ext-cryptopp/shacal2-simd.cpp
2017-09-17 20:07:53 -04:00

108 lines
3.6 KiB
C++

// shacla2-simd.cpp - written and placed in the public domain by
// Jeffrey Walton and Jack Lloyd
//
// Jack Lloyd and the Botan team allowed Crypto++ to use parts of
// Botan's implementation under the same license as Crypto++
// is released. The code for SHACAL2_Enc_ProcessAndXorBlock_SHANI
// below is Botan's x86_encrypt_blocks with minor tweaks. Many thanks
// to the Botan team. Also see http://github.com/randombit/botan/.
//
// This source file uses intrinsics to gain access to SHA-NI and
// ARMv8a SHA instructions. A separate source file is needed because
// additional CXXFLAGS are required to enable the appropriate instructions
// sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "sha.h"
#include "misc.h"
// Clang and GCC hoops...
#if !(defined(__ARM_FEATURE_CRYPTO) || defined(_MSC_VER))
# undef CRYPTOPP_ARM_SHA_AVAILABLE
#endif
#if (CRYPTOPP_SHANI_AVAILABLE)
# include <nmmintrin.h>
# include <immintrin.h>
#endif
#if (CRYPTOPP_ARM_SHA_AVAILABLE)
# include <arm_neon.h>
# if defined(CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <arm_acle.h>
# endif
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
NAMESPACE_BEGIN(CryptoPP)
#if CRYPTOPP_SHANI_AVAILABLE
void SHACAL2_Enc_ProcessAndXorBlock_SHANI(const word32* subKeys, const byte *inBlock, const byte *xorBlock, byte *outBlock)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlock);
CRYPTOPP_ASSERT(outBlock);
const __m128i MASK1 = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
const __m128i MASK2 = _mm_set_epi8(0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15);
__m128i B0 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(inBlock + 0)), MASK1);
__m128i B1 = _mm_shuffle_epi8(_mm_loadu_si128(CONST_M128_CAST(inBlock + 16)), MASK2);
__m128i TMP = _mm_alignr_epi8(B0, B1, 8);
B1 = _mm_blend_epi16(B1, B0, 0xF0);
B0 = TMP;
#if 0
// SSE2 + SSSE3, but 0.2 cpb slower on a Celeraon J3455
const __m128i MASK1 = _mm_set_epi8(8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7);
const __m128i MASK2 = _mm_set_epi8(0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15);
__m128i B0 = _mm_loadu_si128(CONST_M128_CAST(inBlock + 0));
__m128i B1 = _mm_loadu_si128(CONST_M128_CAST(inBlock + 16));
__m128i TMP = _mm_shuffle_epi8(_mm_unpacklo_epi64(B0, B1), MASK2);
B1 = _mm_shuffle_epi8(_mm_unpackhi_epi64(B0, B1), MASK2);
B0 = TMP;
#endif
const byte* keys = reinterpret_cast<const byte*>(subKeys);
for (size_t i = 0; i != 8; ++i)
{
const __m128i RK0 = _mm_load_si128(CONST_M128_CAST(keys + 32*i));
const __m128i RK2 = _mm_load_si128(CONST_M128_CAST(keys + 32*i+16));
const __m128i RK1 = _mm_srli_si128(RK0, 8);
const __m128i RK3 = _mm_srli_si128(RK2, 8);
B1 = _mm_sha256rnds2_epu32(B1, B0, RK0);
B0 = _mm_sha256rnds2_epu32(B0, B1, RK1);
B1 = _mm_sha256rnds2_epu32(B1, B0, RK2);
B0 = _mm_sha256rnds2_epu32(B0, B1, RK3);
}
TMP = _mm_shuffle_epi8(_mm_unpackhi_epi64(B0, B1), MASK1);
B1 = _mm_shuffle_epi8(_mm_unpacklo_epi64(B0, B1), MASK1);
B0 = TMP;
if (xorBlock)
{
_mm_storeu_si128(M128_CAST(outBlock + 0),
_mm_xor_si128(B0, _mm_loadu_si128(CONST_M128_CAST(xorBlock + 0))));
_mm_storeu_si128(M128_CAST(outBlock + 16),
_mm_xor_si128(B1, _mm_loadu_si128(CONST_M128_CAST(xorBlock + 16))));
}
else
{
_mm_storeu_si128(M128_CAST(outBlock + 0), B0);
_mm_storeu_si128(M128_CAST(outBlock + 16), B1);
}
}
#endif
NAMESPACE_END