ext-cryptopp/eccrypto.h
2016-09-08 01:30:29 -04:00

377 lines
15 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// eccrypto.h - written and placed in the public domain by Wei Dai
//! \file eccrypto.h
//! \brief Classes and functions for Elliptic Curves over prime and binary fields
#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H
#include "config.h"
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "hmqv.h"
#include "fhmqv.h"
#include "ecp.h"
#include "ec2n.h"
NAMESPACE_BEGIN(CryptoPP)
//! \brief Elliptic Curve Parameters
//! \tparam EC elliptic curve field
//! \details This class corresponds to the ASN.1 sequence of the same name
//! in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
template <class EC>
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
{
typedef DL_GroupParameters_EC<EC> ThisClass;
public:
typedef EC EllipticCurve;
typedef typename EllipticCurve::Point Point;
typedef Point Element;
typedef IncompatibleCofactorMultiplication DefaultCofactorOption;
DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(false) {}
DL_GroupParameters_EC(const OID &oid)
: m_compress(false), m_encodeAsOID(false) {Initialize(oid);}
DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
: m_compress(false), m_encodeAsOID(false) {Initialize(ec, G, n, k);}
DL_GroupParameters_EC(BufferedTransformation &bt)
: m_compress(false), m_encodeAsOID(false) {BERDecode(bt);}
void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
{
this->m_groupPrecomputation.SetCurve(ec);
this->SetSubgroupGenerator(G);
m_n = n;
m_k = k;
}
void Initialize(const OID &oid);
// NameValuePairs
bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
void AssignFrom(const NameValuePairs &source);
// GeneratibleCryptoMaterial interface
//! this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);
// DL_GroupParameters
const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
const Integer & GetSubgroupOrder() const {return m_n;}
Integer GetCofactor() const;
bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
bool FastSubgroupCheckAvailable() const {return false;}
void EncodeElement(bool reversible, const Element &element, byte *encoded) const
{
if (reversible)
GetCurve().EncodePoint(encoded, element, m_compress);
else
element.x.Encode(encoded, GetEncodedElementSize(false));
}
virtual unsigned int GetEncodedElementSize(bool reversible) const
{
if (reversible)
return GetCurve().EncodedPointSize(m_compress);
else
return GetCurve().GetField().MaxElementByteLength();
}
Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
{
Point result;
if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
throw DL_BadElement();
if (checkForGroupMembership && !ValidateElement(1, result, NULL))
throw DL_BadElement();
return result;
}
Integer ConvertElementToInteger(const Element &element) const;
Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
bool IsIdentity(const Element &element) const {return element.identity;}
void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}
// ASN1Key
OID GetAlgorithmID() const;
// used by MQV
Element MultiplyElements(const Element &a, const Element &b) const;
Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;
// non-inherited
// enumerate OIDs for recommended parameters, use OID() to get first one
static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);
void BERDecode(BufferedTransformation &bt);
void DEREncode(BufferedTransformation &bt) const;
void SetPointCompression(bool compress) {m_compress = compress;}
bool GetPointCompression() const {return m_compress;}
void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
bool GetEncodeAsOID() const {return m_encodeAsOID;}
const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}
bool operator==(const ThisClass &rhs) const
{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}
#ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY
const Point& GetBasePoint() const {return this->GetSubgroupGenerator();}
const Integer& GetBasePointOrder() const {return this->GetSubgroupOrder();}
void LoadRecommendedParameters(const OID &oid) {Initialize(oid);}
#endif
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_GroupParameters_EC() {}
#endif
protected:
unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
unsigned int ExponentLength() const {return m_n.ByteCount();}
OID m_oid; // set if parameters loaded from a recommended curve
Integer m_n; // order of base point
mutable Integer m_k; // cofactor
mutable bool m_compress, m_encodeAsOID; // presentation details
};
//! EC public key
template <class EC>
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}
void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}
// X509PublicKey
void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePublicKey(BufferedTransformation &bt) const;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PublicKey_EC() {}
#endif
};
//! EC private key
template <class EC>
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
typedef typename EC::Point Element;
void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}
void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}
void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> &params)
{this->GenerateRandom(rng, params);}
void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}
// PKCS8PrivateKey
void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
void DEREncodePrivateKey(BufferedTransformation &bt) const;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_PrivateKey_EC() {}
#endif
};
//! Elliptic Curve Diffie-Hellman, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">ECDH</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECDH
{
typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDH() {}
#endif
};
/// Elliptic Curve Menezes-Qu-Vanstone, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">ECMQV</a>
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECMQV
{
typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECMQV() {}
#endif
};
//! \brief Hashed Menezes-Qu-Vanstone in ECP or EC2N
//! \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
//! Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECHMQV
{
typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECHMQV() {}
#endif
};
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECHMQV160;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;
//! \brief Fully Hashed Menezes-Qu-Vanstone in ECP or EC2N
//! \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
//! <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
//! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
template <class EC, class COFACTOR_OPTION = CPP_TYPENAME DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECFHMQV
{
typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECFHMQV() {}
#endif
};
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA1 >::Domain ECFHMQV160;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;
//! EC keys
template <class EC>
struct DL_Keys_EC
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_EC<EC> PrivateKey;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_EC() {}
#endif
};
template <class EC, class H>
struct ECDSA;
//! ECDSA keys
template <class EC>
struct DL_Keys_ECDSA
{
typedef DL_PublicKey_EC<EC> PublicKey;
typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Keys_ECDSA() {}
#endif
};
//! ECDSA algorithm
template <class EC>
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
{
public:
CRYPTOPP_CONSTEXPR static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECDSA() {}
#endif
};
//! ECNR algorithm
template <class EC>
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
{
public:
CRYPTOPP_CONSTEXPR static const char * CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~DL_Algorithm_ECNR() {}
#endif
};
//! <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
template <class EC, class H>
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
{
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECDSA() {}
#endif
};
//! ECNR
template <class EC, class H = SHA>
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
{
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECNR() {}
#endif
};
//! Elliptic Curve Integrated Encryption Scheme, AKA <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">ECIES</a>
/*! Default to (NoCofactorMultiplication and DHAES_MODE = false) for compatibilty with SEC1 and Crypto++ 4.2.
The combination of (IncompatibleCofactorMultiplication and DHAES_MODE = true) is recommended for best
efficiency and security. */
template <class EC, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = false>
struct ECIES
: public DL_ES<
DL_Keys_EC<EC>,
DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<SHA1> >,
DL_EncryptionAlgorithm_Xor<HMAC<SHA1>, DHAES_MODE>,
ECIES<EC> >
{
static std::string CRYPTOPP_API StaticAlgorithmName() {return "ECIES";} // TODO: fix this after name is standardized
#ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562
virtual ~ECIES() {}
#endif
#if (CRYPTOPP_GCC_VERSION >= 40500) || (CRYPTOPP_LLVM_CLANG_VERSION >= 20800)
} __attribute__((deprecated ("ECIES will be changing in the near future due to (1) an implementation bug and (2) an interop issue")));
#elif (CRYPTOPP_GCC_VERSION)
} __attribute__((deprecated));
#else
};
#endif
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif
NAMESPACE_BEGIN(CryptoPP)
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;
NAMESPACE_END
#endif