ext-cryptopp/ppc_simd.h
2018-11-15 03:27:23 -05:00

896 lines
29 KiB
C++

// ppc_simd.h - written and placed in public domain by Jeffrey Walton
/// \file ppc_simd.h
/// \brief Support functions for PowerPC and vector operations
/// \details This header provides an agnostic interface into GCC and
/// IBM XL C/C++ compilers modulo their different built-in functions
/// for accessing vector intructions.
/// \details The abstractions are necesssary to support back to GCC 4.8.
/// GCC 4.8 and 4.9 are still popular, and they are the default
/// compiler for GCC112, GCC118 and others on the compile farm. Older
/// IBM XL C/C++ compilers also experience it due to lack of
/// <tt>vec_xl_be</tt> support on some platforms. Modern compilers
/// provide best support and don't need many of the little hacks below.
/// \since Crypto++ 6.0
// Use __ALTIVEC__, _ARCH_PWR7 and _ARCH_PWR8. The preprocessor macros
// depend on compiler options like -maltivec (and not compiler versions).
#ifndef CRYPTOPP_PPC_CRYPTO_H
#define CRYPTOPP_PPC_CRYPTO_H
#include "config.h"
#include "misc.h"
#if defined(__ALTIVEC__)
# include <altivec.h>
# undef vector
# undef pixel
# undef bool
#endif
// VectorLoad_ALTIVEC and VectorStore_ALTIVEC are too noisy on modern compilers
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdeprecated"
#endif
NAMESPACE_BEGIN(CryptoPP)
// Wrap everything in this file based on CRYPTOPP_ALTIVEC_AVAILABLE
#if defined(__ALTIVEC__) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
// Datatypes
typedef __vector unsigned char uint8x16_p;
typedef __vector unsigned short uint16x8_p;
typedef __vector unsigned int uint32x4_p;
#if defined(_ARCH_PWR8)
typedef __vector unsigned long long uint64x2_p;
#endif // _ARCH_PWR8
/// \brief Reverse a vector
/// \tparam T vector type
/// \param src the vector
/// \returns vector
/// \details Reverse() endian swaps the bytes in a vector
/// \since Crypto++ 6.0
template <class T>
inline T Reverse(const T src)
{
const uint8x16_p mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0};
return (T)vec_perm(src, src, mask);
}
//////////////////////// Loads ////////////////////////
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad_ALTIVEC(const byte src[16])
{
if (IsAlignedOn(src, 16))
{
return (uint32x4_p)vec_ld(0, src);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
const uint8x16_p perm = vec_lvsl(0, src);
const uint8x16_p low = vec_ld(0, src);
const uint8x16_p high = vec_ld(15, src);
return (uint32x4_p)vec_perm(low, high, perm);
}
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad_ALTIVEC(int off, const byte src[16])
{
if (IsAlignedOn(src, 16))
{
return (uint32x4_p)vec_ld(off, src);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
const uint8x16_p perm = vec_lvsl(off, src);
const uint8x16_p low = vec_ld(off, src);
const uint8x16_p high = vec_ld(15, src);
return (uint32x4_p)vec_perm(low, high, perm);
}
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(const byte src[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (uint32x4_p)vec_xl(0, (byte*)src);
# else
return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
# endif
#else
return VectorLoad_ALTIVEC(src);
#endif
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(int off, const byte src[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (uint32x4_p)vec_xl(off, (byte*)src);
# else
return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
# endif
#else
return VectorLoad_ALTIVEC(off, src);
#endif
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(const word32 src[4])
{
return VectorLoad((const byte*)src);
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the byte array
/// \details Loads a vector in native endian format from a byte array.
/// \note VectorLoad does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoad(int off, const word32 src[4])
{
return VectorLoad(off, (const byte*)src);
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoadBE will swap all bytes on little endian systems.
/// \note VectorLoadBE() does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadBE(const byte src[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (uint32x4_p)vec_xl_be(0, (byte*)src);
# else
# if (CRYPTOPP_BIG_ENDIAN)
return (uint32x4_p)vec_vsx_ld(0, (byte*)src);
# else
return (uint32x4_p)Reverse(vec_vsx_ld(0, (byte*)src));
# endif
# endif
#else // _ARCH_PWR7
# if (CRYPTOPP_BIG_ENDIAN)
return (uint32x4_p)VectorLoad((const byte*)src);
# else
return (uint32x4_p)Reverse(VectorLoad((const byte*)src));
# endif
#endif // _ARCH_PWR7
}
/// \brief Loads a vector from a byte array
/// \param src the byte array
/// \param off offset into the src byte array
/// \details Loads a vector in big endian format from a byte array.
/// VectorLoadBE will swap all bytes on little endian systems.
/// \note VectorLoadBE does not require an aligned array.
/// \since Crypto++ 6.0
inline uint32x4_p VectorLoadBE(int off, const byte src[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (uint32x4_p)vec_xl_be(off, (byte*)src);
# else
# if (CRYPTOPP_BIG_ENDIAN)
return (uint32x4_p)vec_vsx_ld(off, (byte*)src);
# else
return (uint32x4_p)Reverse(vec_vsx_ld(off, (byte*)src));
# endif
# endif
#else // _ARCH_PWR7
# if (CRYPTOPP_BIG_ENDIAN)
return (uint32x4_p)VectorLoad(off, (const byte*)src);
# else
return (uint32x4_p)Reverse(VectorLoad(off, (const byte*)src));
# endif
#endif // _ARCH_PWR7
}
//////////////////////// Stores ////////////////////////
template<class T>
inline void VectorStore_ALTIVEC(const T data, byte dest[16])
{
if (IsAlignedOn(dest, 16))
{
vec_st((uint8x16_p)data, 0, dest);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(0, dest));
vec_ste((uint8x16_p) perm, 0, (unsigned char*) dest);
vec_ste((uint16x8_p) perm, 1, (unsigned short*)dest);
vec_ste((uint32x4_p) perm, 3, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 4, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 8, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 12, (unsigned int*) dest);
vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
}
}
template<class T>
inline void VectorStore_ALTIVEC(const T data, int off, byte dest[16])
{
if (IsAlignedOn(dest, 16))
{
vec_st((uint8x16_p)data, off, dest);
}
else
{
// http://www.nxp.com/docs/en/reference-manual/ALTIVECPEM.pdf
uint8x16_p perm = (uint8x16_p)vec_perm(data, data, vec_lvsr(off, dest));
vec_ste((uint8x16_p) perm, 0, (unsigned char*) dest);
vec_ste((uint16x8_p) perm, 1, (unsigned short*)dest);
vec_ste((uint32x4_p) perm, 3, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 4, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 8, (unsigned int*) dest);
vec_ste((uint32x4_p) perm, 12, (unsigned int*) dest);
vec_ste((uint16x8_p) perm, 14, (unsigned short*)dest);
vec_ste((uint8x16_p) perm, 15, (unsigned char*) dest);
}
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details Stores a vector in native endian format to a byte array.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 6.0
template<class T>
inline void VectorStore(const T data, byte dest[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
vec_xst((uint8x16_p)data, 0, (byte*)dest);
# else
vec_vsx_st((uint8x16_p)data, 0, (byte*)dest);
# endif
#else
return VectorStore_ALTIVEC(data, 0, dest);
#endif
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the byte array
/// \details Stores a vector in native endian format to a byte array.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 6.0
template<class T>
inline void VectorStore(const T data, int off, byte dest[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
vec_xst((uint8x16_p)data, off, (byte*)dest);
# else
vec_vsx_st((uint8x16_p)data, off, (byte*)dest);
# endif
#else
return VectorStore_ALTIVEC(data, off, dest);
#endif
}
/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param off the byte offset into the array
/// \param dest the byte array
/// \details Stores a vector in native endian format to a byte array.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 8.0
template<class T>
inline void VectorStore(const T data, word32 dest[4])
{
VectorStore((uint8x16_p)data, 0, (byte*)dest);
}
/// \brief Stores a vector to a word array
/// \tparam T vector type
/// \param data the vector
/// \param dest the byte array
/// \details Stores a vector in native endian format to a byte array.
/// \note VectorStore does not require an aligned array.
/// \since Crypto++ 8.0
template<class T>
inline void VectorStore(const T data, int off, word32 dest[4])
{
VectorStore((uint8x16_p)data, off, (byte*)dest);
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStoreBE will swap all bytes on little endian systems.
/// \note VectorStoreBE does not require an aligned array.
/// \since Crypto++ 6.0
template <class T>
inline void VectorStoreBE(const T src, byte dest[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
vec_xst_be((uint8x16_p)src, 0, (byte*)dest);
# else
# if (CRYPTOPP_BIG_ENDIAN)
vec_vsx_st((uint8x16_p)src, 0, (byte*)dest);
# else
vec_vsx_st((uint8x16_p)Reverse(src), 0, (byte*)dest);
# endif
# endif
#else // _ARCH_PWR7
# if (CRYPTOPP_BIG_ENDIAN)
VectorStore((uint8x16_p)src, (byte*)dest);
# else
VectorStore((uint8x16_p)Reverse(src), (byte*)dest);
# endif
#endif // _ARCH_PWR7
}
/// \brief Stores a vector to a byte array
/// \tparam T vector type
/// \param src the vector
/// \param off offset into the dest byte array
/// \param dest the byte array
/// \details Stores a vector in big endian format to a byte array.
/// VectorStoreBE will swap all bytes on little endian systems.
/// \note VectorStoreBE does not require an aligned array.
/// \since Crypto++ 6.0
template <class T>
inline void VectorStoreBE(const T src, int off, byte dest[16])
{
#if defined(_ARCH_PWR7)
# if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
vec_xst_be((uint8x16_p)src, off, (byte*)dest);
# else
# if (CRYPTOPP_BIG_ENDIAN)
vec_vsx_st((uint8x16_p)src, off, (byte*)dest);
# else
vec_vsx_st((uint8x16_p)Reverse(src), off, (byte*)dest);
# endif
# endif
#else // _ARCH_PWR7
# if (CRYPTOPP_BIG_ENDIAN)
VectorStore((uint8x16_p)src, off, (byte*)dest);
# else
VectorStore((uint8x16_p)Reverse(src), off, (byte*)dest);
# endif
#endif // _ARCH_PWR7
}
//////////////////////// Miscellaneous ////////////////////////
/// \brief Permutes a vector
/// \tparam T vector type
/// \param vec the vector
/// \param mask vector mask
/// \returns vector
/// \details VectorPermute returns a new vector from vec based on
/// mask. mask is an uint8x16_p type vector. The return
/// vector is the same type as vec.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorPermute(const T1 vec, const T2 mask)
{
return (T1)vec_perm(vec, vec, (uint8x16_p)mask);
}
/// \brief Permutes two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \param mask vector mask
/// \returns vector
/// \details VectorPermute returns a new vector from vec1 and vec2
/// based on mask. mask is an uint8x16_p type vector. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorPermute(const T1 vec1, const T1 vec2, const T2 mask)
{
return (T1)vec_perm(vec1, vec2, (uint8x16_p)mask);
}
/// \brief AND two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VectorAnd returns a new vector from vec1 and vec2. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorAnd(const T1 vec1, const T2 vec2)
{
return (T1)vec_and(vec1, (T1)vec2);
}
/// \brief OR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VectorOr returns a new vector from vec1 and vec2. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorOr(const T1 vec1, const T2 vec2)
{
return (T1)vec_or(vec1, (T1)vec2);
}
/// \brief XOR two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VectorXor returns a new vector from vec1 and vec2. The return
/// vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorXor(const T1 vec1, const T2 vec2)
{
return (T1)vec_xor(vec1, (T1)vec2);
}
/// \brief Add two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VectorAdd returns a new vector from vec1 and vec2.
/// vec2 is cast to the same type as vec1. The return vector
/// is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorAdd(const T1 vec1, const T2 vec2)
{
return (T1)vec_add(vec1, (T1)vec2);
}
/// \brief Subtract two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VectorSub returns a new vector from vec1 and vec2.
/// vec2 is cast to the same type as vec1. The return vector
/// is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorSub(const T1 vec1, const T2 vec2)
{
return (T1)vec_sub(vec1, (T1)vec2);
}
/// \brief Add two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns vector
/// \details VectorAdd64 returns a new vector from vec1 and vec2.
/// vec1 and vec2 are added as uint64x2_p quantities.
/// \since Crypto++ 8.0
inline uint32x4_p VectorAdd64(const uint32x4_p& vec1, const uint32x4_p& vec2)
{
#if defined(_ARCH_PWR8)
return (uint32x4_p)vec_add((uint64x2_p)vec1, (uint64x2_p)vec2);
#else
// The carry mask selects carries from elements 1 and 3 and sets remaining
// elements to 0. The mask also shifts the carried values left by 4 bytes
// so the carries are added to elements 0 and 2.
const uint8x16_p cmask = {4,5,6,7, 16,16,16,16, 12,13,14,15, 16,16,16,16};
const uint32x4_p zero = {0, 0, 0, 0};
uint32x4_p cy = vec_addc(vec1, vec2);
cy = vec_perm(cy, zero, cmask);
return vec_add(vec_add(vec1, vec2), cy);
#endif
}
/// \brief Shift a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VectorShiftLeftOctet() returns a new vector after shifting the
/// concatenation of the zero vector and the source vector by the specified
/// number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VectorShiftLeftOctet() is <tt>vec_sld(a, z,
/// c)</tt>. On little endian machines VectorShiftLeftOctet() is translated to
/// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
/// if on a big endian machine as shown below.
/// <pre>
/// uint8x16_p x = VectorLoad(ptr);
/// uint8x16_p y = VectorShiftLeftOctet<12>(x);
/// </pre>
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
/// endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VectorShiftLeftOctet(const T vec)
{
const T zero = {0};
if (C >= 16)
{
// Out of range
return zero;
}
else if (C == 0)
{
// Noop
return vec;
}
else
{
#if (CRYPTOPP_BIG_ENDIAN)
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, C);
#else
return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, 16-C);
#endif
}
}
/// \brief Shift a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VectorShiftRightOctet() returns a new vector after shifting the
/// concatenation of the zero vector and the source vector by the specified
/// number of bytes. The return vector is the same type as vec.
/// \details On big endian machines VectorShiftRightOctet() is <tt>vec_sld(a, z,
/// c)</tt>. On little endian machines VectorShiftRightOctet() is translated to
/// <tt>vec_sld(z, a, 16-c)</tt>. You should always call the function as
/// if on a big endian machine as shown below.
/// <pre>
/// uint8x16_p x = VectorLoad(ptr);
/// uint8x16_p y = VectorShiftRightOctet<12>(y);
/// </pre>
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
/// endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VectorShiftRightOctet(const T vec)
{
const T zero = {0};
if (C >= 16)
{
// Out of range
return zero;
}
else if (C == 0)
{
// Noop
return vec;
}
else
{
#if (CRYPTOPP_BIG_ENDIAN)
return (T)vec_sld((uint8x16_p)zero, (uint8x16_p)vec, 16-C);
#else
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)zero, C);
#endif
}
}
/// \brief Rotate a vector left
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VectorRotateLeftOctet() returns a new vector after rotating the
/// concatenation of the source vector with itself by the specified
/// number of bytes. The return vector is the same type as vec.
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
/// endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VectorRotateLeftOctet(const T vec)
{
enum { R = C&0xf };
#if (CRYPTOPP_BIG_ENDIAN)
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#else
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 16-R);
#endif
}
/// \brief Rotate a vector right
/// \tparam C shift byte count
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \details VectorRotateRightOctet() returns a new vector after rotating the
/// concatenation of the source vector with itself by the specified
/// number of bytes. The return vector is the same type as vec.
/// \sa <A HREF="https://stackoverflow.com/q/46341923/608639">Is vec_sld
/// endian sensitive?</A> on Stack Overflow
/// \since Crypto++ 6.0
template <unsigned int C, class T>
inline T VectorRotateRightOctet(const T vec)
{
enum { R = C&0xf };
#if (CRYPTOPP_BIG_ENDIAN)
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 16-R);
#else
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, R);
#endif
}
/// \brief Rotate a vector left
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VectorRotateLeft rotates each element in a packed vector by bit count.
template<unsigned int C>
inline uint32x4_p VectorRotateLeft(const uint32x4_p vec)
{
const uint32x4_p m = {C, C, C, C};
return vec_rl(vec, m);
}
/// \brief Rotate a vector right
/// \tparam C shift bit count
/// \param vec the vector
/// \returns vector
/// \details VectorRotateRight rotates each element in a packed vector by bit count.
template<unsigned int C>
inline uint32x4_p VectorRotateRight(const uint32x4_p vec)
{
const uint32x4_p m = {32-C, 32-C, 32-C, 32-C};
return vec_rl(vec, m);
}
/// \brief Exchange high and low double words
/// \tparam T vector type
/// \param vec the vector
/// \returns vector
/// \since Crypto++ 7.0
template <class T>
inline T VectorSwapWords(const T vec)
{
return (T)vec_sld((uint8x16_p)vec, (uint8x16_p)vec, 8);
}
/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \returns vector created from low dword
/// \details VectorGetLow() extracts the low dword from a vector. The low dword
/// is composed of the least significant bits and occupies bytes 8 through 15
/// when viewed as a big endian array. The return vector is the same type as
/// the original vector and padded with 0's in the most significant bit positions.
template <class T>
inline T VectorGetLow(const T val)
{
//const T zero = {0};
//const uint8x16_p mask = {16,16,16,16, 16,16,16,16, 8,9,10,11, 12,13,14,15 };
//return (T)vec_perm(zero, val, mask);
return VectorShiftRightOctet<8>(VectorShiftLeftOctet<8>(val));
}
/// \brief Extract a dword from a vector
/// \tparam T vector type
/// \param val the vector
/// \returns vector created from high dword
/// \details VectorGetHigh() extracts the high dword from a vector. The high dword
/// is composed of the most significant bits and occupies bytes 0 through 7
/// when viewed as a big endian array. The return vector is the same type as
/// the original vector and padded with 0's in the most significant bit positions.
template <class T>
inline T VectorGetHigh(const T val)
{
//const T zero = {0};
//const uint8x16_p mask = {16,16,16,16, 16,16,16,16, 0,1,2,3, 4,5,6,7 };
//return (T)vec_perm(zero, val, mask);
return VectorShiftRightOctet<8>(val);
}
/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns true if vec1 equals vec2, false otherwise
template <class T1, class T2>
inline bool VectorEqual(const T1 vec1, const T2 vec2)
{
return 1 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}
/// \brief Compare two vectors
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \returns true if vec1 does not equal vec2, false otherwise
template <class T1, class T2>
inline bool VectorNotEqual(const T1 vec1, const T2 vec2)
{
return 0 == vec_all_eq((uint32x4_p)vec1, (uint32x4_p)vec2);
}
//////////////////////// Power8 Crypto ////////////////////////
#if defined(_ARCH_PWR8)
/// \brief One round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncrypt performs one round of AES encryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorEncrypt(const T1 state, const T2 key)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__GNUC__)
return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncryptLast performs the final round of AES encryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorEncryptLast(const T1 state, const T2 key)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__GNUC__)
return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief One round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecrypt performs one round of AES decryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorDecrypt(const T1 state, const T2 key)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__GNUC__)
return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecryptLast performs the final round of AES decryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template <class T1, class T2>
inline T1 VectorDecryptLast(const T1 state, const T2 key)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(__GNUC__)
return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA256 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template <int func, int subfunc, class T>
inline T VectorSHA256(const T vec)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T)__vshasigmaw((uint32x4_p)vec, func, subfunc);
#elif defined(__GNUC__)
return (T)__builtin_crypto_vshasigmaw((uint32x4_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA512 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template <int func, int subfunc, class T>
inline T VectorSHA512(const T vec)
{
#if defined(__xlc__) || defined(__xlC__) || defined(__clang__)
return (T)__vshasigmad((uint64x2_p)vec, func, subfunc);
#elif defined(__GNUC__)
return (T)__builtin_crypto_vshasigmad((uint64x2_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
#endif // _ARCH_PWR8
#endif // _ALTIVEC_
NAMESPACE_END
#if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE
# pragma GCC diagnostic pop
#endif
#endif // CRYPTOPP_PPC_CRYPTO_H