mirror of
https://github.com/shadps4-emu/ext-cryptopp.git
synced 2024-11-23 09:59:42 +00:00
862 lines
36 KiB
C++
862 lines
36 KiB
C++
// gfpcrypt.h - originally written and placed in the public domain by Wei Dai
|
|
// RFC6979 deterministic signatures added by Douglas Roark
|
|
// ECGDSA added by Jeffrey Walton
|
|
|
|
/// \file gfpcrypt.h
|
|
/// \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p)
|
|
|
|
#ifndef CRYPTOPP_GFPCRYPT_H
|
|
#define CRYPTOPP_GFPCRYPT_H
|
|
|
|
#include "config.h"
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(push)
|
|
# pragma warning(disable: 4189 4231 4275)
|
|
#endif
|
|
|
|
#include "cryptlib.h"
|
|
#include "pubkey.h"
|
|
#include "integer.h"
|
|
#include "modexppc.h"
|
|
#include "algparam.h"
|
|
#include "smartptr.h"
|
|
#include "sha.h"
|
|
#include "asn.h"
|
|
#include "hmac.h"
|
|
#include "misc.h"
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters<Integer>;
|
|
|
|
/// \brief Integer-based GroupParameters specialization
|
|
class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial<DL_GroupParameters<Integer> >
|
|
{
|
|
typedef DL_GroupParameters_IntegerBased ThisClass;
|
|
|
|
public:
|
|
virtual ~DL_GroupParameters_IntegerBased() {}
|
|
|
|
/// \brief Initialize a group parameters over integers
|
|
/// \param params the group parameters
|
|
void Initialize(const DL_GroupParameters_IntegerBased ¶ms)
|
|
{Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());}
|
|
|
|
/// \brief Create a group parameters over integers
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param pbits the size of p, in bits
|
|
/// \details This function overload of Initialize() creates a new private key because it
|
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
|
/// then use one of the other Initialize() overloads.
|
|
void Initialize(RandomNumberGenerator &rng, unsigned int pbits)
|
|
{GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));}
|
|
|
|
/// \brief Initialize a group parameters over integers
|
|
/// \param p the modulus
|
|
/// \param g the generator
|
|
void Initialize(const Integer &p, const Integer &g)
|
|
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);}
|
|
|
|
/// \brief Initialize a group parameters over integers
|
|
/// \param p the modulus
|
|
/// \param q the subgroup order
|
|
/// \param g the generator
|
|
void Initialize(const Integer &p, const Integer &q, const Integer &g)
|
|
{SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);}
|
|
|
|
// ASN1Object interface
|
|
void BERDecode(BufferedTransformation &bt);
|
|
void DEREncode(BufferedTransformation &bt) const;
|
|
|
|
// GeneratibleCryptoMaterial interface
|
|
/*! parameters: (ModulusSize, SubgroupOrderSize (optional)) */
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
|
|
void AssignFrom(const NameValuePairs &source);
|
|
|
|
// DL_GroupParameters
|
|
const Integer & GetSubgroupOrder() const {return m_q;}
|
|
Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();}
|
|
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
|
|
bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation<Integer> *precomp) const;
|
|
bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;}
|
|
|
|
// Cygwin i386 crash at -O3; see http://github.com/weidai11/cryptopp/issues/40.
|
|
void EncodeElement(bool reversible, const Element &element, byte *encoded) const;
|
|
unsigned int GetEncodedElementSize(bool reversible) const;
|
|
|
|
Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const;
|
|
Integer ConvertElementToInteger(const Element &element) const
|
|
{return element;}
|
|
Integer GetMaxExponent() const;
|
|
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";}
|
|
|
|
OID GetAlgorithmID() const;
|
|
|
|
virtual const Integer & GetModulus() const =0;
|
|
virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0;
|
|
|
|
void SetSubgroupOrder(const Integer &q)
|
|
{m_q = q; ParametersChanged();}
|
|
|
|
protected:
|
|
Integer ComputeGroupOrder(const Integer &modulus) const
|
|
{return modulus-(GetFieldType() == 1 ? 1 : -1);}
|
|
|
|
// GF(p) = 1, GF(p^2) = 2
|
|
virtual int GetFieldType() const =0;
|
|
virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const;
|
|
|
|
private:
|
|
Integer m_q;
|
|
};
|
|
|
|
/// \brief Integer-based GroupParameters default implementation
|
|
/// \tparam GROUP_PRECOMP group parameters precomputation specialization
|
|
/// \tparam BASE_PRECOMP base class precomputation specialization
|
|
template <class GROUP_PRECOMP, class BASE_PRECOMP = DL_FixedBasePrecomputationImpl<typename GROUP_PRECOMP::Element> >
|
|
class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl<GROUP_PRECOMP, BASE_PRECOMP, DL_GroupParameters_IntegerBased>
|
|
{
|
|
typedef DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> ThisClass;
|
|
|
|
public:
|
|
typedef typename GROUP_PRECOMP::Element Element;
|
|
|
|
virtual ~DL_GroupParameters_IntegerBasedImpl() {}
|
|
|
|
// GeneratibleCryptoMaterial interface
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();}
|
|
|
|
void AssignFrom(const NameValuePairs &source)
|
|
{AssignFromHelper<DL_GroupParameters_IntegerBased>(this, source);}
|
|
|
|
// DL_GroupParameters
|
|
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
|
|
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
|
|
|
|
// IntegerGroupParameters
|
|
const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();}
|
|
const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());}
|
|
|
|
void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together
|
|
{this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();}
|
|
|
|
// non-inherited
|
|
bool operator==(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
|
|
{return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();}
|
|
bool operator!=(const DL_GroupParameters_IntegerBasedImpl<GROUP_PRECOMP, BASE_PRECOMP> &rhs) const
|
|
{return !operator==(rhs);}
|
|
};
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>;
|
|
|
|
/// \brief GF(p) group parameters
|
|
class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl<ModExpPrecomputation>
|
|
{
|
|
public:
|
|
virtual ~DL_GroupParameters_GFP() {}
|
|
|
|
// DL_GroupParameters
|
|
bool IsIdentity(const Integer &element) const {return element == Integer::One();}
|
|
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
|
|
|
|
// NameValuePairs interface
|
|
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
|
|
{
|
|
return GetValueHelper<DL_GroupParameters_IntegerBased>(this, name, valueType, pValue).Assignable();
|
|
}
|
|
|
|
// used by MQV
|
|
Element MultiplyElements(const Element &a, const Element &b) const;
|
|
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
|
|
|
|
protected:
|
|
int GetFieldType() const {return 1;}
|
|
};
|
|
|
|
/// \brief GF(p) group parameters that default to safe primes
|
|
class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP
|
|
{
|
|
public:
|
|
typedef NoCofactorMultiplication DefaultCofactorOption;
|
|
|
|
virtual ~DL_GroupParameters_GFP_DefaultSafePrime() {}
|
|
|
|
protected:
|
|
unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;}
|
|
};
|
|
|
|
/// \brief GDSA algorithm
|
|
/// \tparam T FieldElement type or class
|
|
template <class T>
|
|
class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm<T>
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";}
|
|
|
|
virtual ~DL_Algorithm_GDSA() {}
|
|
|
|
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
r %= q;
|
|
Integer kInv = k.InverseMod(q);
|
|
s = (kInv * (x*r + e)) % q;
|
|
CRYPTOPP_ASSERT(!!r && !!s);
|
|
}
|
|
|
|
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
if (r>=q || r<1 || s>=q || s<1)
|
|
return false;
|
|
|
|
Integer w = s.InverseMod(q);
|
|
Integer u1 = (e * w) % q;
|
|
Integer u2 = (r * w) % q;
|
|
// verify r == (g^u1 * y^u2 mod p) mod q
|
|
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
|
|
}
|
|
};
|
|
|
|
/// \brief DSA signature algorithm based on RFC 6979
|
|
/// \tparam T FieldElement type or class
|
|
/// \tparam H HashTransformation derived class
|
|
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
|
|
/// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
|
|
/// \since Crypto++ 6.0
|
|
template <class T, class H>
|
|
class DL_Algorithm_DSA_RFC6979 : public DL_Algorithm_GDSA<T>, public DeterministicSignatureAlgorithm
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";}
|
|
|
|
virtual ~DL_Algorithm_DSA_RFC6979() {}
|
|
|
|
bool IsProbabilistic() const
|
|
{return false;}
|
|
bool IsDeterministic() const
|
|
{return true;}
|
|
|
|
// Deterministic K
|
|
Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const
|
|
{
|
|
static const byte zero = 0, one = 1;
|
|
const size_t qlen = q.BitCount();
|
|
const size_t rlen = BitsToBytes(qlen);
|
|
|
|
// Step (a) - formatted E(m)
|
|
SecByteBlock BH(e.MinEncodedSize());
|
|
e.Encode(BH, BH.size());
|
|
BH = bits2octets(BH, q);
|
|
|
|
// Step (a) - private key to byte array
|
|
SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize()));
|
|
x.Encode(BX, BX.size());
|
|
|
|
// Step (b)
|
|
SecByteBlock V(H::DIGESTSIZE);
|
|
std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one);
|
|
|
|
// Step (c)
|
|
SecByteBlock K(H::DIGESTSIZE);
|
|
std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero);
|
|
|
|
// Step (d)
|
|
m_hmac.SetKey(K, K.size());
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.Update(&zero, 1);
|
|
m_hmac.Update(BX, BX.size());
|
|
m_hmac.Update(BH, BH.size());
|
|
m_hmac.TruncatedFinal(K, K.size());
|
|
|
|
// Step (e)
|
|
m_hmac.SetKey(K, K.size());
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.TruncatedFinal(V, V.size());
|
|
|
|
// Step (f)
|
|
m_hmac.SetKey(K, K.size());
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.Update(&one, 1);
|
|
m_hmac.Update(BX, BX.size());
|
|
m_hmac.Update(BH, BH.size());
|
|
m_hmac.TruncatedFinal(K, K.size());
|
|
|
|
// Step (g)
|
|
m_hmac.SetKey(K, K.size());
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.TruncatedFinal(V, V.size());
|
|
|
|
Integer k;
|
|
SecByteBlock temp(rlen);
|
|
for (;;)
|
|
{
|
|
// We want qlen bits, but we support only hash functions with an output length
|
|
// multiple of 8; hence, we will gather rlen bits, i.e., rolen octets.
|
|
size_t toff = 0;
|
|
while (toff < rlen)
|
|
{
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.TruncatedFinal(V, V.size());
|
|
|
|
size_t cc = STDMIN(V.size(), temp.size() - toff);
|
|
memcpy_s(temp+toff, temp.size() - toff, V, cc);
|
|
toff += cc;
|
|
}
|
|
|
|
k = bits2int(temp, qlen);
|
|
if (k > 0 && k < q)
|
|
break;
|
|
|
|
// k is not in the proper range; update K and V, and loop.
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.Update(&zero, 1);
|
|
m_hmac.TruncatedFinal(K, K.size());
|
|
|
|
m_hmac.SetKey(K, K.size());
|
|
m_hmac.Update(V, V.size());
|
|
m_hmac.TruncatedFinal(V, V.size());
|
|
}
|
|
|
|
return k;
|
|
}
|
|
|
|
protected:
|
|
|
|
Integer bits2int(const SecByteBlock& bits, size_t qlen) const
|
|
{
|
|
Integer ret(bits, bits.size());
|
|
size_t blen = bits.size()*8;
|
|
|
|
if (blen > qlen)
|
|
ret >>= blen - qlen;
|
|
|
|
return ret;
|
|
}
|
|
|
|
// RFC 6979 support function. Takes an integer and converts it into bytes that
|
|
// are the same length as an elliptic curve's order.
|
|
SecByteBlock int2octets(const Integer& val, size_t rlen) const
|
|
{
|
|
SecByteBlock block(val.MinEncodedSize());
|
|
val.Encode(block, val.MinEncodedSize());
|
|
|
|
if (block.size() == rlen)
|
|
return block;
|
|
|
|
// The least significant bytes are the ones we need to preserve.
|
|
SecByteBlock t(rlen);
|
|
if (block.size() > rlen)
|
|
{
|
|
size_t offset = block.size() - rlen;
|
|
std::memcpy(t, block + offset, rlen);
|
|
}
|
|
else // block.size() < rlen
|
|
{
|
|
size_t offset = rlen - block.size();
|
|
memset(t, '\x00', offset);
|
|
std::memcpy(t + offset, block, rlen - offset);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
// Turn a stream of bits into a set of bytes with the same length as an elliptic
|
|
// curve's order.
|
|
SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const
|
|
{
|
|
Integer b2 = bits2int(in, q.BitCount());
|
|
Integer b1 = b2 - q;
|
|
return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount());
|
|
}
|
|
|
|
private:
|
|
mutable H m_hash;
|
|
mutable HMAC<H> m_hmac;
|
|
};
|
|
|
|
/// \brief German Digital Signature Algorithm
|
|
/// \tparam T FieldElement type or class
|
|
/// \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the
|
|
/// signature algorithm is only defined over elliptic curves. However, The library design is such that the
|
|
/// generic algorithm reside in <tt>gfpcrypt.h</tt>.
|
|
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">
|
|
/// The Digital Signature Scheme ECGDSA (October 24, 2006)</A>
|
|
template <class T>
|
|
class DL_Algorithm_GDSA_ISO15946 : public DL_ElgamalLikeSignatureAlgorithm<T>
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";}
|
|
|
|
virtual ~DL_Algorithm_GDSA_ISO15946() {}
|
|
|
|
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
// r = x(k * G) mod q
|
|
r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q;
|
|
// s = (k * r - h(m)) * d_A mod q
|
|
s = (k * r - e) * x % q;
|
|
CRYPTOPP_ASSERT(!!r && !!s);
|
|
}
|
|
|
|
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
if (r>=q || r<1 || s>=q || s<1)
|
|
return false;
|
|
|
|
const Integer& rInv = r.InverseMod(q);
|
|
const Integer u1 = (rInv * e) % q;
|
|
const Integer u2 = (rInv * s) % q;
|
|
// verify x(G^u1 + P_A^u2) mod q
|
|
return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q;
|
|
}
|
|
};
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<Integer>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA1>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA224>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA256>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA384>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979<Integer, SHA512>;
|
|
|
|
/// \brief NR algorithm
|
|
/// \tparam T FieldElement type or class
|
|
template <class T>
|
|
class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm<T>
|
|
{
|
|
public:
|
|
CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";}
|
|
|
|
virtual ~DL_Algorithm_NR() {}
|
|
|
|
void Sign(const DL_GroupParameters<T> ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
r = (r + e) % q;
|
|
s = (k - x*r) % q;
|
|
CRYPTOPP_ASSERT(!!r);
|
|
}
|
|
|
|
bool Verify(const DL_GroupParameters<T> ¶ms, const DL_PublicKey<T> &publicKey, const Integer &e, const Integer &r, const Integer &s) const
|
|
{
|
|
const Integer &q = params.GetSubgroupOrder();
|
|
if (r>=q || r<1 || s>=q)
|
|
return false;
|
|
|
|
// check r == (m_g^s * m_y^r + m) mod m_q
|
|
return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q;
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) public key in GF(p) groups
|
|
/// \tparam GP GroupParameters derived class
|
|
/// \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10.
|
|
template <class GP>
|
|
class DL_PublicKey_GFP : public DL_PublicKeyImpl<GP>
|
|
{
|
|
public:
|
|
virtual ~DL_PublicKey_GFP() {}
|
|
|
|
/// \brief Initialize a public key over GF(p)
|
|
/// \param params the group parameters
|
|
/// \param y the public element
|
|
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y)
|
|
{this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);}
|
|
|
|
/// \brief Initialize a public key over GF(p)
|
|
/// \param p the modulus
|
|
/// \param g the generator
|
|
/// \param y the public element
|
|
void Initialize(const Integer &p, const Integer &g, const Integer &y)
|
|
{this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);}
|
|
|
|
/// \brief Initialize a public key over GF(p)
|
|
/// \param p the modulus
|
|
/// \param q the subgroup order
|
|
/// \param g the generator
|
|
/// \param y the public element
|
|
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y)
|
|
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);}
|
|
|
|
// X509PublicKey
|
|
void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t)
|
|
{this->SetPublicElement(Integer(bt));}
|
|
void DEREncodePublicKey(BufferedTransformation &bt) const
|
|
{this->GetPublicElement().DEREncode(bt);}
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) private key in GF(p) groups
|
|
/// \tparam GP GroupParameters derived class
|
|
template <class GP>
|
|
class DL_PrivateKey_GFP : public DL_PrivateKeyImpl<GP>
|
|
{
|
|
public:
|
|
virtual ~DL_PrivateKey_GFP();
|
|
|
|
/// \brief Create a private key
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param modulusBits the size of the modulus, in bits
|
|
/// \details This function overload of Initialize() creates a new private key because it
|
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
|
/// then use one of the other Initialize() overloads.
|
|
void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits)
|
|
{this->GenerateRandomWithKeySize(rng, modulusBits);}
|
|
|
|
/// \brief Create a private key
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param p the modulus
|
|
/// \param g the generator
|
|
/// \details This function overload of Initialize() creates a new private key because it
|
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
|
/// then use one of the other Initialize() overloads.
|
|
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g)
|
|
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));}
|
|
|
|
/// \brief Create a private key
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
/// \param p the modulus
|
|
/// \param q the subgroup order
|
|
/// \param g the generator
|
|
/// \details This function overload of Initialize() creates a new private key because it
|
|
/// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
|
|
/// then use one of the other Initialize() overloads.
|
|
void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g)
|
|
{this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));}
|
|
|
|
/// \brief Initialize a private key over GF(p)
|
|
/// \param params the group parameters
|
|
/// \param x the private exponent
|
|
void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x)
|
|
{this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);}
|
|
|
|
/// \brief Initialize a private key over GF(p)
|
|
/// \param p the modulus
|
|
/// \param g the generator
|
|
/// \param x the private exponent
|
|
void Initialize(const Integer &p, const Integer &g, const Integer &x)
|
|
{this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);}
|
|
|
|
/// \brief Initialize a private key over GF(p)
|
|
/// \param p the modulus
|
|
/// \param q the subgroup order
|
|
/// \param g the generator
|
|
/// \param x the private exponent
|
|
void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x)
|
|
{this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);}
|
|
};
|
|
|
|
// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
|
|
template <class GP>
|
|
DL_PrivateKey_GFP<GP>::~DL_PrivateKey_GFP() {}
|
|
|
|
/// \brief Discrete Log (DL) signing/verification keys in GF(p) groups
|
|
struct DL_SignatureKeys_GFP
|
|
{
|
|
typedef DL_GroupParameters_GFP GroupParameters;
|
|
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
|
|
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
|
|
};
|
|
|
|
/// \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups
|
|
struct DL_CryptoKeys_GFP
|
|
{
|
|
typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters;
|
|
typedef DL_PublicKey_GFP<GroupParameters> PublicKey;
|
|
typedef DL_PrivateKey_GFP<GroupParameters> PrivateKey;
|
|
};
|
|
|
|
/// \brief DSA signature scheme
|
|
/// \tparam H HashTransformation derived class
|
|
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
|
|
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
|
|
template <class H>
|
|
struct GDSA : public DL_SS<
|
|
DL_SignatureKeys_GFP,
|
|
DL_Algorithm_GDSA<Integer>,
|
|
DL_SignatureMessageEncodingMethod_DSA,
|
|
H>
|
|
{
|
|
};
|
|
|
|
/// \brief NR signature scheme
|
|
/// \tparam H HashTransformation derived class
|
|
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#NR">NR</a>
|
|
template <class H>
|
|
struct NR : public DL_SS<
|
|
DL_SignatureKeys_GFP,
|
|
DL_Algorithm_NR<Integer>,
|
|
DL_SignatureMessageEncodingMethod_NR,
|
|
H>
|
|
{
|
|
};
|
|
|
|
/// \brief DSA group parameters
|
|
/// \details These are GF(p) group parameters that are allowed by the DSA standard
|
|
/// \sa DL_Keys_DSA
|
|
class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP
|
|
{
|
|
public:
|
|
virtual ~DL_GroupParameters_DSA() {}
|
|
|
|
/*! also checks that the lengths of p and q are allowed by the DSA standard */
|
|
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
|
|
/*! parameters: (ModulusSize), or (Modulus, SubgroupOrder, SubgroupGenerator) */
|
|
/*! ModulusSize must be between DSA::MIN_PRIME_LENGTH and DSA::MAX_PRIME_LENGTH, and divisible by DSA::PRIME_LENGTH_MULTIPLE */
|
|
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
|
|
|
|
static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits)
|
|
{return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;}
|
|
|
|
enum {MIN_PRIME_LENGTH = 1024, MAX_PRIME_LENGTH = 3072, PRIME_LENGTH_MULTIPLE = 1024};
|
|
};
|
|
|
|
template <class H>
|
|
class DSA2;
|
|
|
|
/// \brief DSA keys
|
|
/// \sa DL_GroupParameters_DSA
|
|
struct DL_Keys_DSA
|
|
{
|
|
typedef DL_PublicKey_GFP<DL_GroupParameters_DSA> PublicKey;
|
|
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> > PrivateKey;
|
|
};
|
|
|
|
/// \brief DSA signature scheme
|
|
/// \tparam H HashTransformation derived class
|
|
/// \details The class is named DSA2 instead of DSA for backwards compatibility because
|
|
/// DSA was a non-template class.
|
|
/// \details DSA default method GenerateRandom uses a 2048-bit modulus and a 224-bit subgoup by default.
|
|
/// The modulus can be changed using the following code:
|
|
/// <pre>
|
|
/// DSA::PrivateKey privateKey;
|
|
/// privateKey.GenerateRandomWithKeySize(prng, 2048);
|
|
/// </pre>
|
|
/// \details The subgroup order can be changed using the following code:
|
|
/// <pre>
|
|
/// AlgorithmParameters params = MakeParameters
|
|
/// (Name::ModulusSize(), 2048)
|
|
/// (Name::SubgroupOrderSize(), 256);
|
|
///
|
|
/// DSA::PrivateKey privateKey;
|
|
/// privateKey.GenerateRandom(prng, params);
|
|
/// </pre>
|
|
/// \sa <a href="http://en.wikipedia.org/wiki/Digital_Signature_Algorithm">DSA</a>, as specified in FIPS 186-3,
|
|
/// <a href="https://www.cryptopp.com/wiki/Digital_Signature_Algorithm">Digital Signature Algorithm</a> on the wiki, and
|
|
/// <a href="https://www.cryptopp.com/wiki/NameValuePairs">NameValuePairs</a> on the wiki.
|
|
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2, Crypto++ 6.1 for 2048-bit modulus.
|
|
template <class H>
|
|
class DSA2 : public DL_SS<
|
|
DL_Keys_DSA,
|
|
DL_Algorithm_GDSA<Integer>,
|
|
DL_SignatureMessageEncodingMethod_DSA,
|
|
H,
|
|
DSA2<H> >
|
|
{
|
|
public:
|
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();}
|
|
};
|
|
|
|
/// \brief DSA deterministic signature scheme
|
|
/// \tparam H HashTransformation derived class
|
|
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#DSA-1363">DSA-1363</a>
|
|
/// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2
|
|
template <class H>
|
|
struct DSA_RFC6979 : public DL_SS<
|
|
DL_SignatureKeys_GFP,
|
|
DL_Algorithm_DSA_RFC6979<Integer, H>,
|
|
DL_SignatureMessageEncodingMethod_DSA,
|
|
H,
|
|
DSA_RFC6979<H> >
|
|
{
|
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();}
|
|
};
|
|
|
|
/// DSA with SHA-1, typedef'd for backwards compatibility
|
|
typedef DSA2<SHA1> DSA;
|
|
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP<DL_GroupParameters_DSA>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP<DL_GroupParameters_DSA>;
|
|
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_GFP<DL_GroupParameters_DSA>, DSA2<SHA1> >;
|
|
|
|
/// \brief P1363 based XOR Encryption Method
|
|
/// \tparam MAC MessageAuthenticationCode derived class used for MAC computation
|
|
/// \tparam DHAES_MODE flag indicating DHAES mode
|
|
/// \tparam LABEL_OCTETS flag indicating the label is octet count
|
|
/// \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an
|
|
/// early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated
|
|
/// Ecryption Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
|
/// \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with
|
|
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
|
/// \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with
|
|
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=ture</tt> and <tt>LABEL_OCTETS=false</tt>.
|
|
/// \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters.
|
|
/// \since Crypto++ 4.0
|
|
template <class MAC, bool DHAES_MODE, bool LABEL_OCTETS=false>
|
|
class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm
|
|
{
|
|
public:
|
|
virtual ~DL_EncryptionAlgorithm_Xor() {}
|
|
|
|
bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;}
|
|
size_t GetSymmetricKeyLength(size_t plaintextLength) const
|
|
{return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
|
|
size_t GetSymmetricCiphertextLength(size_t plaintextLength) const
|
|
{return plaintextLength + static_cast<size_t>(MAC::DIGESTSIZE);}
|
|
size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const
|
|
{return SaturatingSubtract(ciphertextLength, static_cast<size_t>(MAC::DIGESTSIZE));}
|
|
void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const
|
|
{
|
|
CRYPTOPP_UNUSED(rng);
|
|
const byte *cipherKey = NULLPTR, *macKey = NULLPTR;
|
|
if (DHAES_MODE)
|
|
{
|
|
macKey = key;
|
|
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
|
|
}
|
|
else
|
|
{
|
|
cipherKey = key;
|
|
macKey = key + plaintextLength;
|
|
}
|
|
|
|
ConstByteArrayParameter encodingParameters;
|
|
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
|
|
|
|
if (plaintextLength) // Coverity finding
|
|
xorbuf(ciphertext, plaintext, cipherKey, plaintextLength);
|
|
|
|
MAC mac(macKey);
|
|
mac.Update(ciphertext, plaintextLength);
|
|
mac.Update(encodingParameters.begin(), encodingParameters.size());
|
|
if (DHAES_MODE)
|
|
{
|
|
byte L[8];
|
|
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
|
|
mac.Update(L, 8);
|
|
}
|
|
mac.Final(ciphertext + plaintextLength);
|
|
}
|
|
DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const
|
|
{
|
|
size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength);
|
|
const byte *cipherKey, *macKey;
|
|
if (DHAES_MODE)
|
|
{
|
|
macKey = key;
|
|
cipherKey = key + MAC::DEFAULT_KEYLENGTH;
|
|
}
|
|
else
|
|
{
|
|
cipherKey = key;
|
|
macKey = key + plaintextLength;
|
|
}
|
|
|
|
ConstByteArrayParameter encodingParameters;
|
|
parameters.GetValue(Name::EncodingParameters(), encodingParameters);
|
|
|
|
MAC mac(macKey);
|
|
mac.Update(ciphertext, plaintextLength);
|
|
mac.Update(encodingParameters.begin(), encodingParameters.size());
|
|
if (DHAES_MODE)
|
|
{
|
|
byte L[8];
|
|
PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size())));
|
|
mac.Update(L, 8);
|
|
}
|
|
if (!mac.Verify(ciphertext + plaintextLength))
|
|
return DecodingResult();
|
|
|
|
if (plaintextLength) // Coverity finding
|
|
xorbuf(plaintext, ciphertext, cipherKey, plaintextLength);
|
|
|
|
return DecodingResult(plaintextLength);
|
|
}
|
|
};
|
|
|
|
/// _
|
|
template <class T, bool DHAES_MODE, class KDF>
|
|
class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm<T>
|
|
{
|
|
public:
|
|
virtual ~DL_KeyDerivationAlgorithm_P1363() {}
|
|
|
|
bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;}
|
|
void Derive(const DL_GroupParameters<T> ¶ms, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs ¶meters) const
|
|
{
|
|
SecByteBlock agreedSecret;
|
|
if (DHAES_MODE)
|
|
{
|
|
agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false));
|
|
params.EncodeElement(true, ephemeralPublicKey, agreedSecret);
|
|
params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true));
|
|
}
|
|
else
|
|
{
|
|
agreedSecret.New(params.GetEncodedElementSize(false));
|
|
params.EncodeElement(false, agreedElement, agreedSecret);
|
|
}
|
|
|
|
ConstByteArrayParameter derivationParameters;
|
|
parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters);
|
|
KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size());
|
|
}
|
|
};
|
|
|
|
/// \brief Discrete Log Integrated Encryption Scheme
|
|
/// \tparam COFACTOR_OPTION cofactor multiplication option
|
|
/// \tparam HASH HashTransformation derived class used for key drivation and MAC computation
|
|
/// \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label
|
|
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
|
|
/// \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM)
|
|
/// with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
|
|
/// <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
|
|
/// You should prefer an Integrated Encryption Scheme over homegrown schemes.
|
|
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
|
|
/// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption
|
|
/// Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
|
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with
|
|
/// <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
|
|
/// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES
|
|
/// template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
|
|
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
|
|
/// <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
|
|
/// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the
|
|
/// security provided by the MAC. The hash is also used in the key derivation function as a PRF.
|
|
/// \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor.
|
|
/// <pre>
|
|
/// AutoSeededRandomPool prng;
|
|
/// DL_PrivateKey_GFP<DL_GroupParameters_GFP> key;
|
|
/// key.Initialize(prng, 2048);
|
|
///
|
|
/// DLIES<SHA1,NoCofactorMultiplication,true,true>::Decryptor decryptor(key);
|
|
/// DLIES<SHA1,NoCofactorMultiplication,true,true>::Encryptor encryptor(decryptor);
|
|
/// </pre>
|
|
/// \sa ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#DLIES">Discrete Log Integrated Encryption Scheme (DLIES)</a>,
|
|
/// Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
|
|
/// Curve Integrated Encryption Schemes</A>
|
|
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
|
|
template <class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS=false>
|
|
struct DLIES
|
|
: public DL_ES<
|
|
DL_CryptoKeys_GFP,
|
|
DL_KeyAgreementAlgorithm_DH<Integer, COFACTOR_OPTION>,
|
|
DL_KeyDerivationAlgorithm_P1363<Integer, DHAES_MODE, P1363_KDF2<HASH> >,
|
|
DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
|
|
DLIES<> >
|
|
{
|
|
static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized
|
|
};
|
|
|
|
NAMESPACE_END
|
|
|
|
#if CRYPTOPP_MSC_VERSION
|
|
# pragma warning(pop)
|
|
#endif
|
|
|
|
#endif
|