ext-cryptoppwin/include/algebra.h
2024-02-09 17:26:56 +02:00

454 lines
16 KiB
C++

// algebra.h - originally written and placed in the public domain by Wei Dai
/// \file algebra.h
/// \brief Classes for performing mathematics over different fields
#ifndef CRYPTOPP_ALGEBRA_H
#define CRYPTOPP_ALGEBRA_H
#include "config.h"
#include "integer.h"
#include "misc.h"
NAMESPACE_BEGIN(CryptoPP)
class Integer;
/// \brief Abstract group
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractGroup
{
public:
typedef T Element;
virtual ~AbstractGroup() {}
/// \brief Compare two elements for equality
/// \param a first element
/// \param b second element
/// \return true if the elements are equal, false otherwise
/// \details Equal() tests the elements for equality using <tt>a==b</tt>
virtual bool Equal(const Element &a, const Element &b) const =0;
/// \brief Provides the Identity element
/// \return the Identity element
virtual const Element& Identity() const =0;
/// \brief Adds elements in the group
/// \param a first element
/// \param b second element
/// \return the sum of <tt>a</tt> and <tt>b</tt>
virtual const Element& Add(const Element &a, const Element &b) const =0;
/// \brief Inverts the element in the group
/// \param a first element
/// \return the inverse of the element
virtual const Element& Inverse(const Element &a) const =0;
/// \brief Determine if inversion is fast
/// \return true if inversion is fast, false otherwise
virtual bool InversionIsFast() const {return false;}
/// \brief Doubles an element in the group
/// \param a the element
/// \return the element doubled
virtual const Element& Double(const Element &a) const;
/// \brief Subtracts elements in the group
/// \param a first element
/// \param b second element
/// \return the difference of <tt>a</tt> and <tt>b</tt>. The element <tt>a</tt> must provide a Subtract member function.
virtual const Element& Subtract(const Element &a, const Element &b) const;
/// \brief TODO
/// \param a first element
/// \param b second element
/// \return TODO
virtual Element& Accumulate(Element &a, const Element &b) const;
/// \brief Reduces an element in the congruence class
/// \param a element to reduce
/// \param b the congruence class
/// \return the reduced element
virtual Element& Reduce(Element &a, const Element &b) const;
/// \brief Performs a scalar multiplication
/// \param a multiplicand
/// \param e multiplier
/// \return the product
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
/// \brief TODO
/// \param x first multiplicand
/// \param e1 the first multiplier
/// \param y second multiplicand
/// \param e2 the second multiplier
/// \return TODO
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
/// \brief Multiplies a base to multiple exponents in a group
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousMultiply() multiplies the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousMultiply() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
virtual void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
};
/// \brief Abstract ring
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractRing : public AbstractGroup<T>
{
public:
typedef T Element;
/// \brief Construct an AbstractRing
AbstractRing() {m_mg.m_pRing = this;}
/// \brief Copy construct an AbstractRing
/// \param source other AbstractRing
AbstractRing(const AbstractRing &source)
{CRYPTOPP_UNUSED(source); m_mg.m_pRing = this;}
/// \brief Assign an AbstractRing
/// \param source other AbstractRing
AbstractRing& operator=(const AbstractRing &source)
{CRYPTOPP_UNUSED(source); return *this;}
/// \brief Determines whether an element is a unit in the group
/// \param a the element
/// \return true if the element is a unit after reduction, false otherwise.
virtual bool IsUnit(const Element &a) const =0;
/// \brief Retrieves the multiplicative identity
/// \return the multiplicative identity
virtual const Element& MultiplicativeIdentity() const =0;
/// \brief Multiplies elements in the group
/// \param a the multiplicand
/// \param b the multiplier
/// \return the product of a and b
virtual const Element& Multiply(const Element &a, const Element &b) const =0;
/// \brief Calculate the multiplicative inverse of an element in the group
/// \param a the element
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
/// \brief Square an element in the group
/// \param a the element
/// \return the element squared
virtual const Element& Square(const Element &a) const;
/// \brief Divides elements in the group
/// \param a the dividend
/// \param b the divisor
/// \return the quotient
virtual const Element& Divide(const Element &a, const Element &b) const;
/// \brief Raises a base to an exponent in the group
/// \param a the base
/// \param e the exponent
/// \return the exponentiation
virtual Element Exponentiate(const Element &a, const Integer &e) const;
/// \brief TODO
/// \param x first element
/// \param e1 first exponent
/// \param y second element
/// \param e2 second exponent
/// \return TODO
virtual Element CascadeExponentiate(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const;
/// \brief Exponentiates a base to multiple exponents in the Ring
/// \param results an array of Elements
/// \param base the base to raise to the exponents
/// \param exponents an array of exponents
/// \param exponentsCount the number of exponents in the array
/// \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the
/// result at the respective position in the results array.
/// \details SimultaneousExponentiate() must be implemented in a derived class.
/// \pre <tt>COUNTOF(results) == exponentsCount</tt>
/// \pre <tt>COUNTOF(exponents) == exponentsCount</tt>
virtual void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
/// \brief Retrieves the multiplicative group
/// \return the multiplicative group
virtual const AbstractGroup<T>& MultiplicativeGroup() const
{return m_mg;}
private:
class MultiplicativeGroupT : public AbstractGroup<T>
{
public:
const AbstractRing<T>& GetRing() const
{return *m_pRing;}
bool Equal(const Element &a, const Element &b) const
{return GetRing().Equal(a, b);}
const Element& Identity() const
{return GetRing().MultiplicativeIdentity();}
const Element& Add(const Element &a, const Element &b) const
{return GetRing().Multiply(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return a = GetRing().Multiply(a, b);}
const Element& Inverse(const Element &a) const
{return GetRing().MultiplicativeInverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return GetRing().Divide(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return a = GetRing().Divide(a, b);}
const Element& Double(const Element &a) const
{return GetRing().Square(a);}
Element ScalarMultiply(const Element &a, const Integer &e) const
{return GetRing().Exponentiate(a, e);}
Element CascadeScalarMultiply(const Element &x, const Integer &e1, const Element &y, const Integer &e2) const
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
void SimultaneousMultiply(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const
{GetRing().SimultaneousExponentiate(results, base, exponents, exponentsCount);}
const AbstractRing<T> *m_pRing;
};
MultiplicativeGroupT m_mg;
};
// ********************************************************
/// \brief Base and exponent
/// \tparam T base class or type
/// \tparam E exponent class or type
template <class T, class E = Integer>
struct BaseAndExponent
{
public:
BaseAndExponent() {}
BaseAndExponent(const T &base, const E &exponent) : base(base), exponent(exponent) {}
bool operator<(const BaseAndExponent<T, E> &rhs) const {return exponent < rhs.exponent;}
T base;
E exponent;
};
// VC60 workaround: incomplete member template support
template <class Element, class Iterator>
Element GeneralCascadeMultiplication(const AbstractGroup<Element> &group, Iterator begin, Iterator end);
template <class Element, class Iterator>
Element GeneralCascadeExponentiation(const AbstractRing<Element> &ring, Iterator begin, Iterator end);
// ********************************************************
/// \brief Abstract Euclidean domain
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class CRYPTOPP_NO_VTABLE AbstractEuclideanDomain : public AbstractRing<T>
{
public:
typedef T Element;
/// \brief Performs the division algorithm on two elements in the ring
/// \param r the remainder
/// \param q the quotient
/// \param a the dividend
/// \param d the divisor
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const =0;
/// \brief Performs a modular reduction in the ring
/// \param a the element
/// \param b the modulus
/// \return the result of <tt>a%b</tt>.
virtual const Element& Mod(const Element &a, const Element &b) const =0;
/// \brief Calculates the greatest common denominator in the ring
/// \param a the first element
/// \param b the second element
/// \return the greatest common denominator of a and b.
virtual const Element& Gcd(const Element &a, const Element &b) const;
protected:
mutable Element result;
};
// ********************************************************
/// \brief Euclidean domain
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class EuclideanDomainOf : public AbstractEuclideanDomain<T>
{
public:
typedef T Element;
EuclideanDomainOf() {}
bool Equal(const Element &a, const Element &b) const
{return a==b;}
const Element& Identity() const
{return Element::Zero();}
const Element& Add(const Element &a, const Element &b) const
{return result = a+b;}
Element& Accumulate(Element &a, const Element &b) const
{return a+=b;}
const Element& Inverse(const Element &a) const
{return result = -a;}
const Element& Subtract(const Element &a, const Element &b) const
{return result = a-b;}
Element& Reduce(Element &a, const Element &b) const
{return a-=b;}
const Element& Double(const Element &a) const
{return result = a.Doubled();}
const Element& MultiplicativeIdentity() const
{return Element::One();}
const Element& Multiply(const Element &a, const Element &b) const
{return result = a*b;}
const Element& Square(const Element &a) const
{return result = a.Squared();}
bool IsUnit(const Element &a) const
{return a.IsUnit();}
const Element& MultiplicativeInverse(const Element &a) const
{return result = a.MultiplicativeInverse();}
const Element& Divide(const Element &a, const Element &b) const
{return result = a/b;}
const Element& Mod(const Element &a, const Element &b) const
{return result = a%b;}
void DivisionAlgorithm(Element &r, Element &q, const Element &a, const Element &d) const
{Element::Divide(r, q, a, d);}
bool operator==(const EuclideanDomainOf<T> &rhs) const
{CRYPTOPP_UNUSED(rhs); return true;}
private:
mutable Element result;
};
/// \brief Quotient ring
/// \tparam T element class or type
/// \details <tt>const Element&</tt> returned by member functions are references
/// to internal data members. Since each object may have only
/// one such data member for holding results, the following code
/// will produce incorrect results:
/// <pre> abcd = group.Add(group.Add(a,b), group.Add(c,d));</pre>
/// But this should be fine:
/// <pre> abcd = group.Add(a, group.Add(b, group.Add(c,d));</pre>
template <class T> class QuotientRing : public AbstractRing<typename T::Element>
{
public:
typedef T EuclideanDomain;
typedef typename T::Element Element;
QuotientRing(const EuclideanDomain &domain, const Element &modulus)
: m_domain(domain), m_modulus(modulus) {}
const EuclideanDomain & GetDomain() const
{return m_domain;}
const Element& GetModulus() const
{return m_modulus;}
bool Equal(const Element &a, const Element &b) const
{return m_domain.Equal(m_domain.Mod(m_domain.Subtract(a, b), m_modulus), m_domain.Identity());}
const Element& Identity() const
{return m_domain.Identity();}
const Element& Add(const Element &a, const Element &b) const
{return m_domain.Add(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return m_domain.Accumulate(a, b);}
const Element& Inverse(const Element &a) const
{return m_domain.Inverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return m_domain.Subtract(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return m_domain.Reduce(a, b);}
const Element& Double(const Element &a) const
{return m_domain.Double(a);}
bool IsUnit(const Element &a) const
{return m_domain.IsUnit(m_domain.Gcd(a, m_modulus));}
const Element& MultiplicativeIdentity() const
{return m_domain.MultiplicativeIdentity();}
const Element& Multiply(const Element &a, const Element &b) const
{return m_domain.Mod(m_domain.Multiply(a, b), m_modulus);}
const Element& Square(const Element &a) const
{return m_domain.Mod(m_domain.Square(a), m_modulus);}
const Element& MultiplicativeInverse(const Element &a) const;
bool operator==(const QuotientRing<T> &rhs) const
{return m_domain == rhs.m_domain && m_modulus == rhs.m_modulus;}
protected:
EuclideanDomain m_domain;
Element m_modulus;
};
NAMESPACE_END
#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "algebra.cpp"
#endif
#endif