mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 09:59:42 +00:00
303 lines
12 KiB
C++
303 lines
12 KiB
C++
// fhmqv.h - written and placed in the public domain by Jeffrey Walton, Ray Clayton and Uri Blumenthal
|
||
// Shamelessly based upon Wei Dai's MQV source files
|
||
|
||
#ifndef CRYPTOPP_FHMQV_H
|
||
#define CRYPTOPP_FHMQV_H
|
||
|
||
/// \file fhmqv.h
|
||
/// \brief Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
|
||
/// \since Crypto++ 5.6.4
|
||
|
||
#include "gfpcrypt.h"
|
||
#include "algebra.h"
|
||
#include "sha.h"
|
||
|
||
NAMESPACE_BEGIN(CryptoPP)
|
||
|
||
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
|
||
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
|
||
/// \since Crypto++ 5.6.4
|
||
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption, class HASH = SHA512>
|
||
class FHMQV_Domain : public AuthenticatedKeyAgreementDomain
|
||
{
|
||
public:
|
||
typedef GROUP_PARAMETERS GroupParameters;
|
||
typedef typename GroupParameters::Element Element;
|
||
typedef FHMQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION, HASH> Domain;
|
||
|
||
virtual ~FHMQV_Domain() {}
|
||
|
||
FHMQV_Domain(bool clientRole = true): m_role(clientRole ? RoleClient : RoleServer) {}
|
||
|
||
FHMQV_Domain(const GroupParameters ¶ms, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer), m_groupParameters(params) {}
|
||
|
||
FHMQV_Domain(BufferedTransformation &bt, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.BERDecode(bt);}
|
||
|
||
template <class T1>
|
||
FHMQV_Domain(T1 v1, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1);}
|
||
|
||
template <class T1, class T2>
|
||
FHMQV_Domain(T1 v1, T2 v2, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2);}
|
||
|
||
template <class T1, class T2, class T3>
|
||
FHMQV_Domain(T1 v1, T2 v2, T3 v3, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2, v3);}
|
||
|
||
template <class T1, class T2, class T3, class T4>
|
||
FHMQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4, bool clientRole = true)
|
||
: m_role(clientRole ? RoleClient : RoleServer)
|
||
{m_groupParameters.Initialize(v1, v2, v3, v4);}
|
||
|
||
public:
|
||
|
||
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
|
||
GroupParameters & AccessGroupParameters(){return m_groupParameters;}
|
||
|
||
CryptoParameters & AccessCryptoParameters(){return AccessAbstractGroupParameters();}
|
||
|
||
/// return length of agreed value produced
|
||
unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
|
||
/// return length of static private keys in this domain
|
||
unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
|
||
/// return length of static public keys in this domain
|
||
unsigned int StaticPublicKeyLength() const{return GetAbstractGroupParameters().GetEncodedElementSize(true);}
|
||
|
||
/// generate static private key
|
||
/*! \pre size of privateKey == PrivateStaticKeyLength() */
|
||
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
|
||
{
|
||
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
|
||
x.Encode(privateKey, StaticPrivateKeyLength());
|
||
}
|
||
|
||
/// generate static public key
|
||
/*! \pre size of publicKey == PublicStaticKeyLength() */
|
||
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
|
||
{
|
||
CRYPTOPP_UNUSED(rng);
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
Integer x(privateKey, StaticPrivateKeyLength());
|
||
Element y = params.ExponentiateBase(x);
|
||
params.EncodeElement(true, y, publicKey);
|
||
}
|
||
|
||
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
|
||
unsigned int EphemeralPublicKeyLength() const{return StaticPublicKeyLength();}
|
||
|
||
/// return length of ephemeral private keys in this domain
|
||
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
|
||
{
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
Integer x(rng, Integer::One(), params.GetMaxExponent());
|
||
x.Encode(privateKey, StaticPrivateKeyLength());
|
||
Element y = params.ExponentiateBase(x);
|
||
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
|
||
}
|
||
|
||
/// return length of ephemeral public keys in this domain
|
||
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
|
||
{
|
||
CRYPTOPP_UNUSED(rng);
|
||
memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
|
||
}
|
||
|
||
/// derive agreed value from your private keys and couterparty's public keys, return false in case of failure
|
||
/*! \note The ephemeral public key will always be validated.
|
||
If you have previously validated the static public key, use validateStaticOtherPublicKey=false to save time.
|
||
\pre size of agreedValue == AgreedValueLength()
|
||
\pre length of staticPrivateKey == StaticPrivateKeyLength()
|
||
\pre length of ephemeralPrivateKey == EphemeralPrivateKeyLength()
|
||
\pre length of staticOtherPublicKey == StaticPublicKeyLength()
|
||
\pre length of ephemeralOtherPublicKey == EphemeralPublicKeyLength()
|
||
*/
|
||
bool Agree(byte *agreedValue,
|
||
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
|
||
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
|
||
bool validateStaticOtherPublicKey=true) const
|
||
{
|
||
byte *XX = NULLPTR, *YY = NULLPTR, *AA = NULLPTR, *BB = NULLPTR;
|
||
size_t xxs = 0, yys = 0, aas = 0, bbs = 0;
|
||
|
||
// Depending on the role, this will hold either A's or B's static
|
||
// (long term) public key. AA or BB will then point into tt.
|
||
SecByteBlock tt(StaticPublicKeyLength());
|
||
|
||
try
|
||
{
|
||
const DL_GroupParameters<Element> ¶ms = GetAbstractGroupParameters();
|
||
|
||
if(m_role == RoleServer)
|
||
{
|
||
Integer b(staticPrivateKey, StaticPrivateKeyLength());
|
||
Element B = params.ExponentiateBase(b);
|
||
params.EncodeElement(true, B, tt);
|
||
|
||
XX = const_cast<byte*>(ephemeralOtherPublicKey);
|
||
xxs = EphemeralPublicKeyLength();
|
||
YY = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
|
||
yys = EphemeralPublicKeyLength();
|
||
AA = const_cast<byte*>(staticOtherPublicKey);
|
||
aas = StaticPublicKeyLength();
|
||
BB = tt.BytePtr();
|
||
bbs = tt.SizeInBytes();
|
||
}
|
||
else if(m_role == RoleClient)
|
||
{
|
||
Integer a(staticPrivateKey, StaticPrivateKeyLength());
|
||
Element A = params.ExponentiateBase(a);
|
||
params.EncodeElement(true, A, tt);
|
||
|
||
XX = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
|
||
xxs = EphemeralPublicKeyLength();
|
||
YY = const_cast<byte*>(ephemeralOtherPublicKey);
|
||
yys = EphemeralPublicKeyLength();
|
||
AA = tt.BytePtr();
|
||
aas = tt.SizeInBytes();
|
||
BB = const_cast<byte*>(staticOtherPublicKey);
|
||
bbs = StaticPublicKeyLength();
|
||
}
|
||
else
|
||
{
|
||
CRYPTOPP_ASSERT(0);
|
||
return false;
|
||
}
|
||
|
||
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
|
||
// VerifyPoint to ensure the element is in G*. If the other's PublicKey is
|
||
// requested to be validated, we manually call ValidateElement at level 3.
|
||
Element VV1 = params.DecodeElement(staticOtherPublicKey, false);
|
||
if(!params.ValidateElement(validateStaticOtherPublicKey ? 3 : 1, VV1, NULLPTR))
|
||
return false;
|
||
|
||
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
|
||
// VerifyPoint to ensure the element is in G*. Crank it up.
|
||
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, false);
|
||
if(!params.ValidateElement(3, VV2, NULLPTR))
|
||
return false;
|
||
|
||
const Integer& q = params.GetSubgroupOrder();
|
||
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
|
||
|
||
Integer d, e;
|
||
SecByteBlock dd(len), ee(len);
|
||
|
||
Hash(NULLPTR, XX, xxs, YY, yys, AA, aas, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
|
||
d.Decode(dd.BytePtr(), dd.SizeInBytes());
|
||
|
||
Hash(NULLPTR, YY, yys, XX, xxs, AA, aas, BB, bbs, ee.BytePtr(), ee.SizeInBytes());
|
||
e.Decode(ee.BytePtr(), ee.SizeInBytes());
|
||
|
||
Element sigma;
|
||
if(m_role == RoleServer)
|
||
{
|
||
Integer y(ephemeralPrivateKey, StaticPrivateKeyLength());
|
||
Integer b(staticPrivateKey, StaticPrivateKeyLength());
|
||
Integer s_B = (y + e * b) % q;
|
||
|
||
Element A = params.DecodeElement(AA, false);
|
||
Element X = params.DecodeElement(XX, false);
|
||
|
||
Element t1 = params.ExponentiateElement(A, d);
|
||
Element t2 = m_groupParameters.MultiplyElements(X, t1);
|
||
|
||
sigma = params.ExponentiateElement(t2, s_B);
|
||
}
|
||
else
|
||
{
|
||
Integer x(ephemeralPrivateKey, StaticPrivateKeyLength());
|
||
Integer a(staticPrivateKey, StaticPrivateKeyLength());
|
||
Integer s_A = (x + d * a) % q;
|
||
|
||
Element B = params.DecodeElement(BB, false);
|
||
Element Y = params.DecodeElement(YY, false);
|
||
|
||
Element t1 = params.ExponentiateElement(B, e);
|
||
Element t2 = m_groupParameters.MultiplyElements(Y, t1);
|
||
|
||
sigma = params.ExponentiateElement(t2, s_A);
|
||
}
|
||
|
||
Hash(&sigma, XX, xxs, YY, yys, AA, aas, BB, bbs, agreedValue, AgreedValueLength());
|
||
}
|
||
catch (DL_BadElement &)
|
||
{
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
protected:
|
||
|
||
inline void Hash(const Element* sigma,
|
||
const byte* e1, size_t e1len, const byte* e2, size_t e2len,
|
||
const byte* s1, size_t s1len, const byte* s2, size_t s2len,
|
||
byte* digest, size_t dlen) const
|
||
{
|
||
HASH hash;
|
||
size_t idx = 0, req = dlen;
|
||
size_t blk = STDMIN(dlen, (size_t)HASH::DIGESTSIZE);
|
||
|
||
if(sigma)
|
||
{
|
||
Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
|
||
SecByteBlock sbb(x.MinEncodedSize());
|
||
x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
|
||
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
|
||
}
|
||
|
||
hash.Update(e1, e1len);
|
||
hash.Update(e2, e2len);
|
||
hash.Update(s1, s1len);
|
||
hash.Update(s2, s2len);
|
||
|
||
hash.TruncatedFinal(digest, blk);
|
||
req -= blk;
|
||
|
||
// All this to catch tail bytes for large curves and small hashes
|
||
while(req != 0)
|
||
{
|
||
hash.Update(&digest[idx], (size_t)HASH::DIGESTSIZE);
|
||
|
||
idx += (size_t)HASH::DIGESTSIZE;
|
||
blk = STDMIN(req, (size_t)HASH::DIGESTSIZE);
|
||
hash.TruncatedFinal(&digest[idx], blk);
|
||
|
||
req -= blk;
|
||
}
|
||
}
|
||
|
||
private:
|
||
|
||
// The paper uses Initiator and Recipient - make it classical.
|
||
enum KeyAgreementRole{ RoleServer = 1, RoleClient };
|
||
|
||
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
|
||
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}
|
||
|
||
GroupParameters m_groupParameters;
|
||
KeyAgreementRole m_role;
|
||
};
|
||
|
||
/// \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
|
||
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
|
||
/// <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
|
||
/// Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
|
||
/// \sa FHMQV, MQV_Domain, HMQV_Domain, AuthenticatedKeyAgreementDomain
|
||
/// \since Crypto++ 5.6.4
|
||
typedef FHMQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> FHMQV;
|
||
|
||
NAMESPACE_END
|
||
|
||
#endif
|