ext-cryptopp/sha-simd.cpp
2018-03-20 23:50:51 -04:00

1640 lines
55 KiB
C++

// sha-simd.cpp - written and placed in the public domain by
// Jeffrey Walton, Uri Blumenthal and Marcel Raad.
//
// This source file uses intrinsics to gain access to SHA-NI and
// ARMv8a SHA instructions. A separate source file is needed
// because additional CXXFLAGS are required to enable the
// appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "sha.h"
#include "misc.h"
#if (CRYPTOPP_SHANI_AVAILABLE)
# include <nmmintrin.h>
# include <immintrin.h>
#endif
// Use ARMv8 rather than NEON due to compiler inconsistencies
#if (CRYPTOPP_ARM_SHA_AVAILABLE)
# include <arm_neon.h>
#endif
// Can't use CRYPTOPP_ARM_XXX_AVAILABLE because too many
// compilers don't follow ACLE conventions for the include.
#if defined(CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
#if CRYPTOPP_POWER8_SHA_AVAILABLE
# include "ppc-simd.h"
#endif
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
# include <signal.h>
# include <setjmp.h>
#endif
#ifndef EXCEPTION_EXECUTE_HANDLER
# define EXCEPTION_EXECUTE_HANDLER 1
#endif
// Clang __m128i casts
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
NAMESPACE_BEGIN(CryptoPP)
// ***************** SIGILL probes ********************
#ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY
extern "C" {
typedef void (*SigHandler)(int);
static jmp_buf s_jmpSIGILL;
static void SigIllHandler(int)
{
longjmp(s_jmpSIGILL, 1);
}
};
#endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY
#if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64)
bool CPU_ProbeSHA1()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_SHA_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
uint32x4_t data1 = {1,2,3,4}, data2 = {5,6,7,8}, data3 = {9,10,11,12};
uint32x4_t r1 = vsha1cq_u32 (data1, 0, data2);
uint32x4_t r2 = vsha1mq_u32 (data1, 0, data2);
uint32x4_t r3 = vsha1pq_u32 (data1, 0, data2);
uint32x4_t r4 = vsha1su0q_u32 (data1, data2, data3);
uint32x4_t r5 = vsha1su1q_u32 (data1, data2);
result = !!(vgetq_lane_u32(r1,0) | vgetq_lane_u32(r2,1) | vgetq_lane_u32(r3,2) | vgetq_lane_u32(r4,3) | vgetq_lane_u32(r5,0));
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
# else
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
uint32x4_t data1 = {1,2,3,4}, data2 = {5,6,7,8}, data3 = {9,10,11,12};
uint32x4_t r1 = vsha1cq_u32 (data1, 0, data2);
uint32x4_t r2 = vsha1mq_u32 (data1, 0, data2);
uint32x4_t r3 = vsha1pq_u32 (data1, 0, data2);
uint32x4_t r4 = vsha1su0q_u32 (data1, data2, data3);
uint32x4_t r5 = vsha1su1q_u32 (data1, data2);
result = !!(vgetq_lane_u32(r1,0) | vgetq_lane_u32(r2,1) | vgetq_lane_u32(r3,2) | vgetq_lane_u32(r4,3) | vgetq_lane_u32(r5,0));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_SHA_AVAILABLE
}
bool CPU_ProbeSHA2()
{
#if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES)
return false;
#elif (CRYPTOPP_ARM_SHA_AVAILABLE)
# if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY)
volatile bool result = true;
__try
{
uint32x4_t data1 = {1,2,3,4}, data2 = {5,6,7,8}, data3 = {9,10,11,12};
uint32x4_t r1 = vsha256hq_u32 (data1, data2, data3);
uint32x4_t r2 = vsha256h2q_u32 (data1, data2, data3);
uint32x4_t r3 = vsha256su0q_u32 (data1, data2);
uint32x4_t r4 = vsha256su1q_u32 (data1, data2, data3);
result = !!(vgetq_lane_u32(r1,0) | vgetq_lane_u32(r2,1) | vgetq_lane_u32(r3,2) | vgetq_lane_u32(r4,3));
}
__except (EXCEPTION_EXECUTE_HANDLER)
{
return false;
}
return result;
#else
// longjmp and clobber warnings. Volatile is required.
// http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854
volatile bool result = true;
volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler);
if (oldHandler == SIG_ERR)
return false;
volatile sigset_t oldMask;
if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask))
return false;
if (setjmp(s_jmpSIGILL))
result = false;
else
{
uint32x4_t data1 = {1,2,3,4}, data2 = {5,6,7,8}, data3 = {9,10,11,12};
uint32x4_t r1 = vsha256hq_u32 (data1, data2, data3);
uint32x4_t r2 = vsha256h2q_u32 (data1, data2, data3);
uint32x4_t r3 = vsha256su0q_u32 (data1, data2);
uint32x4_t r4 = vsha256su1q_u32 (data1, data2, data3);
result = !!(vgetq_lane_u32(r1,0) | vgetq_lane_u32(r2,1) | vgetq_lane_u32(r3,2) | vgetq_lane_u32(r4,3));
}
sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR);
signal(SIGILL, oldHandler);
return result;
# endif
#else
return false;
#endif // CRYPTOPP_ARM_SHA_AVAILABLE
}
#endif // ARM32 or ARM64
// ***************** Intel x86 SHA ********************
// provided by sha.cpp
extern const word32 SHA256_K[64];
extern const word64 SHA512_K[80];
/////////////////////////////////////
// start of Walton and Gulley code //
/////////////////////////////////////
#if CRYPTOPP_SHANI_AVAILABLE
// Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley.
void SHA1_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
__m128i ABCD, ABCD_SAVE, E0, E0_SAVE, E1;
__m128i MASK, MSG0, MSG1, MSG2, MSG3;
// Load initial values
ABCD = _mm_loadu_si128(CONST_M128_CAST(state));
E0 = _mm_set_epi32(state[4], 0, 0, 0);
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
// IA-32 SHA is little endian, SHA::Transform is big endian,
// and SHA::HashMultipleBlocks can be either. ByteOrder
// allows us to avoid extra endian reversals. It saves 1.0 cpb.
MASK = order == BIG_ENDIAN_ORDER ? // Data arrangement
_mm_set_epi8(0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15) :
_mm_set_epi8(3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12) ;
while (length >= SHA1::BLOCKSIZE)
{
// Save current hash
ABCD_SAVE = ABCD;
E0_SAVE = E0;
// Rounds 0-3
MSG0 = _mm_loadu_si128(CONST_M128_CAST(data+0));
MSG0 = _mm_shuffle_epi8(MSG0, MASK);
E0 = _mm_add_epi32(E0, MSG0);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
// Rounds 4-7
MSG1 = _mm_loadu_si128(CONST_M128_CAST(data+4));
MSG1 = _mm_shuffle_epi8(MSG1, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
// Rounds 8-11
MSG2 = _mm_loadu_si128(CONST_M128_CAST(data+8));
MSG2 = _mm_shuffle_epi8(MSG2, MASK);
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
// Rounds 12-15
MSG3 = _mm_loadu_si128(CONST_M128_CAST(data+12));
MSG3 = _mm_shuffle_epi8(MSG3, MASK);
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 0);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
// Rounds 16-19
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 0);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
// Rounds 20-23
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
// Rounds 24-27
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
// Rounds 28-31
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
// Rounds 32-35
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 1);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
// Rounds 36-39
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 1);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
// Rounds 40-43
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
// Rounds 44-47
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
// Rounds 48-51
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
// Rounds 52-55
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 2);
MSG0 = _mm_sha1msg1_epu32(MSG0, MSG1);
MSG3 = _mm_xor_si128(MSG3, MSG1);
// Rounds 56-59
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 2);
MSG1 = _mm_sha1msg1_epu32(MSG1, MSG2);
MSG0 = _mm_xor_si128(MSG0, MSG2);
// Rounds 60-63
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
MSG0 = _mm_sha1msg2_epu32(MSG0, MSG3);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG2 = _mm_sha1msg1_epu32(MSG2, MSG3);
MSG1 = _mm_xor_si128(MSG1, MSG3);
// Rounds 64-67
E0 = _mm_sha1nexte_epu32(E0, MSG0);
E1 = ABCD;
MSG1 = _mm_sha1msg2_epu32(MSG1, MSG0);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
MSG3 = _mm_sha1msg1_epu32(MSG3, MSG0);
MSG2 = _mm_xor_si128(MSG2, MSG0);
// Rounds 68-71
E1 = _mm_sha1nexte_epu32(E1, MSG1);
E0 = ABCD;
MSG2 = _mm_sha1msg2_epu32(MSG2, MSG1);
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
MSG3 = _mm_xor_si128(MSG3, MSG1);
// Rounds 72-75
E0 = _mm_sha1nexte_epu32(E0, MSG2);
E1 = ABCD;
MSG3 = _mm_sha1msg2_epu32(MSG3, MSG2);
ABCD = _mm_sha1rnds4_epu32(ABCD, E0, 3);
// Rounds 76-79
E1 = _mm_sha1nexte_epu32(E1, MSG3);
E0 = ABCD;
ABCD = _mm_sha1rnds4_epu32(ABCD, E1, 3);
// Add values back to state
E0 = _mm_sha1nexte_epu32(E0, E0_SAVE);
ABCD = _mm_add_epi32(ABCD, ABCD_SAVE);
data += SHA1::BLOCKSIZE/sizeof(word32);
length -= SHA1::BLOCKSIZE;
}
// Save state
ABCD = _mm_shuffle_epi32(ABCD, 0x1B);
_mm_storeu_si128(M128_CAST(state), ABCD);
state[4] = _mm_extract_epi32(E0, 3);
}
// Based on http://software.intel.com/en-us/articles/intel-sha-extensions and code by Sean Gulley.
void SHA256_HashMultipleBlocks_SHANI(word32 *state, const word32 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
__m128i STATE0, STATE1;
__m128i MSG, TMP, MASK;
__m128i TMSG0, TMSG1, TMSG2, TMSG3;
__m128i ABEF_SAVE, CDGH_SAVE;
// Load initial values
TMP = _mm_loadu_si128(M128_CAST(&state[0]));
STATE1 = _mm_loadu_si128(M128_CAST(&state[4]));
// IA-32 SHA is little endian, SHA::Transform is big endian,
// and SHA::HashMultipleBlocks can be either. ByteOrder
// allows us to avoid extra endian reversals. It saves 1.0 cpb.
MASK = order == BIG_ENDIAN_ORDER ? // Data arrangement
_mm_set_epi8(12,13,14,15, 8,9,10,11, 4,5,6,7, 0,1,2,3) :
_mm_set_epi8(15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0) ;
TMP = _mm_shuffle_epi32(TMP, 0xB1); // CDAB
STATE1 = _mm_shuffle_epi32(STATE1, 0x1B); // EFGH
STATE0 = _mm_alignr_epi8(TMP, STATE1, 8); // ABEF
STATE1 = _mm_blend_epi16(STATE1, TMP, 0xF0); // CDGH
while (length >= SHA256::BLOCKSIZE)
{
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Rounds 0-3
MSG = _mm_loadu_si128(CONST_M128_CAST(data+0));
TMSG0 = _mm_shuffle_epi8(MSG, MASK);
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0xE9B5DBA5B5C0FBCF), W64LIT(0x71374491428A2F98)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 4-7
TMSG1 = _mm_loadu_si128(CONST_M128_CAST(data+4));
TMSG1 = _mm_shuffle_epi8(TMSG1, MASK);
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0xAB1C5ED5923F82A4), W64LIT(0x59F111F13956C25B)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 8-11
TMSG2 = _mm_loadu_si128(CONST_M128_CAST(data+8));
TMSG2 = _mm_shuffle_epi8(TMSG2, MASK);
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0x550C7DC3243185BE), W64LIT(0x12835B01D807AA98)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 12-15
TMSG3 = _mm_loadu_si128(CONST_M128_CAST(data+12));
TMSG3 = _mm_shuffle_epi8(TMSG3, MASK);
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0xC19BF1749BDC06A7), W64LIT(0x80DEB1FE72BE5D74)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 16-19
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x240CA1CC0FC19DC6), W64LIT(0xEFBE4786E49B69C1)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 20-23
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x76F988DA5CB0A9DC), W64LIT(0x4A7484AA2DE92C6F)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 24-27
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0xBF597FC7B00327C8), W64LIT(0xA831C66D983E5152)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 28-31
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0x1429296706CA6351), W64LIT(0xD5A79147C6E00BF3)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 32-35
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x53380D134D2C6DFC), W64LIT(0x2E1B213827B70A85)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 36-39
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x92722C8581C2C92E), W64LIT(0x766A0ABB650A7354)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG0 = _mm_sha256msg1_epu32(TMSG0, TMSG1);
// Rounds 40-43
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0xC76C51A3C24B8B70), W64LIT(0xA81A664BA2BFE8A1)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG1 = _mm_sha256msg1_epu32(TMSG1, TMSG2);
// Rounds 44-47
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0x106AA070F40E3585), W64LIT(0xD6990624D192E819)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG3, TMSG2, 4);
TMSG0 = _mm_add_epi32(TMSG0, TMP);
TMSG0 = _mm_sha256msg2_epu32(TMSG0, TMSG3);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG2 = _mm_sha256msg1_epu32(TMSG2, TMSG3);
// Rounds 48-51
MSG = _mm_add_epi32(TMSG0, _mm_set_epi64x(W64LIT(0x34B0BCB52748774C), W64LIT(0x1E376C0819A4C116)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG0, TMSG3, 4);
TMSG1 = _mm_add_epi32(TMSG1, TMP);
TMSG1 = _mm_sha256msg2_epu32(TMSG1, TMSG0);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
TMSG3 = _mm_sha256msg1_epu32(TMSG3, TMSG0);
// Rounds 52-55
MSG = _mm_add_epi32(TMSG1, _mm_set_epi64x(W64LIT(0x682E6FF35B9CCA4F), W64LIT(0x4ED8AA4A391C0CB3)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG1, TMSG0, 4);
TMSG2 = _mm_add_epi32(TMSG2, TMP);
TMSG2 = _mm_sha256msg2_epu32(TMSG2, TMSG1);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 56-59
MSG = _mm_add_epi32(TMSG2, _mm_set_epi64x(W64LIT(0x8CC7020884C87814), W64LIT(0x78A5636F748F82EE)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
TMP = _mm_alignr_epi8(TMSG2, TMSG1, 4);
TMSG3 = _mm_add_epi32(TMSG3, TMP);
TMSG3 = _mm_sha256msg2_epu32(TMSG3, TMSG2);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Rounds 60-63
MSG = _mm_add_epi32(TMSG3, _mm_set_epi64x(W64LIT(0xC67178F2BEF9A3F7), W64LIT(0xA4506CEB90BEFFFA)));
STATE1 = _mm_sha256rnds2_epu32(STATE1, STATE0, MSG);
MSG = _mm_shuffle_epi32(MSG, 0x0E);
STATE0 = _mm_sha256rnds2_epu32(STATE0, STATE1, MSG);
// Add values back to state
STATE0 = _mm_add_epi32(STATE0, ABEF_SAVE);
STATE1 = _mm_add_epi32(STATE1, CDGH_SAVE);
data += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
TMP = _mm_shuffle_epi32(STATE0, 0x1B); // FEBA
STATE1 = _mm_shuffle_epi32(STATE1, 0xB1); // DCHG
STATE0 = _mm_blend_epi16(TMP, STATE1, 0xF0); // DCBA
STATE1 = _mm_alignr_epi8(STATE1, TMP, 8); // ABEF
// Save state
_mm_storeu_si128(M128_CAST(&state[0]), STATE0);
_mm_storeu_si128(M128_CAST(&state[4]), STATE1);
}
#endif // CRYPTOPP_SHANI_AVAILABLE
///////////////////////////////////
// end of Walton and Gulley code //
///////////////////////////////////
// ***************** ARMV8 SHA ********************
/////////////////////////////////////////////////////////////
// start of Walton, Schneiders, O'Rourke and Hovsmith code //
/////////////////////////////////////////////////////////////
#if CRYPTOPP_ARM_SHA_AVAILABLE
void SHA1_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA1::BLOCKSIZE);
uint32x4_t C0, C1, C2, C3;
uint32x4_t ABCD, ABCD_SAVED;
uint32x4_t MSG0, MSG1, MSG2, MSG3;
uint32x4_t TMP0, TMP1;
uint32_t E0, E0_SAVED, E1;
// Load initial values
C0 = vdupq_n_u32(0x5A827999);
C1 = vdupq_n_u32(0x6ED9EBA1);
C2 = vdupq_n_u32(0x8F1BBCDC);
C3 = vdupq_n_u32(0xCA62C1D6);
ABCD = vld1q_u32(&state[0]);
E0 = state[4];
while (length >= SHA1::BLOCKSIZE)
{
// Save current hash
ABCD_SAVED = ABCD;
E0_SAVED = E0;
MSG0 = vld1q_u32(data + 0);
MSG1 = vld1q_u32(data + 4);
MSG2 = vld1q_u32(data + 8);
MSG3 = vld1q_u32(data + 12);
if (order == BIG_ENDIAN_ORDER) // Data arrangement
{
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));
}
TMP0 = vaddq_u32(MSG0, C0);
TMP1 = vaddq_u32(MSG1, C0);
// Rounds 0-3
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, C0);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
// Rounds 4-7
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, C0);
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
// Rounds 8-11
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, C0);
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
// Rounds 12-15
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, C1);
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
// Rounds 16-19
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1cq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, C1);
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
// Rounds 20-23
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, C1);
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
// Rounds 24-27
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, C1);
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
// Rounds 28-31
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, C1);
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
// Rounds 32-35
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, C2);
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
// Rounds 36-39
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, C2);
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
// Rounds 40-43
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, C2);
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
// Rounds 44-47
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, C2);
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
// Rounds 48-51
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, C2);
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
// Rounds 52-55
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, C3);
MSG0 = vsha1su1q_u32(MSG0, MSG3);
MSG1 = vsha1su0q_u32(MSG1, MSG2, MSG3);
// Rounds 56-59
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1mq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG0, C3);
MSG1 = vsha1su1q_u32(MSG1, MSG0);
MSG2 = vsha1su0q_u32(MSG2, MSG3, MSG0);
// Rounds 60-63
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG1, C3);
MSG2 = vsha1su1q_u32(MSG2, MSG1);
MSG3 = vsha1su0q_u32(MSG3, MSG0, MSG1);
// Rounds 64-67
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
TMP0 = vaddq_u32(MSG2, C3);
MSG3 = vsha1su1q_u32(MSG3, MSG2);
MSG0 = vsha1su0q_u32(MSG0, MSG1, MSG2);
// Rounds 68-71
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
TMP1 = vaddq_u32(MSG3, C3);
MSG0 = vsha1su1q_u32(MSG0, MSG3);
// Rounds 72-75
E1 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E0, TMP0);
// Rounds 76-79
E0 = vsha1h_u32(vgetq_lane_u32(ABCD, 0));
ABCD = vsha1pq_u32(ABCD, E1, TMP1);
E0 += E0_SAVED;
ABCD = vaddq_u32(ABCD_SAVED, ABCD);
data += SHA1::BLOCKSIZE/sizeof(word32);
length -= SHA1::BLOCKSIZE;
}
// Save state
vst1q_u32(&state[0], ABCD);
state[4] = E0;
}
void SHA256_HashMultipleBlocks_ARMV8(word32 *state, const word32 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state);
CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
uint32x4_t MSG0, MSG1, MSG2, MSG3;
uint32x4_t TMP0, TMP1, TMP2;
// Load initial values
STATE0 = vld1q_u32(&state[0]);
STATE1 = vld1q_u32(&state[4]);
while (length >= SHA256::BLOCKSIZE)
{
// Save current hash
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
// Load message
MSG0 = vld1q_u32(data + 0);
MSG1 = vld1q_u32(data + 4);
MSG2 = vld1q_u32(data + 8);
MSG3 = vld1q_u32(data + 12);
if (order == BIG_ENDIAN_ORDER) // Data arrangement
{
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));
}
TMP0 = vaddq_u32(MSG0, vld1q_u32(&SHA256_K[0x00]));
// Rounds 0-3
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&SHA256_K[0x04]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);;
// Rounds 4-7
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&SHA256_K[0x08]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);;
// Rounds 8-11
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&SHA256_K[0x0c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);;
// Rounds 12-15
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&SHA256_K[0x10]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);;
// Rounds 16-19
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&SHA256_K[0x14]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);;
// Rounds 20-23
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&SHA256_K[0x18]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);;
// Rounds 24-27
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&SHA256_K[0x1c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);;
// Rounds 28-31
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&SHA256_K[0x20]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);;
// Rounds 32-35
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&SHA256_K[0x24]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);;
// Rounds 36-39
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&SHA256_K[0x28]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);;
// Rounds 40-43
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&SHA256_K[0x2c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);;
// Rounds 44-47
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&SHA256_K[0x30]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);;
// Rounds 48-51
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&SHA256_K[0x34]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);;
// Rounds 52-55
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&SHA256_K[0x38]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);;
// Rounds 56-59
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&SHA256_K[0x3c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);;
// Rounds 60-63
TMP2 = STATE0;
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);;
// Add back to state
STATE0 = vaddq_u32(STATE0, ABEF_SAVE);
STATE1 = vaddq_u32(STATE1, CDGH_SAVE);
data += SHA256::BLOCKSIZE/sizeof(word32);
length -= SHA256::BLOCKSIZE;
}
// Save state
vst1q_u32(&state[0], STATE0);
vst1q_u32(&state[4], STATE1);
}
#endif // CRYPTOPP_ARM_SHA_AVAILABLE
///////////////////////////////////////////////////////////
// end of Walton, Schneiders, O'Rourke and Hovsmith code //
///////////////////////////////////////////////////////////
// ***************** Power8 SHA ********************
//////////////////////////////////////////////////
// start Gustavo, Serra, Scalet and Walton code //
//////////////////////////////////////////////////
#if CRYPTOPP_POWER8_SHA_AVAILABLE
// Indexes into the S[] array
enum {A=0, B=1, C, D, E, F, G, H};
typedef __vector unsigned char uint8x16_p8;
typedef __vector unsigned int uint32x4_p8;
typedef __vector unsigned long long uint64x2_p8;
uint32x4_p8 VEC_XL_BE(int offset, const uint8_t* data)
{
#if defined(CRYPTOPP_XLC_VERSION)
return vec_xl_be(offset, data);
#else
uint32x4_p8 res;
__asm(" lxvd2x %x0, %1, %2 \n\t"
: "=wa" (res)
: "b" (data), "r" (offset));
return res;
#endif
}
#endif // CRYPTOPP_POWER8_SHA_AVAILABLE
#if CRYPTOPP_POWER8_SHA_AVAILABLE
// Aligned load
template <class T> static inline
uint32x4_p8 VectorLoad32x4(const T* data, int offset)
{
return (uint32x4_p8)vec_ld(offset, data);
}
// Unaligned load
template <class T> static inline
uint32x4_p8 VectorLoad32x4u(const T* data, int offset)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint32x4_p8)vec_xl(offset, data);
#else
return (uint32x4_p8)vec_vsx_ld(offset, data);
#endif
}
// Aligned store
template <class T> static inline
void VectorStore32x4(const uint32x4_p8 val, T* data, int offset)
{
vec_st((uint8x16_p8)val, offset, data);
}
// Unaligned store
template <class T> static inline
void VectorStore32x4u(const uint32x4_p8 val, T* data, int offset)
{
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst((uint8x16_p8)val, offset, (uint8_t*)data);
#else
vec_vsx_st((uint8x16_p8)val, offset, (uint8_t*)data);
#endif
}
// Unaligned load of a user message. The load is big-endian,
// and then the message is permuted for 32-bit words.
template <class T> static inline
uint32x4_p8 VectorLoadMsg32x4(const T* data, int offset)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const uint8x16_p8 mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12};
const uint32x4_p8 r = VectorLoad32x4u(data, offset);
return (uint32x4_p8)vec_perm(r, r, mask);
#else
return VectorLoad32x4u(data, offset);
#endif
}
static inline
uint32x4_p8 VectorCh(const uint32x4_p8 x, const uint32x4_p8 y, const uint32x4_p8 z)
{
// The trick below is due to Andy Polyakov and Jack Lloyd
return vec_sel(z,y,x);
}
static inline
uint32x4_p8 VectorMaj(const uint32x4_p8 x, const uint32x4_p8 y, const uint32x4_p8 z)
{
// The trick below is due to Andy Polyakov and Jack Lloyd
return vec_sel(y, z, vec_xor(x, y));
}
static inline
uint32x4_p8 Vector_sigma0(const uint32x4_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmaw(val, 0, 0);
#else
return __builtin_crypto_vshasigmaw(val, 0, 0);
#endif
}
static inline
uint32x4_p8 Vector_sigma1(const uint32x4_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmaw(val, 0, 0xf);
#else
return __builtin_crypto_vshasigmaw(val, 0, 0xf);
#endif
}
static inline
uint32x4_p8 VectorSigma0(const uint32x4_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmaw(val, 1, 0);
#else
return __builtin_crypto_vshasigmaw(val, 1, 0);
#endif
}
static inline
uint32x4_p8 VectorSigma1(const uint32x4_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmaw(val, 1, 0xf);
#else
return __builtin_crypto_vshasigmaw(val, 1, 0xf);
#endif
}
static inline
uint32x4_p8 VectorPack(const uint32x4_p8 a, const uint32x4_p8 b,
const uint32x4_p8 c, const uint32x4_p8 d)
{
const uint8x16_p8 m1 = {0,1,2,3, 16,17,18,19, 0,0,0,0, 0,0,0,0};
const uint8x16_p8 m2 = {0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
return vec_perm(vec_perm(a,b,m1), vec_perm(c,d,m1), m2);
}
template <unsigned int L> static inline
uint32x4_p8 VectorShiftLeft(const uint32x4_p8 val)
{
#if (defined(CRYPTOPP_LITTLE_ENDIAN))
return (uint32x4_p8)vec_sld((uint8x16_p8)val, (uint8x16_p8)val, (16-L)&0xf);
#else
return (uint32x4_p8)vec_sld((uint8x16_p8)val, (uint8x16_p8)val, L&0xf);
#endif
}
template <>
uint32x4_p8 VectorShiftLeft<0>(const uint32x4_p8 val) { return val; }
template <>
uint32x4_p8 VectorShiftLeft<16>(const uint32x4_p8 val) { return val; }
template <unsigned int R> static inline
void SHA256_ROUND1(uint32x4_p8 W[16], uint32x4_p8 S[8], const uint32x4_p8 K, const uint32x4_p8 M)
{
uint32x4_p8 T1, T2;
W[R] = M;
T1 = S[H] + VectorSigma1(S[E]) + VectorCh(S[E],S[F],S[G]) + K + M;
T2 = VectorSigma0(S[A]) + VectorMaj(S[A],S[B],S[C]);
S[H] = S[G]; S[G] = S[F]; S[F] = S[E];
S[E] = S[D] + T1;
S[D] = S[C]; S[C] = S[B]; S[B] = S[A];
S[A] = T1 + T2;
}
template <unsigned int R> static inline
void SHA256_ROUND2(uint32x4_p8 W[16], uint32x4_p8 S[8], const uint32x4_p8 K)
{
// Indexes into the W[] array
enum {IDX0=(R+0)&0xf, IDX1=(R+1)&0xf, IDX9=(R+9)&0xf, IDX14=(R+14)&0xf};
const uint32x4_p8 s0 = Vector_sigma0(W[IDX1]);
const uint32x4_p8 s1 = Vector_sigma1(W[IDX14]);
uint32x4_p8 T1 = (W[IDX0] += s0 + s1 + W[IDX9]);
T1 += S[H] + VectorSigma1(S[E]) + VectorCh(S[E],S[F],S[G]) + K;
uint32x4_p8 T2 = VectorSigma0(S[A]) + VectorMaj(S[A],S[B],S[C]);
S[H] = S[G]; S[G] = S[F]; S[F] = S[E];
S[E] = S[D] + T1;
S[D] = S[C]; S[C] = S[B]; S[B] = S[A];
S[A] = T1 + T2;
}
void SHA256_HashMultipleBlocks_POWER8(word32 *state, const word32 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA256::BLOCKSIZE);
CRYPTOPP_UNUSED(order);
const uint32_t* k = reinterpret_cast<const uint32_t*>(SHA256_K);
const uint32_t* m = reinterpret_cast<const uint32_t*>(data);
uint32x4_p8 abcd = VectorLoad32x4u(state+0, 0);
uint32x4_p8 efgh = VectorLoad32x4u(state+4, 0);
uint32x4_p8 W[16], S[8], vm, vk;
size_t blocks = length / SHA256::BLOCKSIZE;
while (blocks--)
{
unsigned int i, offset=0;
S[A] = abcd; S[E] = efgh;
S[B] = VectorShiftLeft<4>(S[A]);
S[F] = VectorShiftLeft<4>(S[E]);
S[C] = VectorShiftLeft<4>(S[B]);
S[G] = VectorShiftLeft<4>(S[F]);
S[D] = VectorShiftLeft<4>(S[C]);
S[H] = VectorShiftLeft<4>(S[G]);
// Unroll the loop to provide the round number as a constexpr
// for (unsigned int i=0; i<16; ++i)
{
vk = VectorLoad32x4(k, offset);
vm = VectorLoadMsg32x4(m, offset);
SHA256_ROUND1<0>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<1>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<2>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<3>(W,S, vk,vm);
vk = VectorLoad32x4(k, offset);
vm = VectorLoadMsg32x4(m, offset);
SHA256_ROUND1<4>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<5>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<6>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<7>(W,S, vk,vm);
vk = VectorLoad32x4(k, offset);
vm = VectorLoadMsg32x4(m, offset);
SHA256_ROUND1<8>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<9>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<10>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<11>(W,S, vk,vm);
vk = VectorLoad32x4(k, offset);
vm = VectorLoadMsg32x4(m, offset);
SHA256_ROUND1<12>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<13>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<14>(W,S, vk,vm);
vk = VectorShiftLeft<4>(vk);
vm = VectorShiftLeft<4>(vm);
SHA256_ROUND1<15>(W,S, vk,vm);
}
m += 16; // 32-bit words, not bytes
for (i=16; i<64; i+=16)
{
vk = VectorLoad32x4(k, offset);
SHA256_ROUND2<0>(W,S, vk);
SHA256_ROUND2<1>(W,S, VectorShiftLeft<4>(vk));
SHA256_ROUND2<2>(W,S, VectorShiftLeft<8>(vk));
SHA256_ROUND2<3>(W,S, VectorShiftLeft<12>(vk));
offset+=16;
vk = VectorLoad32x4(k, offset);
SHA256_ROUND2<4>(W,S, vk);
SHA256_ROUND2<5>(W,S, VectorShiftLeft<4>(vk));
SHA256_ROUND2<6>(W,S, VectorShiftLeft<8>(vk));
SHA256_ROUND2<7>(W,S, VectorShiftLeft<12>(vk));
offset+=16;
vk = VectorLoad32x4(k, offset);
SHA256_ROUND2<8>(W,S, vk);
SHA256_ROUND2<9>(W,S, VectorShiftLeft<4>(vk));
SHA256_ROUND2<10>(W,S, VectorShiftLeft<8>(vk));
SHA256_ROUND2<11>(W,S, VectorShiftLeft<12>(vk));
offset+=16;
vk = VectorLoad32x4(k, offset);
SHA256_ROUND2<12>(W,S, vk);
SHA256_ROUND2<13>(W,S, VectorShiftLeft<4>(vk));
SHA256_ROUND2<14>(W,S, VectorShiftLeft<8>(vk));
SHA256_ROUND2<15>(W,S, VectorShiftLeft<12>(vk));
offset+=16;
}
abcd += VectorPack(S[A],S[B],S[C],S[D]);
efgh += VectorPack(S[E],S[F],S[G],S[H]);
}
VectorStore32x4u(abcd, state+0, 0);
VectorStore32x4u(efgh, state+4, 0);
}
static inline
uint64x2_p8 VectorPermute64x2(const uint64x2_p8 val, const uint8x16_p8 mask)
{
return (uint64x2_p8)vec_perm(val, val, mask);
}
// Aligned load
template <class T> static inline
uint64x2_p8 VectorLoad64x2(const T* data, int offset)
{
return (uint64x2_p8)vec_ld(offset, (const uint8_t*)data);
}
// Unaligned load
template <class T> static inline
uint64x2_p8 VectorLoad64x2u(const T* data, int offset)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (uint64x2_p8)vec_xl(offset, (const uint8_t*)data);
#else
return (uint64x2_p8)vec_vsx_ld(offset, (const uint8_t*)data);
#endif
}
// Aligned store
template <class T> static inline
void VectorStore64x2(const uint64x2_p8 val, T* data, int offset)
{
vec_st((uint8x16_p8)val, offset, (uint8_t*)data);
}
// Unaligned store
template <class T> static inline
void VectorStore64x2u(const uint64x2_p8 val, T* data, int offset)
{
#if defined(CRYPTOPP_XLC_VERSION)
vec_xst((uint8x16_p8)val, offset, (uint8_t*)data);
#else
vec_vsx_st((uint8x16_p8)val, offset, (uint8_t*)data);
#endif
}
// Unaligned load of a user message. The load is big-endian,
// and then the message is permuted for 32-bit words.
template <class T> static inline
uint64x2_p8 VectorLoadMsg64x2(const T* data, int offset)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const uint8x16_p8 mask = {0,1,2,3, 4,5,6,7, 8,9,10,11, 12,13,14,15};
return VectorPermute64x2(VectorLoad64x2u(data, offset), mask);
#else
return VectorLoad64x2u(data, offset);
#endif
}
static inline
uint64x2_p8 VectorCh(const uint64x2_p8 x, const uint64x2_p8 y, const uint64x2_p8 z)
{
// The trick below is due to Andy Polyakov and Jack Lloyd
return vec_sel(z,y,x);
}
static inline
uint64x2_p8 VectorMaj(const uint64x2_p8 x, const uint64x2_p8 y, const uint64x2_p8 z)
{
// The trick below is due to Andy Polyakov and Jack Lloyd
return vec_sel(y, z, vec_xor(x, y));
}
static inline
uint64x2_p8 Vector_sigma0(const uint64x2_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmad(val, 0, 0);
#else
return __builtin_crypto_vshasigmad(val, 0, 0);
#endif
}
static inline
uint64x2_p8 Vector_sigma1(const uint64x2_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmad(val, 0, 0xf);
#else
return __builtin_crypto_vshasigmad(val, 0, 0xf);
#endif
}
static inline
uint64x2_p8 VectorSigma0(const uint64x2_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmad(val, 1, 0);
#else
return __builtin_crypto_vshasigmad(val, 1, 0);
#endif
}
static inline
uint64x2_p8 VectorSigma1(const uint64x2_p8 val)
{
#if defined(CRYPTOPP_XLC_VERSION)
return __vshasigmad(val, 1, 0xf);
#else
return __builtin_crypto_vshasigmad(val, 1, 0xf);
#endif
}
static inline
uint64x2_p8 VectorPack(const uint64x2_p8 x, const uint64x2_p8 y)
{
const uint8x16_p8 m = {0,1,2,3, 4,5,6,7, 16,17,18,19, 20,21,22,23};
return vec_perm(x,y,m);
}
template <unsigned int L> static inline
uint64x2_p8 VectorShiftLeft(const uint64x2_p8 val)
{
#if (defined(CRYPTOPP_LITTLE_ENDIAN))
return (uint64x2_p8)vec_sld((uint8x16_p8)val, (uint8x16_p8)val, (16-L)&0xf);
#else
return (uint64x2_p8)vec_sld((uint8x16_p8)val, (uint8x16_p8)val, L&0xf);
#endif
}
template <>
uint64x2_p8 VectorShiftLeft<0>(const uint64x2_p8 val) { return val; }
template <>
uint64x2_p8 VectorShiftLeft<16>(const uint64x2_p8 val) { return val; }
template <unsigned int R> static inline
void SHA512_ROUND1(uint64x2_p8 W[16], uint64x2_p8 S[8], const uint64x2_p8 K, const uint64x2_p8 M)
{
uint64x2_p8 T1, T2;
W[R] = M;
T1 = S[H] + VectorSigma1(S[E]) + VectorCh(S[E],S[F],S[G]) + K + M;
T2 = VectorSigma0(S[A]) + VectorMaj(S[A],S[B],S[C]);
S[H] = S[G]; S[G] = S[F]; S[F] = S[E];
S[E] = S[D] + T1;
S[D] = S[C]; S[C] = S[B]; S[B] = S[A];
S[A] = T1 + T2;
}
template <unsigned int R> static inline
void SHA512_ROUND2(uint64x2_p8 W[16], uint64x2_p8 S[8], const uint64x2_p8 K)
{
// Indexes into the W[] array
enum {IDX0=(R+0)&0xf, IDX1=(R+1)&0xf, IDX9=(R+9)&0xf, IDX14=(R+14)&0xf};
const uint64x2_p8 s0 = Vector_sigma0(W[IDX1]);
const uint64x2_p8 s1 = Vector_sigma1(W[IDX14]);
uint64x2_p8 T1 = (W[IDX0] += s0 + s1 + W[IDX9]);
T1 += S[H] + VectorSigma1(S[E]) + VectorCh(S[E],S[F],S[G]) + K;
uint64x2_p8 T2 = VectorSigma0(S[A]) + VectorMaj(S[A],S[B],S[C]);
S[H] = S[G]; S[G] = S[F]; S[F] = S[E];
S[E] = S[D] + T1;
S[D] = S[C]; S[C] = S[B]; S[B] = S[A];
S[A] = T1 + T2;
}
void SHA512_HashMultipleBlocks_POWER8(word64 *state, const word64 *data, size_t length, ByteOrder order)
{
CRYPTOPP_ASSERT(state); CRYPTOPP_ASSERT(data);
CRYPTOPP_ASSERT(length >= SHA512::BLOCKSIZE);
CRYPTOPP_UNUSED(order);
const uint64_t* k = reinterpret_cast<const uint64_t*>(SHA512_K);
const uint64_t* m = reinterpret_cast<const uint64_t*>(data);
uint64x2_p8 ab = VectorLoad64x2u(state+0, 0);
uint64x2_p8 cd = VectorLoad64x2u(state+2, 0);
uint64x2_p8 ef = VectorLoad64x2u(state+4, 0);
uint64x2_p8 gh = VectorLoad64x2u(state+6, 0);
uint64x2_p8 W[16], S[8], vm, vk;
size_t blocks = length / SHA512::BLOCKSIZE;
while (blocks--)
{
unsigned int i, offset=0;
S[A] = ab; S[C] = cd;
S[E] = ef; S[G] = gh;
S[B] = VectorShiftLeft<8>(S[A]);
S[D] = VectorShiftLeft<8>(S[C]);
S[F] = VectorShiftLeft<8>(S[E]);
S[H] = VectorShiftLeft<8>(S[G]);
// Unroll the loop to provide the round number as a constexpr
// for (unsigned int i=0; i<16; ++i)
{
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<0>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<1>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<2>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<3>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<4>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<5>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<6>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<7>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<8>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<9>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<10>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<11>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<12>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<13>(W,S, vk,vm);
vk = VectorLoad64x2(k, offset);
vm = VectorLoadMsg64x2(m, offset);
SHA512_ROUND1<14>(W,S, vk,vm);
offset+=16;
vk = VectorShiftLeft<8>(vk);
vm = VectorShiftLeft<8>(vm);
SHA512_ROUND1<15>(W,S, vk,vm);
}
m += 16; // 64-bit words, not bytes
for (i=16 ; i<80; i+=16)
{
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<0>(W,S, vk);
SHA512_ROUND2<1>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<2>(W,S, vk);
SHA512_ROUND2<3>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<4>(W,S, vk);
SHA512_ROUND2<5>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<6>(W,S, vk);
SHA512_ROUND2<7>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<8>(W,S, vk);
SHA512_ROUND2<9>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<10>(W,S, vk);
SHA512_ROUND2<11>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<12>(W,S, vk);
SHA512_ROUND2<13>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
vk = VectorLoad64x2(k, offset);
SHA512_ROUND2<14>(W,S, vk);
SHA512_ROUND2<15>(W,S, VectorShiftLeft<8>(vk));
offset+=16;
}
ab += VectorPack(S[A],S[B]);
cd += VectorPack(S[C],S[D]);
ef += VectorPack(S[E],S[F]);
gh += VectorPack(S[G],S[H]);
}
VectorStore64x2u(ab, state+0, 0);
VectorStore64x2u(cd, state+2, 0);
VectorStore64x2u(ef, state+4, 0);
VectorStore64x2u(gh, state+6, 0);
}
#endif // CRYPTOPP_POWER8_SHA_AVAILABLE
////////////////////////////////////////////////
// end Gustavo, Serra, Scalet and Walton code //
////////////////////////////////////////////////
NAMESPACE_END