ext-cryptopp/gcm.cpp
2019-07-21 22:21:10 -04:00

857 lines
32 KiB
C++

// gcm.cpp - originally written and placed in the public domain by Wei Dai.
// ARM and Aarch64 added by Jeffrey Walton. The ARM carryless
// multiply routines are less efficient because they shadow x86.
// The precomputed key table integration makes it tricky to use the
// more efficient ARMv8 implementation of the multiply and reduce.
// use "cl /EP /P /DCRYPTOPP_GENERATE_X64_MASM gcm.cpp" to generate MASM code
#include "pch.h"
#include "config.h"
#ifndef CRYPTOPP_IMPORTS
#ifndef CRYPTOPP_GENERATE_X64_MASM
// Visual Studio .Net 2003 compiler crash
#if defined(_MSC_VER) && (_MSC_VER < 1400)
# pragma optimize("", off)
#endif
#include "gcm.h"
#include "cpu.h"
#if defined(CRYPTOPP_DISABLE_GCM_ASM)
# undef CRYPTOPP_X86_ASM_AVAILABLE
# undef CRYPTOPP_X32_ASM_AVAILABLE
# undef CRYPTOPP_X64_ASM_AVAILABLE
# undef CRYPTOPP_SSE2_ASM_AVAILABLE
#endif
NAMESPACE_BEGIN(CryptoPP)
#if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64)
// Different assemblers accept different mnemonics: 'movd eax, xmm0' vs
// 'movd rax, xmm0' vs 'mov eax, xmm0' vs 'mov rax, xmm0'
#if defined(CRYPTOPP_DISABLE_MIXED_ASM)
// 'movd eax, xmm0' only. REG_WORD() macro not used. Clang path.
# define USE_MOVD_REG32 1
#elif defined(__GNUC__) || defined(_MSC_VER)
// 'movd eax, xmm0' or 'movd rax, xmm0'. REG_WORD() macro supplies REG32 or REG64.
# define USE_MOVD_REG32_OR_REG64 1
#else
// 'mov eax, xmm0' or 'mov rax, xmm0'. REG_WORD() macro supplies REG32 or REG64.
# define USE_MOV_REG32_OR_REG64 1
#endif
#endif // CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64
// Clang intrinsic casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
word16 GCM_Base::s_reductionTable[256];
volatile bool GCM_Base::s_reductionTableInitialized = false;
void GCM_Base::GCTR::IncrementCounterBy256()
{
IncrementCounterByOne(m_counterArray+BlockSize()-4, 3);
}
static inline void Xor16(byte *a, const byte *b, const byte *c)
{
CRYPTOPP_ASSERT(IsAlignedOn(a,GetAlignmentOf<word64>()));
CRYPTOPP_ASSERT(IsAlignedOn(b,GetAlignmentOf<word64>()));
CRYPTOPP_ASSERT(IsAlignedOn(c,GetAlignmentOf<word64>()));
((word64 *)(void *)a)[0] = ((word64 *)(void *)b)[0] ^ ((word64 *)(void *)c)[0];
((word64 *)(void *)a)[1] = ((word64 *)(void *)b)[1] ^ ((word64 *)(void *)c)[1];
}
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
// SunCC 5.10-5.11 compiler crash. Move GCM_Xor16_SSE2 out-of-line, and place in
// a source file with a SSE architecture switch. Also see GH #226 and GH #284.
extern void GCM_Xor16_SSE2(byte *a, const byte *b, const byte *c);
#endif // SSE2
#if CRYPTOPP_ARM_NEON_AVAILABLE
extern void GCM_Xor16_NEON(byte *a, const byte *b, const byte *c);
#endif
#if CRYPTOPP_POWER8_AVAILABLE
extern void GCM_Xor16_POWER8(byte *a, const byte *b, const byte *c);
#endif
#if CRYPTOPP_CLMUL_AVAILABLE
extern void GCM_SetKeyWithoutResync_CLMUL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_CLMUL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_CLMUL(byte *hashBuffer);
#endif // CRYPTOPP_CLMUL_AVAILABLE
#if CRYPTOPP_ARM_PMULL_AVAILABLE
extern void GCM_SetKeyWithoutResync_PMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_PMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_PMULL(byte *hashBuffer);
#endif // CRYPTOPP_ARM_PMULL_AVAILABLE
#if CRYPTOPP_POWER8_VMULL_AVAILABLE
extern void GCM_SetKeyWithoutResync_VMULL(const byte *hashKey, byte *mulTable, unsigned int tableSize);
extern size_t GCM_AuthenticateBlocks_VMULL(const byte *data, size_t len, const byte *mtable, byte *hbuffer);
const unsigned int s_cltableSizeInBlocks = 8;
extern void GCM_ReverseHashBufferIfNeeded_VMULL(byte *hashBuffer);
#endif // CRYPTOPP_POWER8_VMULL_AVAILABLE
void GCM_Base::SetKeyWithoutResync(const byte *userKey, size_t keylength, const NameValuePairs &params)
{
BlockCipher &blockCipher = AccessBlockCipher();
blockCipher.SetKey(userKey, keylength, params);
// GCM is only defined for 16-byte block ciphers at the moment.
// However, variable blocksize support means we have to defer
// blocksize checks to runtime after the key is set. Also see
// https://github.com/weidai11/cryptopp/issues/408.
const unsigned int blockSize = blockCipher.BlockSize();
CRYPTOPP_ASSERT(blockSize == REQUIRED_BLOCKSIZE);
if (blockCipher.BlockSize() != REQUIRED_BLOCKSIZE)
throw InvalidArgument(AlgorithmName() + ": block size of underlying block cipher is not 16");
int tableSize, i, j, k;
#if CRYPTOPP_CLMUL_AVAILABLE
if (HasCLMUL())
{
// Avoid "parameter not used" error and suppress Coverity finding
(void)params.GetIntValue(Name::TableSize(), tableSize);
tableSize = s_cltableSizeInBlocks * blockSize;
CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
}
else
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
if (HasPMULL())
{
// Avoid "parameter not used" error and suppress Coverity finding
(void)params.GetIntValue(Name::TableSize(), tableSize);
tableSize = s_cltableSizeInBlocks * blockSize;
CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
}
else
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
if (HasPMULL())
{
// Avoid "parameter not used" error and suppress Coverity finding
(void)params.GetIntValue(Name::TableSize(), tableSize);
tableSize = s_cltableSizeInBlocks * blockSize;
CRYPTOPP_ASSERT(tableSize > static_cast<int>(blockSize));
}
else
#endif
{
if (params.GetIntValue(Name::TableSize(), tableSize))
tableSize = (tableSize >= 64*1024) ? 64*1024 : 2*1024;
else
tableSize = (GetTablesOption() == GCM_64K_Tables) ? 64*1024 : 2*1024;
//#if defined(_MSC_VER) && (_MSC_VER < 1400)
// VC 2003 workaround: compiler generates bad code for 64K tables
//tableSize = 2*1024;
//#endif
}
m_buffer.resize(3*blockSize + tableSize);
byte *mulTable = MulTable();
byte *hashKey = HashKey();
memset(hashKey, 0, REQUIRED_BLOCKSIZE);
blockCipher.ProcessBlock(hashKey);
#if CRYPTOPP_CLMUL_AVAILABLE
if (HasCLMUL())
{
GCM_SetKeyWithoutResync_CLMUL(hashKey, mulTable, tableSize);
return;
}
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
if (HasPMULL())
{
GCM_SetKeyWithoutResync_PMULL(hashKey, mulTable, tableSize);
return;
}
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
if (HasPMULL())
{
GCM_SetKeyWithoutResync_VMULL(hashKey, mulTable, tableSize);
return;
}
#endif
word64 V0, V1;
typedef BlockGetAndPut<word64, BigEndian> Block;
Block::Get(hashKey)(V0)(V1);
if (tableSize == 64*1024)
{
for (i=0; i<128; i++)
{
k = i%8;
Block::Put(NULLPTR, mulTable+(i/8)*256*16+(size_t(1)<<(11-k)))(V0)(V1);
int x = (int)V1 & 1;
V1 = (V1>>1) | (V0<<63);
V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
}
for (i=0; i<16; i++)
{
memset(mulTable+i*256*16, 0, 16);
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
if (HasSSE2())
for (j=2; j<=0x80; j*=2)
for (k=1; k<j; k++)
GCM_Xor16_SSE2(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
else
#elif CRYPTOPP_ARM_NEON_AVAILABLE
if (HasNEON())
for (j=2; j<=0x80; j*=2)
for (k=1; k<j; k++)
GCM_Xor16_NEON(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
else
#elif CRYPTOPP_POWER8_AVAILABLE
if (HasPower8())
for (j=2; j<=0x80; j*=2)
for (k=1; k<j; k++)
GCM_Xor16_POWER8(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
else
#endif
for (j=2; j<=0x80; j*=2)
for (k=1; k<j; k++)
Xor16(mulTable+i*256*16+(j+k)*16, mulTable+i*256*16+j*16, mulTable+i*256*16+k*16);
}
}
else
{
if (!s_reductionTableInitialized)
{
s_reductionTable[0] = 0;
word16 x = 0x01c2;
s_reductionTable[1] = ByteReverse(x);
for (unsigned int ii=2; ii<=0x80; ii*=2)
{
x <<= 1;
s_reductionTable[ii] = ByteReverse(x);
for (unsigned int jj=1; jj<ii; jj++)
s_reductionTable[ii+jj] = s_reductionTable[ii] ^ s_reductionTable[jj];
}
s_reductionTableInitialized = true;
}
for (i=0; i<128-24; i++)
{
k = i%32;
if (k < 4)
Block::Put(NULLPTR, mulTable+1024+(i/32)*256+(size_t(1)<<(7-k)))(V0)(V1);
else if (k < 8)
Block::Put(NULLPTR, mulTable+(i/32)*256+(size_t(1)<<(11-k)))(V0)(V1);
int x = (int)V1 & 1;
V1 = (V1>>1) | (V0<<63);
V0 = (V0>>1) ^ (x ? W64LIT(0xe1) << 56 : 0);
}
for (i=0; i<4; i++)
{
memset(mulTable+i*256, 0, 16);
memset(mulTable+1024+i*256, 0, 16);
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE || CRYPTOPP_SSE2_ASM_AVAILABLE
if (HasSSE2())
for (j=2; j<=8; j*=2)
for (k=1; k<j; k++)
{
GCM_Xor16_SSE2(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
GCM_Xor16_SSE2(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
}
else
#elif CRYPTOPP_ARM_NEON_AVAILABLE
if (HasNEON())
for (j=2; j<=8; j*=2)
for (k=1; k<j; k++)
{
GCM_Xor16_NEON(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
GCM_Xor16_NEON(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
}
else
#elif CRYPTOPP_POWER8_AVAILABLE
if (HasPower8())
for (j=2; j<=8; j*=2)
for (k=1; k<j; k++)
{
GCM_Xor16_POWER8(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
GCM_Xor16_POWER8(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
}
else
#endif
for (j=2; j<=8; j*=2)
for (k=1; k<j; k++)
{
Xor16(mulTable+i*256+(j+k)*16, mulTable+i*256+j*16, mulTable+i*256+k*16);
Xor16(mulTable+1024+i*256+(j+k)*16, mulTable+1024+i*256+j*16, mulTable+1024+i*256+k*16);
}
}
}
}
inline void GCM_Base::ReverseHashBufferIfNeeded()
{
#if CRYPTOPP_CLMUL_AVAILABLE
if (HasCLMUL())
{
GCM_ReverseHashBufferIfNeeded_CLMUL(HashBuffer());
}
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
if (HasPMULL())
{
GCM_ReverseHashBufferIfNeeded_PMULL(HashBuffer());
}
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
if (HasPMULL())
{
GCM_ReverseHashBufferIfNeeded_VMULL(HashBuffer());
}
#endif
}
void GCM_Base::Resync(const byte *iv, size_t len)
{
BlockCipher &cipher = AccessBlockCipher();
byte *hashBuffer = HashBuffer();
if (len == 12)
{
memcpy(hashBuffer, iv, len);
memset(hashBuffer+len, 0, 3);
hashBuffer[len+3] = 1;
}
else
{
size_t origLen = len;
memset(hashBuffer, 0, HASH_BLOCKSIZE);
if (len >= HASH_BLOCKSIZE)
{
len = GCM_Base::AuthenticateBlocks(iv, len);
iv += (origLen - len);
}
if (len > 0)
{
memcpy(m_buffer, iv, len);
memset(m_buffer+len, 0, HASH_BLOCKSIZE-len);
GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}
PutBlock<word64, BigEndian, true>(NULLPTR, m_buffer)(0)(origLen*8);
GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
ReverseHashBufferIfNeeded();
}
if (m_state >= State_IVSet)
m_ctr.Resynchronize(hashBuffer, REQUIRED_BLOCKSIZE);
else
m_ctr.SetCipherWithIV(cipher, hashBuffer);
m_ctr.Seek(HASH_BLOCKSIZE);
memset(hashBuffer, 0, HASH_BLOCKSIZE);
}
unsigned int GCM_Base::OptimalDataAlignment() const
{
return
#if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
HasSSE2() ? 16 :
#elif CRYPTOPP_ARM_NEON_AVAILABLE
HasNEON() ? 4 :
#elif CRYPTOPP_POWER8_AVAILABLE
HasPower8() ? 16 :
#endif
GetBlockCipher().OptimalDataAlignment();
}
#if CRYPTOPP_MSC_VERSION
# pragma warning(disable: 4731) // frame pointer register 'ebp' modified by inline assembly code
#endif
#endif // Not CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
extern "C" {
void GCM_AuthenticateBlocks_2K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer, const word16 *reductionTable);
void GCM_AuthenticateBlocks_64K_SSE2(const byte *data, size_t blocks, word64 *hashBuffer);
}
#endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
size_t GCM_Base::AuthenticateBlocks(const byte *data, size_t len)
{
#if CRYPTOPP_CLMUL_AVAILABLE
if (HasCLMUL())
{
return GCM_AuthenticateBlocks_CLMUL(data, len, MulTable(), HashBuffer());
}
#elif CRYPTOPP_ARM_PMULL_AVAILABLE
if (HasPMULL())
{
return GCM_AuthenticateBlocks_PMULL(data, len, MulTable(), HashBuffer());
}
#elif CRYPTOPP_POWER8_VMULL_AVAILABLE
if (HasPMULL())
{
return GCM_AuthenticateBlocks_VMULL(data, len, MulTable(), HashBuffer());
}
#endif
typedef BlockGetAndPut<word64, NativeByteOrder> Block;
word64 *hashBuffer = (word64 *)(void *)HashBuffer();
CRYPTOPP_ASSERT(IsAlignedOn(hashBuffer,GetAlignmentOf<word64>()));
switch (2*(m_buffer.size()>=64*1024)
#if CRYPTOPP_SSE2_ASM_AVAILABLE || defined(CRYPTOPP_X64_MASM_AVAILABLE)
+ HasSSE2()
//#elif CRYPTOPP_ARM_NEON_AVAILABLE
// + HasNEON()
#endif
)
{
case 0: // non-SSE2 and 2K tables
{
byte *mulTable = MulTable();
word64 x0 = hashBuffer[0], x1 = hashBuffer[1];
do
{
word64 y0, y1, a0, a1, b0, b1, c0, c1, d0, d1;
Block::Get(data)(y0)(y1);
x0 ^= y0;
x1 ^= y1;
data += HASH_BLOCKSIZE;
len -= HASH_BLOCKSIZE;
#define READ_TABLE_WORD64_COMMON(a, b, c, d) *(word64 *)(void *)(mulTable+(a*1024)+(b*256)+c+d*8)
#if (CRYPTOPP_LITTLE_ENDIAN)
#if CRYPTOPP_BOOL_SLOW_WORD64
word32 z0 = (word32)x0;
word32 z1 = (word32)(x0>>32);
word32 z2 = (word32)x1;
word32 z3 = (word32)(x1>>32);
#define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, (d?(z##c>>((d?d-1:0)*4))&0xf0:(z##c&0xf)<<4), e)
#else
#define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((d%2), c, ((d+8*b)?(x##a>>(((d+8*b)?(d+8*b)-1:1)*4))&0xf0:(x##a&0xf)<<4), e)
#endif
#define GF_MOST_SIG_8BITS(a) (a##1 >> 7*8)
#define GF_SHIFT_8(a) a##1 = (a##1 << 8) ^ (a##0 >> 7*8); a##0 <<= 8;
#else
#define READ_TABLE_WORD64(a, b, c, d, e) READ_TABLE_WORD64_COMMON((1-d%2), c, ((15-d-8*b)?(x##a>>(((15-d-8*b)?(15-d-8*b)-1:0)*4))&0xf0:(x##a&0xf)<<4), e)
#define GF_MOST_SIG_8BITS(a) (a##1 & 0xff)
#define GF_SHIFT_8(a) a##1 = (a##1 >> 8) ^ (a##0 << 7*8); a##0 >>= 8;
#endif
#define GF_MUL_32BY128(op, a, b, c) \
a0 op READ_TABLE_WORD64(a, b, c, 0, 0) ^ READ_TABLE_WORD64(a, b, c, 1, 0); \
a1 op READ_TABLE_WORD64(a, b, c, 0, 1) ^ READ_TABLE_WORD64(a, b, c, 1, 1); \
b0 op READ_TABLE_WORD64(a, b, c, 2, 0) ^ READ_TABLE_WORD64(a, b, c, 3, 0); \
b1 op READ_TABLE_WORD64(a, b, c, 2, 1) ^ READ_TABLE_WORD64(a, b, c, 3, 1); \
c0 op READ_TABLE_WORD64(a, b, c, 4, 0) ^ READ_TABLE_WORD64(a, b, c, 5, 0); \
c1 op READ_TABLE_WORD64(a, b, c, 4, 1) ^ READ_TABLE_WORD64(a, b, c, 5, 1); \
d0 op READ_TABLE_WORD64(a, b, c, 6, 0) ^ READ_TABLE_WORD64(a, b, c, 7, 0); \
d1 op READ_TABLE_WORD64(a, b, c, 6, 1) ^ READ_TABLE_WORD64(a, b, c, 7, 1); \
GF_MUL_32BY128(=, 0, 0, 0)
GF_MUL_32BY128(^=, 0, 1, 1)
GF_MUL_32BY128(^=, 1, 0, 2)
GF_MUL_32BY128(^=, 1, 1, 3)
word32 r = (word32)s_reductionTable[GF_MOST_SIG_8BITS(d)] << 16;
GF_SHIFT_8(d)
c0 ^= d0; c1 ^= d1;
r ^= (word32)s_reductionTable[GF_MOST_SIG_8BITS(c)] << 8;
GF_SHIFT_8(c)
b0 ^= c0; b1 ^= c1;
r ^= s_reductionTable[GF_MOST_SIG_8BITS(b)];
GF_SHIFT_8(b)
a0 ^= b0; a1 ^= b1;
a0 ^= ConditionalByteReverse<word64>(LITTLE_ENDIAN_ORDER, r);
x0 = a0; x1 = a1;
}
while (len >= HASH_BLOCKSIZE);
hashBuffer[0] = x0; hashBuffer[1] = x1;
return len;
}
case 2: // non-SSE2 and 64K tables
{
byte *mulTable = MulTable();
word64 x0 = hashBuffer[0], x1 = hashBuffer[1];
do
{
word64 y0, y1, a0, a1;
Block::Get(data)(y0)(y1);
x0 ^= y0;
x1 ^= y1;
data += HASH_BLOCKSIZE;
len -= HASH_BLOCKSIZE;
#undef READ_TABLE_WORD64_COMMON
#undef READ_TABLE_WORD64
#define READ_TABLE_WORD64_COMMON(a, c, d) *(word64 *)(void *)(mulTable+(a)*256*16+(c)+(d)*8)
#if (CRYPTOPP_LITTLE_ENDIAN)
#if CRYPTOPP_BOOL_SLOW_WORD64
word32 z0 = (word32)x0;
word32 z1 = (word32)(x0>>32);
word32 z2 = (word32)x1;
word32 z3 = (word32)(x1>>32);
#define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, (d?(z##c>>((d?d:1)*8-4))&0xff0:(z##c&0xff)<<4), e)
#else
#define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((d+4*(c%2))?(x##b>>(((d+4*(c%2))?(d+4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
#endif
#else
#define READ_TABLE_WORD64(b, c, d, e) READ_TABLE_WORD64_COMMON(c*4+d, ((7-d-4*(c%2))?(x##b>>(((7-d-4*(c%2))?(7-d-4*(c%2)):1)*8-4))&0xff0:(x##b&0xff)<<4), e)
#endif
#define GF_MUL_8BY128(op, b, c, d) \
a0 op READ_TABLE_WORD64(b, c, d, 0);\
a1 op READ_TABLE_WORD64(b, c, d, 1);\
GF_MUL_8BY128(=, 0, 0, 0)
GF_MUL_8BY128(^=, 0, 0, 1)
GF_MUL_8BY128(^=, 0, 0, 2)
GF_MUL_8BY128(^=, 0, 0, 3)
GF_MUL_8BY128(^=, 0, 1, 0)
GF_MUL_8BY128(^=, 0, 1, 1)
GF_MUL_8BY128(^=, 0, 1, 2)
GF_MUL_8BY128(^=, 0, 1, 3)
GF_MUL_8BY128(^=, 1, 2, 0)
GF_MUL_8BY128(^=, 1, 2, 1)
GF_MUL_8BY128(^=, 1, 2, 2)
GF_MUL_8BY128(^=, 1, 2, 3)
GF_MUL_8BY128(^=, 1, 3, 0)
GF_MUL_8BY128(^=, 1, 3, 1)
GF_MUL_8BY128(^=, 1, 3, 2)
GF_MUL_8BY128(^=, 1, 3, 3)
x0 = a0; x1 = a1;
}
while (len >= HASH_BLOCKSIZE);
hashBuffer[0] = x0; hashBuffer[1] = x1;
return len;
}
#endif // #ifndef CRYPTOPP_GENERATE_X64_MASM
#ifdef CRYPTOPP_X64_MASM_AVAILABLE
case 1: // SSE2 and 2K tables
GCM_AuthenticateBlocks_2K_SSE2(data, len/16, hashBuffer, s_reductionTable);
return len % 16;
case 3: // SSE2 and 64K tables
GCM_AuthenticateBlocks_64K_SSE2(data, len/16, hashBuffer);
return len % 16;
#endif
#if CRYPTOPP_SSE2_ASM_AVAILABLE
case 1: // SSE2 and 2K tables
{
#ifdef __GNUC__
__asm__ __volatile__
(
INTEL_NOPREFIX
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8
GCM_AuthenticateBlocks_2K_SSE2 PROC FRAME
rex_push_reg rsi
push_reg rdi
push_reg rbx
.endprolog
mov rsi, r8
mov r11, r9
#else
AS2( mov WORD_REG(cx), data )
AS2( mov WORD_REG(dx), len )
AS2( mov WORD_REG(si), hashBuffer )
AS2( shr WORD_REG(dx), 4 )
#endif
#if CRYPTOPP_BOOL_X32
AS1(push rbx)
AS1(push rbp)
#else
AS_PUSH_IF86( bx)
AS_PUSH_IF86( bp)
#endif
#ifdef __GNUC__
AS2( mov AS_REG_7, WORD_REG(di))
#elif CRYPTOPP_BOOL_X86
AS2( lea AS_REG_7, s_reductionTable)
#endif
AS2( movdqa xmm0, [WORD_REG(si)] )
#define MUL_TABLE_0 WORD_REG(si) + 32
#define MUL_TABLE_1 WORD_REG(si) + 32 + 1024
#define RED_TABLE AS_REG_7
ASL(0)
AS2( movdqu xmm4, [WORD_REG(cx)] )
AS2( pxor xmm0, xmm4 )
AS2( movd ebx, xmm0 )
AS2( mov eax, AS_HEX(f0f0f0f0) )
AS2( and eax, ebx )
AS2( shl ebx, 4 )
AS2( and ebx, AS_HEX(f0f0f0f0) )
AS2( movzx edi, ah )
AS2( movdqa xmm5, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] )
AS2( movzx edi, al )
AS2( movdqa xmm4, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] )
AS2( shr eax, 16 )
AS2( movzx edi, ah )
AS2( movdqa xmm3, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] )
AS2( movzx edi, al )
AS2( movdqa xmm2, XMMWORD_PTR [MUL_TABLE_1 + WORD_REG(di)] )
#define SSE2_MUL_32BITS(i) \
AS2( psrldq xmm0, 4 )\
AS2( movd eax, xmm0 )\
AS2( and eax, AS_HEX(f0f0f0f0) )\
AS2( movzx edi, bh )\
AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\
AS2( movzx edi, bl )\
AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\
AS2( shr ebx, 16 )\
AS2( movzx edi, bh )\
AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\
AS2( movzx edi, bl )\
AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + (i-1)*256 + WORD_REG(di)] )\
AS2( movd ebx, xmm0 )\
AS2( shl ebx, 4 )\
AS2( and ebx, AS_HEX(f0f0f0f0) )\
AS2( movzx edi, ah )\
AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\
AS2( movzx edi, al )\
AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\
AS2( shr eax, 16 )\
AS2( movzx edi, ah )\
AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\
AS2( movzx edi, al )\
AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_1 + i*256 + WORD_REG(di)] )\
SSE2_MUL_32BITS(1)
SSE2_MUL_32BITS(2)
SSE2_MUL_32BITS(3)
AS2( movzx edi, bh )
AS2( pxor xmm5, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] )
AS2( movzx edi, bl )
AS2( pxor xmm4, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] )
AS2( shr ebx, 16 )
AS2( movzx edi, bh )
AS2( pxor xmm3, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] )
AS2( movzx edi, bl )
AS2( pxor xmm2, XMMWORD_PTR [MUL_TABLE_0 + 3*256 + WORD_REG(di)] )
AS2( movdqa xmm0, xmm3 )
AS2( pslldq xmm3, 1 )
AS2( pxor xmm2, xmm3 )
AS2( movdqa xmm1, xmm2 )
AS2( pslldq xmm2, 1 )
AS2( pxor xmm5, xmm2 )
AS2( psrldq xmm0, 15 )
#if USE_MOVD_REG32
AS2( movd edi, xmm0 )
#elif USE_MOV_REG32_OR_REG64
AS2( mov WORD_REG(di), xmm0 )
#else // GNU Assembler
AS2( movd WORD_REG(di), xmm0 )
#endif
AS2( movzx eax, WORD PTR [RED_TABLE + WORD_REG(di)*2] )
AS2( shl eax, 8 )
AS2( movdqa xmm0, xmm5 )
AS2( pslldq xmm5, 1 )
AS2( pxor xmm4, xmm5 )
AS2( psrldq xmm1, 15 )
#if USE_MOVD_REG32
AS2( movd edi, xmm1 )
#elif USE_MOV_REG32_OR_REG64
AS2( mov WORD_REG(di), xmm1 )
#else
AS2( movd WORD_REG(di), xmm1 )
#endif
AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] )
AS2( shl eax, 8 )
AS2( psrldq xmm0, 15 )
#if USE_MOVD_REG32
AS2( movd edi, xmm0 )
#elif USE_MOV_REG32_OR_REG64
AS2( mov WORD_REG(di), xmm0 )
#else
AS2( movd WORD_REG(di), xmm0 )
#endif
AS2( xor ax, WORD PTR [RED_TABLE + WORD_REG(di)*2] )
AS2( movd xmm0, eax )
AS2( pxor xmm0, xmm4 )
AS2( add WORD_REG(cx), 16 )
AS2( sub WORD_REG(dx), 1 )
// ATT_NOPREFIX
ASJ( jnz, 0, b )
INTEL_NOPREFIX
AS2( movdqa [WORD_REG(si)], xmm0 )
#if CRYPTOPP_BOOL_X32
AS1(pop rbp)
AS1(pop rbx)
#else
AS_POP_IF86( bp)
AS_POP_IF86( bx)
#endif
#ifdef __GNUC__
ATT_PREFIX
:
: "c" (data), "d" (len/16), "S" (hashBuffer), "D" (s_reductionTable)
: "memory", "cc", "%eax"
#if CRYPTOPP_BOOL_X64
, "%ebx", "%r11"
#endif
);
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
pop rbx
pop rdi
pop rsi
ret
GCM_AuthenticateBlocks_2K_SSE2 ENDP
#endif
return len%16;
}
case 3: // SSE2 and 64K tables
{
#ifdef __GNUC__
__asm__ __volatile__
(
INTEL_NOPREFIX
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
ALIGN 8
GCM_AuthenticateBlocks_64K_SSE2 PROC FRAME
rex_push_reg rsi
push_reg rdi
.endprolog
mov rsi, r8
#else
AS2( mov WORD_REG(cx), data )
AS2( mov WORD_REG(dx), len )
AS2( mov WORD_REG(si), hashBuffer )
AS2( shr WORD_REG(dx), 4 )
#endif
AS2( movdqa xmm0, [WORD_REG(si)] )
#undef MUL_TABLE
#define MUL_TABLE(i,j) WORD_REG(si) + 32 + (i*4+j)*256*16
ASL(1)
AS2( movdqu xmm1, [WORD_REG(cx)] )
AS2( pxor xmm1, xmm0 )
AS2( pxor xmm0, xmm0 )
#undef SSE2_MUL_32BITS
#define SSE2_MUL_32BITS(i) \
AS2( movd eax, xmm1 )\
AS2( psrldq xmm1, 4 )\
AS2( movzx edi, al )\
AS2( add WORD_REG(di), WORD_REG(di) )\
AS2( pxor xmm0, [MUL_TABLE(i,0) + WORD_REG(di)*8] )\
AS2( movzx edi, ah )\
AS2( add WORD_REG(di), WORD_REG(di) )\
AS2( pxor xmm0, [MUL_TABLE(i,1) + WORD_REG(di)*8] )\
AS2( shr eax, 16 )\
AS2( movzx edi, al )\
AS2( add WORD_REG(di), WORD_REG(di) )\
AS2( pxor xmm0, [MUL_TABLE(i,2) + WORD_REG(di)*8] )\
AS2( movzx edi, ah )\
AS2( add WORD_REG(di), WORD_REG(di) )\
AS2( pxor xmm0, [MUL_TABLE(i,3) + WORD_REG(di)*8] )\
SSE2_MUL_32BITS(0)
SSE2_MUL_32BITS(1)
SSE2_MUL_32BITS(2)
SSE2_MUL_32BITS(3)
AS2( add WORD_REG(cx), 16 )
AS2( sub WORD_REG(dx), 1 )
// ATT_NOPREFIX
ASJ( jnz, 1, b )
INTEL_NOPREFIX
AS2( movdqa [WORD_REG(si)], xmm0 )
#ifdef __GNUC__
ATT_PREFIX
:
: "c" (data), "d" (len/16), "S" (hashBuffer)
: "memory", "cc", "%edi", "%eax"
);
#elif defined(CRYPTOPP_GENERATE_X64_MASM)
pop rdi
pop rsi
ret
GCM_AuthenticateBlocks_64K_SSE2 ENDP
#endif
return len%16;
}
#endif
#ifndef CRYPTOPP_GENERATE_X64_MASM
}
return len%16;
}
void GCM_Base::AuthenticateLastHeaderBlock()
{
if (m_bufferedDataLength > 0)
{
memset(m_buffer+m_bufferedDataLength, 0, HASH_BLOCKSIZE-m_bufferedDataLength);
m_bufferedDataLength = 0;
GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}
}
void GCM_Base::AuthenticateLastConfidentialBlock()
{
GCM_Base::AuthenticateLastHeaderBlock();
PutBlock<word64, BigEndian, true>(NULLPTR, m_buffer)(m_totalHeaderLength*8)(m_totalMessageLength*8);
GCM_Base::AuthenticateBlocks(m_buffer, HASH_BLOCKSIZE);
}
void GCM_Base::AuthenticateLastFooterBlock(byte *mac, size_t macSize)
{
m_ctr.Seek(0);
ReverseHashBufferIfNeeded();
m_ctr.ProcessData(mac, HashBuffer(), macSize);
}
NAMESPACE_END
#endif // Not CRYPTOPP_GENERATE_X64_MASM
#endif