1 = RotateLeft<12>(X2_1);
X3_1 = RotateLeft<12>(X3_1);
X0_0 = _mm256_add_epi32(X0_0, X0_1);
X1_0 = _mm256_add_epi32(X1_0, X1_1);
X2_0 = _mm256_add_epi32(X2_0, X2_1);
X3_0 = _mm256_add_epi32(X3_0, X3_1);
X0_3 = _mm256_xor_si256(X0_3, X0_0);
X1_3 = _mm256_xor_si256(X1_3, X1_0);
X2_3 = _mm256_xor_si256(X2_3, X2_0);
X3_3 = _mm256_xor_si256(X3_3, X3_0);
X0_3 = RotateLeft<8>(X0_3);
X1_3 = RotateLeft<8>(X1_3);
X2_3 = RotateLeft<8>(X2_3);
X3_3 = RotateLeft<8>(X3_3);
X0_2 = _mm256_add_epi32(X0_2, X0_3);
X1_2 = _mm256_add_epi32(X1_2, X1_3);
X2_2 = _mm256_add_epi32(X2_2, X2_3);
X3_2 = _mm256_add_epi32(X3_2, X3_3);
X0_1 = _mm256_xor_si256(X0_1, X0_2);
X1_1 = _mm256_xor_si256(X1_1, X1_2);
X2_1 = _mm256_xor_si256(X2_1, X2_2);
X3_1 = _mm256_xor_si256(X3_1, X3_2);
X0_1 = RotateLeft<7>(X0_1);
X1_1 = RotateLeft<7>(X1_1);
X2_1 = RotateLeft<7>(X2_1);
X3_1 = RotateLeft<7>(X3_1);
X0_1 = _mm256_shuffle_epi32(X0_1, _MM_SHUFFLE(2, 1, 0, 3));
X0_2 = _mm256_shuffle_epi32(X0_2, _MM_SHUFFLE(1, 0, 3, 2));
X0_3 = _mm256_shuffle_epi32(X0_3, _MM_SHUFFLE(0, 3, 2, 1));
X1_1 = _mm256_shuffle_epi32(X1_1, _MM_SHUFFLE(2, 1, 0, 3));
X1_2 = _mm256_shuffle_epi32(X1_2, _MM_SHUFFLE(1, 0, 3, 2));
X1_3 = _mm256_shuffle_epi32(X1_3, _MM_SHUFFLE(0, 3, 2, 1));
X2_1 = _mm256_shuffle_epi32(X2_1, _MM_SHUFFLE(2, 1, 0, 3));
X2_2 = _mm256_shuffle_epi32(X2_2, _MM_SHUFFLE(1, 0, 3, 2));
X2_3 = _mm256_shuffle_epi32(X2_3, _MM_SHUFFLE(0, 3, 2, 1));
X3_1 = _mm256_shuffle_epi32(X3_1, _MM_SHUFFLE(2, 1, 0, 3));
X3_2 = _mm256_shuffle_epi32(X3_2, _MM_SHUFFLE(1, 0, 3, 2));
X3_3 = _mm256_shuffle_epi32(X3_3, _MM_SHUFFLE(0, 3, 2, 1));
}
X0_0 = _mm256_add_epi32(X0_0, state0);
X0_1 = _mm256_add_epi32(X0_1, state1);
X0_2 = _mm256_add_epi32(X0_2, state2);
X0_3 = _mm256_add_epi32(X0_3, state3);
X0_3 = _mm256_add_epi64(X0_3, CTR0);
X1_0 = _mm256_add_epi32(X1_0, state0);
X1_1 = _mm256_add_epi32(X1_1, state1);
X1_2 = _mm256_add_epi32(X1_2, state2);
X1_3 = _mm256_add_epi32(X1_3, state3);
X1_3 = _mm256_add_epi64(X1_3, CTR1);
X2_0 = _mm256_add_epi32(X2_0, state0);
X2_1 = _mm256_add_epi32(X2_1, state1);
X2_2 = _mm256_add_epi32(X2_2, state2);
X2_3 = _mm256_add_epi32(X2_3, state3);
X2_3 = _mm256_add_epi64(X2_3, CTR2);
X3_0 = _mm256_add_epi32(X3_0, state0);
X3_1 = _mm256_add_epi32(X3_1, state1);
X3_2 = _mm256_add_epi32(X3_2, state2);
X3_3 = _mm256_add_epi32(X3_3, state3);
X3_3 = _mm256_add_epi64(X3_3, CTR3);
if (input_mm)
{
_mm256_storeu_si256(output_mm + 0, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 0),
_mm256_permute2x128_si256(X0_0, X0_1, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 1, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 1),
_mm256_permute2x128_si256(X0_2, X0_3, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 2, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 2),
_mm256_permute2x128_si256(X1_0, X1_1, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 3, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 3),
_mm256_permute2x128_si256(X1_2, X1_3, 1 + (3 << 4))));
}
else
{
_mm256_storeu_si256(output_mm + 0, _mm256_permute2x128_si256(X0_0, X0_1, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 1, _mm256_permute2x128_si256(X0_2, X0_3, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 2, _mm256_permute2x128_si256(X1_0, X1_1, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 3, _mm256_permute2x128_si256(X1_2, X1_3, 1 + (3 << 4)));
}
if (input_mm)
{
_mm256_storeu_si256(output_mm + 4, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 4),
_mm256_permute2x128_si256(X2_0, X2_1, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 5, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 5),
_mm256_permute2x128_si256(X2_2, X2_3, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 6, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 6),
_mm256_permute2x128_si256(X3_0, X3_1, 1 + (3 << 4))));
_mm256_storeu_si256(output_mm + 7, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 7),
_mm256_permute2x128_si256(X3_2, X3_3, 1 + (3 << 4))));
}
else
{
_mm256_storeu_si256(output_mm + 4, _mm256_permute2x128_si256(X2_0, X2_1, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 5, _mm256_permute2x128_si256(X2_2, X2_3, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 6, _mm256_permute2x128_si256(X3_0, X3_1, 1 + (3 << 4)));
_mm256_storeu_si256(output_mm + 7, _mm256_permute2x128_si256(X3_2, X3_3, 1 + (3 << 4)));
}
if (input_mm)
{
_mm256_storeu_si256(output_mm + 8, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 8),
_mm256_permute2x128_si256(X0_0, X0_1, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 9, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 9),
_mm256_permute2x128_si256(X0_2, X0_3, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 10, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 10),
_mm256_permute2x128_si256(X1_0, X1_1, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 11, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 11),
_mm256_permute2x128_si256(X1_2, X1_3, 0 + (2 << 4))));
}
else
{
_mm256_storeu_si256(output_mm + 8, _mm256_permute2x128_si256(X0_0, X0_1, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 9, _mm256_permute2x128_si256(X0_2, X0_3, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 10, _mm256_permute2x128_si256(X1_0, X1_1, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 11, _mm256_permute2x128_si256(X1_2, X1_3, 0 + (2 << 4)));
}
if (input_mm)
{
_mm256_storeu_si256(output_mm + 12, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 12),
_mm256_permute2x128_si256(X2_0, X2_1, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 13, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 13),
_mm256_permute2x128_si256(X2_2, X2_3, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 14, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 14),
_mm256_permute2x128_si256(X3_0, X3_1, 0 + (2 << 4))));
_mm256_storeu_si256(output_mm + 15, _mm256_xor_si256(_mm256_loadu_si256(input_mm + 15),
_mm256_permute2x128_si256(X3_2, X3_3, 0 + (2 << 4))));
}
else
{
_mm256_storeu_si256(output_mm + 12, _mm256_permute2x128_si256(X2_0, X2_1, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 13, _mm256_permute2x128_si256(X2_2, X2_3, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 14, _mm256_permute2x128_si256(X3_0, X3_1, 0 + (2 << 4)));
_mm256_storeu_si256(output_mm + 15, _mm256_permute2x128_si256(X3_2, X3_3, 0 + (2 << 4)));
}
// https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties
_mm256_zeroupper();
}
#endif // CRYPTOPP_AVX2_AVAILABLE
NAMESPACE_END