// Formatting library for C++ - the core API for char/UTF-8 // // Copyright (c) 2012 - present, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_CORE_H_ #define FMT_CORE_H_ #include // std::byte #include // std::FILE #include // std::strlen #include // std::back_insert_iterator #include // std::numeric_limits #include #include // The fmt library version in the form major * 10000 + minor * 100 + patch. #define FMT_VERSION 100200 #if defined(__clang__) && !defined(__ibmxl__) # define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__) #else # define FMT_CLANG_VERSION 0 #endif #if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && \ !defined(__NVCOMPILER) # define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__) #else # define FMT_GCC_VERSION 0 #endif #ifndef FMT_GCC_PRAGMA // Workaround _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884. # if FMT_GCC_VERSION >= 504 # define FMT_GCC_PRAGMA(arg) _Pragma(arg) # else # define FMT_GCC_PRAGMA(arg) # endif #endif #ifdef __ICL # define FMT_ICC_VERSION __ICL #elif defined(__INTEL_COMPILER) # define FMT_ICC_VERSION __INTEL_COMPILER #else # define FMT_ICC_VERSION 0 #endif #ifdef _MSC_VER # define FMT_MSC_VERSION _MSC_VER # define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__)) #else # define FMT_MSC_VERSION 0 # define FMT_MSC_WARNING(...) #endif #ifdef _GLIBCXX_RELEASE # define FMT_GLIBCXX_RELEASE _GLIBCXX_RELEASE #else # define FMT_GLIBCXX_RELEASE 0 #endif #ifdef _MSVC_LANG # define FMT_CPLUSPLUS _MSVC_LANG #else # define FMT_CPLUSPLUS __cplusplus #endif #ifdef __has_feature # define FMT_HAS_FEATURE(x) __has_feature(x) #else # define FMT_HAS_FEATURE(x) 0 #endif #if defined(__has_include) || FMT_ICC_VERSION >= 1600 || FMT_MSC_VERSION > 1900 # define FMT_HAS_INCLUDE(x) __has_include(x) #else # define FMT_HAS_INCLUDE(x) 0 #endif #ifdef __has_cpp_attribute # define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x) #else # define FMT_HAS_CPP_ATTRIBUTE(x) 0 #endif #define FMT_HAS_CPP14_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #define FMT_HAS_CPP17_ATTRIBUTE(attribute) \ (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute)) #ifndef FMT_DEPRECATED # if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900 # define FMT_DEPRECATED [[deprecated]] # else # if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__) # define FMT_DEPRECATED __attribute__((deprecated)) # elif FMT_MSC_VERSION # define FMT_DEPRECATED __declspec(deprecated) # else # define FMT_DEPRECATED /* deprecated */ # endif # endif #endif // Check if relaxed C++14 constexpr is supported. // GCC doesn't allow throw in constexpr until version 6 (bug 67371). #ifndef FMT_USE_CONSTEXPR # if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \ (FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) && \ !FMT_ICC_VERSION && (!defined(__NVCC__) || FMT_CPLUSPLUS >= 202002L) # define FMT_USE_CONSTEXPR 1 # else # define FMT_USE_CONSTEXPR 0 # endif #endif #if FMT_USE_CONSTEXPR # define FMT_CONSTEXPR constexpr #else # define FMT_CONSTEXPR #endif #if (FMT_CPLUSPLUS >= 202002L || \ (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002)) && \ ((!FMT_GLIBCXX_RELEASE || FMT_GLIBCXX_RELEASE >= 10) && \ (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION >= 10000) && \ (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1928)) && \ defined(__cpp_lib_is_constant_evaluated) # define FMT_CONSTEXPR20 constexpr #else # define FMT_CONSTEXPR20 #endif // Check if constexpr std::char_traits<>::{compare,length} are supported. #if FMT_CPLUSPLUS < 201703L // Not supported. #elif FMT_GLIBCXX_RELEASE >= 7 || \ (defined(_LIBCPP_VERSION) && _LIBCPP_VERSION >= 4000) || \ FMT_MSC_VERSION >= 1914 # define FMT_CONSTEXPR_CHAR_TRAITS constexpr #endif #ifndef FMT_CONSTEXPR_CHAR_TRAITS # define FMT_CONSTEXPR_CHAR_TRAITS #endif // Check if exceptions are disabled. #ifndef FMT_EXCEPTIONS # if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \ (FMT_MSC_VERSION && !_HAS_EXCEPTIONS) # define FMT_EXCEPTIONS 0 # else # define FMT_EXCEPTIONS 1 # endif #endif // Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings. #if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && \ !defined(__NVCC__) # define FMT_NORETURN [[noreturn]] #else # define FMT_NORETURN #endif #ifndef FMT_NODISCARD # if FMT_HAS_CPP17_ATTRIBUTE(nodiscard) # define FMT_NODISCARD [[nodiscard]] # else # define FMT_NODISCARD # endif #endif #ifndef FMT_INLINE # if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_INLINE inline __attribute__((always_inline)) # else # define FMT_INLINE inline # endif #endif #ifdef _MSC_VER # define FMT_UNCHECKED_ITERATOR(It) \ using _Unchecked_type = It // Mark iterator as checked. #else # define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It #endif #ifndef FMT_BEGIN_NAMESPACE # define FMT_BEGIN_NAMESPACE \ namespace fmt { \ inline namespace v10 { # define FMT_END_NAMESPACE \ } \ } #endif #ifndef FMT_EXPORT # define FMT_EXPORT # define FMT_BEGIN_EXPORT # define FMT_END_EXPORT #endif #if FMT_GCC_VERSION || FMT_CLANG_VERSION # define FMT_VISIBILITY(value) __attribute__((visibility(value))) #else # define FMT_VISIBILITY(value) #endif #if !defined(FMT_HEADER_ONLY) && defined(_WIN32) # if defined(FMT_LIB_EXPORT) # define FMT_API __declspec(dllexport) # elif defined(FMT_SHARED) # define FMT_API __declspec(dllimport) # endif #elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED) # define FMT_API FMT_VISIBILITY("default") #endif #ifndef FMT_API # define FMT_API #endif // libc++ supports string_view in pre-c++17. #if FMT_HAS_INCLUDE() && \ (FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION)) # include # define FMT_USE_STRING_VIEW #elif FMT_HAS_INCLUDE("experimental/string_view") && FMT_CPLUSPLUS >= 201402L # include # define FMT_USE_EXPERIMENTAL_STRING_VIEW #endif #ifndef FMT_UNICODE # define FMT_UNICODE !FMT_MSC_VERSION #endif #ifndef FMT_CONSTEVAL # if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \ (!defined(__apple_build_version__) || \ __apple_build_version__ >= 14000029L) && \ FMT_CPLUSPLUS >= 202002L) || \ (defined(__cpp_consteval) && \ (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1929)) // consteval is broken in MSVC before VS2019 version 16.10 and Apple clang // before 14. # define FMT_CONSTEVAL consteval # define FMT_HAS_CONSTEVAL # else # define FMT_CONSTEVAL # endif #endif #ifndef FMT_USE_NONTYPE_TEMPLATE_ARGS # if defined(__cpp_nontype_template_args) && \ ((FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L) || \ __cpp_nontype_template_args >= 201911L) && \ !defined(__NVCOMPILER) && !defined(__LCC__) # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1 # else # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0 # endif #endif // GCC < 5 requires this-> in decltype. #ifndef FMT_DECLTYPE_THIS # if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 # define FMT_DECLTYPE_THIS this-> # else # define FMT_DECLTYPE_THIS # endif #endif // Enable minimal optimizations for more compact code in debug mode. FMT_GCC_PRAGMA("GCC push_options") #if !defined(__OPTIMIZE__) && !defined(__NVCOMPILER) && !defined(__LCC__) && \ !defined(__CUDACC__) FMT_GCC_PRAGMA("GCC optimize(\"Og\")") #endif FMT_BEGIN_NAMESPACE // Implementations of enable_if_t and other metafunctions for older systems. template using enable_if_t = typename std::enable_if::type; template using conditional_t = typename std::conditional::type; template using bool_constant = std::integral_constant; template using remove_reference_t = typename std::remove_reference::type; template using remove_const_t = typename std::remove_const::type; template using remove_cvref_t = typename std::remove_cv>::type; template struct type_identity { using type = T; }; template using type_identity_t = typename type_identity::type; template using underlying_t = typename std::underlying_type::type; // Checks whether T is a container with contiguous storage. template struct is_contiguous : std::false_type {}; template struct is_contiguous> : std::true_type {}; struct monostate { constexpr monostate() {} }; // An enable_if helper to be used in template parameters which results in much // shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed // to workaround a bug in MSVC 2019 (see #1140 and #1186). #ifdef FMT_DOC # define FMT_ENABLE_IF(...) #else # define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0 #endif // This is defined in core.h instead of format.h to avoid injecting in std. // It is a template to avoid undesirable implicit conversions to std::byte. #ifdef __cpp_lib_byte template ::value)> inline auto format_as(T b) -> unsigned char { return static_cast(b); } #endif namespace detail { // Suppresses "unused variable" warnings with the method described in // https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/. // (void)var does not work on many Intel compilers. template FMT_CONSTEXPR void ignore_unused(const T&...) {} constexpr FMT_INLINE auto is_constant_evaluated( bool default_value = false) noexcept -> bool { // Workaround for incompatibility between libstdc++ consteval-based // std::is_constant_evaluated() implementation and clang-14: // https://github.com/fmtlib/fmt/issues/3247. #if FMT_CPLUSPLUS >= 202002L && FMT_GLIBCXX_RELEASE >= 12 && \ (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500) ignore_unused(default_value); return __builtin_is_constant_evaluated(); #elif defined(__cpp_lib_is_constant_evaluated) ignore_unused(default_value); return std::is_constant_evaluated(); #else return default_value; #endif } // Suppresses "conditional expression is constant" warnings. template constexpr FMT_INLINE auto const_check(T value) -> T { return value; } FMT_NORETURN FMT_API void assert_fail(const char* file, int line, const char* message); #ifndef FMT_ASSERT # ifdef NDEBUG // FMT_ASSERT is not empty to avoid -Wempty-body. # define FMT_ASSERT(condition, message) \ fmt::detail::ignore_unused((condition), (message)) # else # define FMT_ASSERT(condition, message) \ ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \ ? (void)0 \ : fmt::detail::assert_fail(__FILE__, __LINE__, (message))) # endif #endif #if defined(FMT_USE_STRING_VIEW) template using std_string_view = std::basic_string_view; #elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW) template using std_string_view = std::experimental::basic_string_view; #else template struct std_string_view {}; #endif #ifdef FMT_USE_INT128 // Do nothing. #elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \ !(FMT_CLANG_VERSION && FMT_MSC_VERSION) # define FMT_USE_INT128 1 using int128_opt = __int128_t; // An optional native 128-bit integer. using uint128_opt = __uint128_t; template inline auto convert_for_visit(T value) -> T { return value; } #else # define FMT_USE_INT128 0 #endif #if !FMT_USE_INT128 enum class int128_opt {}; enum class uint128_opt {}; // Reduce template instantiations. template auto convert_for_visit(T) -> monostate { return {}; } #endif // Casts a nonnegative integer to unsigned. template FMT_CONSTEXPR auto to_unsigned(Int value) -> typename std::make_unsigned::type { FMT_ASSERT(std::is_unsigned::value || value >= 0, "negative value"); return static_cast::type>(value); } FMT_CONSTEXPR inline auto is_utf8() -> bool { FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char section[] = "\u00A7"; // Avoid buggy sign extensions in MSVC's constant evaluation mode (#2297). using uchar = unsigned char; return FMT_UNICODE || (sizeof(section) == 3 && uchar(section[0]) == 0xC2 && uchar(section[1]) == 0xA7); } } // namespace detail /** An implementation of ``std::basic_string_view`` for pre-C++17. It provides a subset of the API. ``fmt::basic_string_view`` is used for format strings even if ``std::string_view`` is available to prevent issues when a library is compiled with a different ``-std`` option than the client code (which is not recommended). */ FMT_EXPORT template class basic_string_view { private: const Char* data_; size_t size_; public: using value_type = Char; using iterator = const Char*; constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {} /** Constructs a string reference object from a C string and a size. */ constexpr basic_string_view(const Char* s, size_t count) noexcept : data_(s), size_(count) {} /** \rst Constructs a string reference object from a C string computing the size with ``std::char_traits::length``. \endrst */ FMT_CONSTEXPR_CHAR_TRAITS FMT_INLINE basic_string_view(const Char* s) : data_(s), size_(detail::const_check(std::is_same::value && !detail::is_constant_evaluated(true)) ? std::strlen(reinterpret_cast(s)) : std::char_traits::length(s)) {} /** Constructs a string reference from a ``std::basic_string`` object. */ template FMT_CONSTEXPR basic_string_view( const std::basic_string& s) noexcept : data_(s.data()), size_(s.size()) {} template >::value)> FMT_CONSTEXPR basic_string_view(S s) noexcept : data_(s.data()), size_(s.size()) {} /** Returns a pointer to the string data. */ constexpr auto data() const noexcept -> const Char* { return data_; } /** Returns the string size. */ constexpr auto size() const noexcept -> size_t { return size_; } constexpr auto begin() const noexcept -> iterator { return data_; } constexpr auto end() const noexcept -> iterator { return data_ + size_; } constexpr auto operator[](size_t pos) const noexcept -> const Char& { return data_[pos]; } FMT_CONSTEXPR void remove_prefix(size_t n) noexcept { data_ += n; size_ -= n; } FMT_CONSTEXPR_CHAR_TRAITS auto starts_with( basic_string_view sv) const noexcept -> bool { return size_ >= sv.size_ && std::char_traits::compare(data_, sv.data_, sv.size_) == 0; } FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(Char c) const noexcept -> bool { return size_ >= 1 && std::char_traits::eq(*data_, c); } FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(const Char* s) const -> bool { return starts_with(basic_string_view(s)); } // Lexicographically compare this string reference to other. FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int { size_t str_size = size_ < other.size_ ? size_ : other.size_; int result = std::char_traits::compare(data_, other.data_, str_size); if (result == 0) result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1); return result; } FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) == 0; } friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) != 0; } friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) < 0; } friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) <= 0; } friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) > 0; } friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool { return lhs.compare(rhs) >= 0; } }; FMT_EXPORT using string_view = basic_string_view; /** Specifies if ``T`` is a character type. Can be specialized by users. */ FMT_EXPORT template struct is_char : std::false_type {}; template <> struct is_char : std::true_type {}; namespace detail { // A base class for compile-time strings. struct compile_string {}; template struct is_compile_string : std::is_base_of {}; template ::value)> FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view { return s; } template inline auto to_string_view(const std::basic_string& s) -> basic_string_view { return s; } template constexpr auto to_string_view(basic_string_view s) -> basic_string_view { return s; } template >::value)> inline auto to_string_view(std_string_view s) -> basic_string_view { return s; } template ::value)> constexpr auto to_string_view(const S& s) -> basic_string_view { return basic_string_view(s); } void to_string_view(...); // Specifies whether S is a string type convertible to fmt::basic_string_view. // It should be a constexpr function but MSVC 2017 fails to compile it in // enable_if and MSVC 2015 fails to compile it as an alias template. // ADL is intentionally disabled as to_string_view is not an extension point. template struct is_string : std::is_class()))> {}; template struct char_t_impl {}; template struct char_t_impl::value>> { using result = decltype(to_string_view(std::declval())); using type = typename result::value_type; }; enum class type { none_type, // Integer types should go first, int_type, uint_type, long_long_type, ulong_long_type, int128_type, uint128_type, bool_type, char_type, last_integer_type = char_type, // followed by floating-point types. float_type, double_type, long_double_type, last_numeric_type = long_double_type, cstring_type, string_type, pointer_type, custom_type }; // Maps core type T to the corresponding type enum constant. template struct type_constant : std::integral_constant {}; #define FMT_TYPE_CONSTANT(Type, constant) \ template \ struct type_constant \ : std::integral_constant {} FMT_TYPE_CONSTANT(int, int_type); FMT_TYPE_CONSTANT(unsigned, uint_type); FMT_TYPE_CONSTANT(long long, long_long_type); FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type); FMT_TYPE_CONSTANT(int128_opt, int128_type); FMT_TYPE_CONSTANT(uint128_opt, uint128_type); FMT_TYPE_CONSTANT(bool, bool_type); FMT_TYPE_CONSTANT(Char, char_type); FMT_TYPE_CONSTANT(float, float_type); FMT_TYPE_CONSTANT(double, double_type); FMT_TYPE_CONSTANT(long double, long_double_type); FMT_TYPE_CONSTANT(const Char*, cstring_type); FMT_TYPE_CONSTANT(basic_string_view, string_type); FMT_TYPE_CONSTANT(const void*, pointer_type); constexpr auto is_integral_type(type t) -> bool { return t > type::none_type && t <= type::last_integer_type; } constexpr auto is_arithmetic_type(type t) -> bool { return t > type::none_type && t <= type::last_numeric_type; } constexpr auto set(type rhs) -> int { return 1 << static_cast(rhs); } constexpr auto in(type t, int set) -> bool { return ((set >> static_cast(t)) & 1) != 0; } // Bitsets of types. enum { sint_set = set(type::int_type) | set(type::long_long_type) | set(type::int128_type), uint_set = set(type::uint_type) | set(type::ulong_long_type) | set(type::uint128_type), bool_set = set(type::bool_type), char_set = set(type::char_type), float_set = set(type::float_type) | set(type::double_type) | set(type::long_double_type), string_set = set(type::string_type), cstring_set = set(type::cstring_type), pointer_set = set(type::pointer_type) }; } // namespace detail /** Throws ``format_error`` with a given message. */ FMT_NORETURN FMT_API void throw_format_error(const char* message); /** String's character type. */ template using char_t = typename detail::char_t_impl::type; /** \rst Parsing context consisting of a format string range being parsed and an argument counter for automatic indexing. You can use the ``format_parse_context`` type alias for ``char`` instead. \endrst */ FMT_EXPORT template class basic_format_parse_context { private: basic_string_view format_str_; int next_arg_id_; FMT_CONSTEXPR void do_check_arg_id(int id); public: using char_type = Char; using iterator = const Char*; explicit constexpr basic_format_parse_context( basic_string_view format_str, int next_arg_id = 0) : format_str_(format_str), next_arg_id_(next_arg_id) {} /** Returns an iterator to the beginning of the format string range being parsed. */ constexpr auto begin() const noexcept -> iterator { return format_str_.begin(); } /** Returns an iterator past the end of the format string range being parsed. */ constexpr auto end() const noexcept -> iterator { return format_str_.end(); } /** Advances the begin iterator to ``it``. */ FMT_CONSTEXPR void advance_to(iterator it) { format_str_.remove_prefix(detail::to_unsigned(it - begin())); } /** Reports an error if using the manual argument indexing; otherwise returns the next argument index and switches to the automatic indexing. */ FMT_CONSTEXPR auto next_arg_id() -> int { if (next_arg_id_ < 0) { throw_format_error( "cannot switch from manual to automatic argument indexing"); return 0; } int id = next_arg_id_++; do_check_arg_id(id); return id; } /** Reports an error if using the automatic argument indexing; otherwise switches to the manual indexing. */ FMT_CONSTEXPR void check_arg_id(int id) { if (next_arg_id_ > 0) { throw_format_error( "cannot switch from automatic to manual argument indexing"); return; } next_arg_id_ = -1; do_check_arg_id(id); } FMT_CONSTEXPR void check_arg_id(basic_string_view) {} FMT_CONSTEXPR void check_dynamic_spec(int arg_id); }; FMT_EXPORT using format_parse_context = basic_format_parse_context; namespace detail { // A parse context with extra data used only in compile-time checks. template class compile_parse_context : public basic_format_parse_context { private: int num_args_; const type* types_; using base = basic_format_parse_context; public: explicit FMT_CONSTEXPR compile_parse_context( basic_string_view format_str, int num_args, const type* types, int next_arg_id = 0) : base(format_str, next_arg_id), num_args_(num_args), types_(types) {} constexpr auto num_args() const -> int { return num_args_; } constexpr auto arg_type(int id) const -> type { return types_[id]; } FMT_CONSTEXPR auto next_arg_id() -> int { int id = base::next_arg_id(); if (id >= num_args_) throw_format_error("argument not found"); return id; } FMT_CONSTEXPR void check_arg_id(int id) { base::check_arg_id(id); if (id >= num_args_) throw_format_error("argument not found"); } using base::check_arg_id; FMT_CONSTEXPR void check_dynamic_spec(int arg_id) { detail::ignore_unused(arg_id); #if !defined(__LCC__) if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id])) throw_format_error("width/precision is not integer"); #endif } }; // Extracts a reference to the container from back_insert_iterator. template inline auto get_container(std::back_insert_iterator it) -> Container& { using base = std::back_insert_iterator; struct accessor : base { accessor(base b) : base(b) {} using base::container; }; return *accessor(it).container; } template FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out) -> OutputIt { while (begin != end) *out++ = static_cast(*begin++); return out; } template , U>::value&& is_char::value)> FMT_CONSTEXPR auto copy_str(T* begin, T* end, U* out) -> U* { if (is_constant_evaluated()) return copy_str(begin, end, out); auto size = to_unsigned(end - begin); if (size > 0) memcpy(out, begin, size * sizeof(U)); return out + size; } /** \rst A contiguous memory buffer with an optional growing ability. It is an internal class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`. \endrst */ template class buffer { private: T* ptr_; size_t size_; size_t capacity_; using grow_fun = void (*)(buffer& buf, size_t capacity); grow_fun grow_; protected: // Don't initialize ptr_ since it is not accessed to save a few cycles. FMT_MSC_WARNING(suppress : 26495) FMT_CONSTEXPR buffer(grow_fun grow, size_t sz) noexcept : size_(sz), capacity_(sz), grow_(grow) {} FMT_CONSTEXPR20 buffer(grow_fun grow, T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept : ptr_(p), size_(sz), capacity_(cap), grow_(grow) {} FMT_CONSTEXPR20 ~buffer() = default; buffer(buffer&&) = default; /** Sets the buffer data and capacity. */ FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept { ptr_ = buf_data; capacity_ = buf_capacity; } public: using value_type = T; using const_reference = const T&; buffer(const buffer&) = delete; void operator=(const buffer&) = delete; FMT_INLINE auto begin() noexcept -> T* { return ptr_; } FMT_INLINE auto end() noexcept -> T* { return ptr_ + size_; } FMT_INLINE auto begin() const noexcept -> const T* { return ptr_; } FMT_INLINE auto end() const noexcept -> const T* { return ptr_ + size_; } /** Returns the size of this buffer. */ constexpr auto size() const noexcept -> size_t { return size_; } /** Returns the capacity of this buffer. */ constexpr auto capacity() const noexcept -> size_t { return capacity_; } /** Returns a pointer to the buffer data (not null-terminated). */ FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; } FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; } /** Clears this buffer. */ void clear() { size_ = 0; } // Tries resizing the buffer to contain *count* elements. If T is a POD type // the new elements may not be initialized. FMT_CONSTEXPR20 void try_resize(size_t count) { try_reserve(count); size_ = count <= capacity_ ? count : capacity_; } // Tries increasing the buffer capacity to *new_capacity*. It can increase the // capacity by a smaller amount than requested but guarantees there is space // for at least one additional element either by increasing the capacity or by // flushing the buffer if it is full. FMT_CONSTEXPR20 void try_reserve(size_t new_capacity) { if (new_capacity > capacity_) grow_(*this, new_capacity); } FMT_CONSTEXPR20 void push_back(const T& value) { try_reserve(size_ + 1); ptr_[size_++] = value; } /** Appends data to the end of the buffer. */ template void append(const U* begin, const U* end); template FMT_CONSTEXPR auto operator[](Idx index) -> T& { return ptr_[index]; } template FMT_CONSTEXPR auto operator[](Idx index) const -> const T& { return ptr_[index]; } }; struct buffer_traits { explicit buffer_traits(size_t) {} auto count() const -> size_t { return 0; } auto limit(size_t size) -> size_t { return size; } }; class fixed_buffer_traits { private: size_t count_ = 0; size_t limit_; public: explicit fixed_buffer_traits(size_t limit) : limit_(limit) {} auto count() const -> size_t { return count_; } auto limit(size_t size) -> size_t { size_t n = limit_ > count_ ? limit_ - count_ : 0; count_ += size; return size < n ? size : n; } }; // A buffer that writes to an output iterator when flushed. template class iterator_buffer final : public Traits, public buffer { private: OutputIt out_; enum { buffer_size = 256 }; T data_[buffer_size]; static FMT_CONSTEXPR20 void grow(buffer& buf, size_t) { if (buf.size() == buffer_size) static_cast(buf).flush(); } void flush() { auto size = this->size(); this->clear(); out_ = copy_str(data_, data_ + this->limit(size), out_); } public: explicit iterator_buffer(OutputIt out, size_t n = buffer_size) : Traits(n), buffer(grow, data_, 0, buffer_size), out_(out) {} iterator_buffer(iterator_buffer&& other) : Traits(other), buffer(grow, data_, 0, buffer_size), out_(other.out_) {} ~iterator_buffer() { flush(); } auto out() -> OutputIt { flush(); return out_; } auto count() const -> size_t { return Traits::count() + this->size(); } }; template class iterator_buffer final : public fixed_buffer_traits, public buffer { private: T* out_; enum { buffer_size = 256 }; T data_[buffer_size]; static FMT_CONSTEXPR20 void grow(buffer& buf, size_t) { if (buf.size() == buf.capacity()) static_cast(buf).flush(); } void flush() { size_t n = this->limit(this->size()); if (this->data() == out_) { out_ += n; this->set(data_, buffer_size); } this->clear(); } public: explicit iterator_buffer(T* out, size_t n = buffer_size) : fixed_buffer_traits(n), buffer(grow, out, 0, n), out_(out) {} iterator_buffer(iterator_buffer&& other) : fixed_buffer_traits(other), buffer(std::move(other)), out_(other.out_) { if (this->data() != out_) { this->set(data_, buffer_size); this->clear(); } } ~iterator_buffer() { flush(); } auto out() -> T* { flush(); return out_; } auto count() const -> size_t { return fixed_buffer_traits::count() + this->size(); } }; template class iterator_buffer final : public buffer { public: explicit iterator_buffer(T* out, size_t = 0) : buffer([](buffer&, size_t) {}, out, 0, ~size_t()) {} auto out() -> T* { return &*this->end(); } }; // A buffer that writes to a container with the contiguous storage. template class iterator_buffer, enable_if_t::value, typename Container::value_type>> final : public buffer { private: using value_type = typename Container::value_type; Container& container_; static FMT_CONSTEXPR20 void grow(buffer& buf, size_t capacity) { auto& self = static_cast(buf); self.container_.resize(capacity); self.set(&self.container_[0], capacity); } public: explicit iterator_buffer(Container& c) : buffer(grow, c.size()), container_(c) {} explicit iterator_buffer(std::back_insert_iterator out, size_t = 0) : iterator_buffer(get_container(out)) {} auto out() -> std::back_insert_iterator { return std::back_inserter(container_); } }; // A buffer that counts the number of code units written discarding the output. template class counting_buffer final : public buffer { private: enum { buffer_size = 256 }; T data_[buffer_size]; size_t count_ = 0; static FMT_CONSTEXPR20 void grow(buffer& buf, size_t) { if (buf.size() != buffer_size) return; static_cast(buf).count_ += buf.size(); buf.clear(); } public: counting_buffer() : buffer(grow, data_, 0, buffer_size) {} auto count() -> size_t { return count_ + this->size(); } }; } // namespace detail template FMT_CONSTEXPR void basic_format_parse_context::do_check_arg_id(int id) { // Argument id is only checked at compile-time during parsing because // formatting has its own validation. if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context; if (id >= static_cast(this)->num_args()) throw_format_error("argument not found"); } } template FMT_CONSTEXPR void basic_format_parse_context::check_dynamic_spec( int arg_id) { if (detail::is_constant_evaluated() && (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) { using context = detail::compile_parse_context; static_cast(this)->check_dynamic_spec(arg_id); } } FMT_EXPORT template class basic_format_arg; FMT_EXPORT template class basic_format_args; FMT_EXPORT template class dynamic_format_arg_store; // A formatter for objects of type T. FMT_EXPORT template struct formatter { // A deleted default constructor indicates a disabled formatter. formatter() = delete; }; // Specifies if T has an enabled formatter specialization. A type can be // formattable even if it doesn't have a formatter e.g. via a conversion. template using has_formatter = std::is_constructible>; // An output iterator that appends to a buffer. // It is used to reduce symbol sizes for the common case. class appender : public std::back_insert_iterator> { using base = std::back_insert_iterator>; public: using std::back_insert_iterator>::back_insert_iterator; appender(base it) noexcept : base(it) {} FMT_UNCHECKED_ITERATOR(appender); auto operator++() noexcept -> appender& { return *this; } auto operator++(int) noexcept -> appender { return *this; } }; namespace detail { template constexpr auto has_const_formatter_impl(T*) -> decltype(typename Context::template formatter_type().format( std::declval(), std::declval()), true) { return true; } template constexpr auto has_const_formatter_impl(...) -> bool { return false; } template constexpr auto has_const_formatter() -> bool { return has_const_formatter_impl(static_cast(nullptr)); } template using buffer_appender = conditional_t::value, appender, std::back_insert_iterator>>; // Maps an output iterator to a buffer. template auto get_buffer(OutputIt out) -> iterator_buffer { return iterator_buffer(out); } template , Buf>::value)> auto get_buffer(std::back_insert_iterator out) -> buffer& { return get_container(out); } template FMT_INLINE auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) { return buf.out(); } template auto get_iterator(buffer&, OutputIt out) -> OutputIt { return out; } struct view {}; template struct named_arg : view { const Char* name; const T& value; named_arg(const Char* n, const T& v) : name(n), value(v) {} }; template struct named_arg_info { const Char* name; int id; }; template struct arg_data { // args_[0].named_args points to named_args_ to avoid bloating format_args. // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)]; named_arg_info named_args_[NUM_NAMED_ARGS]; template arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {} arg_data(const arg_data& other) = delete; auto args() const -> const T* { return args_ + 1; } auto named_args() -> named_arg_info* { return named_args_; } }; template struct arg_data { // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning. T args_[NUM_ARGS != 0 ? NUM_ARGS : +1]; template FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {} FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; } FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t { return nullptr; } }; template inline void init_named_args(named_arg_info*, int, int) {} template struct is_named_arg : std::false_type {}; template struct is_statically_named_arg : std::false_type {}; template struct is_named_arg> : std::true_type {}; template ::value)> void init_named_args(named_arg_info* named_args, int arg_count, int named_arg_count, const T&, const Tail&... args) { init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template ::value)> void init_named_args(named_arg_info* named_args, int arg_count, int named_arg_count, const T& arg, const Tail&... args) { named_args[named_arg_count++] = {arg.name, arg_count}; init_named_args(named_args, arg_count + 1, named_arg_count, args...); } template FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int, const Args&...) {} template constexpr auto count() -> size_t { return B ? 1 : 0; } template constexpr auto count() -> size_t { return (B1 ? 1 : 0) + count(); } template constexpr auto count_named_args() -> size_t { return count::value...>(); } template constexpr auto count_statically_named_args() -> size_t { return count::value...>(); } struct unformattable {}; struct unformattable_char : unformattable {}; struct unformattable_pointer : unformattable {}; template struct string_value { const Char* data; size_t size; }; template struct named_arg_value { const named_arg_info* data; size_t size; }; template struct custom_value { using parse_context = typename Context::parse_context_type; void* value; void (*format)(void* arg, parse_context& parse_ctx, Context& ctx); }; // A formatting argument value. template class value { public: using char_type = typename Context::char_type; union { monostate no_value; int int_value; unsigned uint_value; long long long_long_value; unsigned long long ulong_long_value; int128_opt int128_value; uint128_opt uint128_value; bool bool_value; char_type char_value; float float_value; double double_value; long double long_double_value; const void* pointer; string_value string; custom_value custom; named_arg_value named_args; }; constexpr FMT_INLINE value() : no_value() {} constexpr FMT_INLINE value(int val) : int_value(val) {} constexpr FMT_INLINE value(unsigned val) : uint_value(val) {} constexpr FMT_INLINE value(long long val) : long_long_value(val) {} constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {} FMT_INLINE value(int128_opt val) : int128_value(val) {} FMT_INLINE value(uint128_opt val) : uint128_value(val) {} constexpr FMT_INLINE value(float val) : float_value(val) {} constexpr FMT_INLINE value(double val) : double_value(val) {} FMT_INLINE value(long double val) : long_double_value(val) {} constexpr FMT_INLINE value(bool val) : bool_value(val) {} constexpr FMT_INLINE value(char_type val) : char_value(val) {} FMT_CONSTEXPR FMT_INLINE value(const char_type* val) { string.data = val; if (is_constant_evaluated()) string.size = {}; } FMT_CONSTEXPR FMT_INLINE value(basic_string_view val) { string.data = val.data(); string.size = val.size(); } FMT_INLINE value(const void* val) : pointer(val) {} FMT_INLINE value(const named_arg_info* args, size_t size) : named_args{args, size} {} template FMT_CONSTEXPR20 FMT_INLINE value(T& val) { using value_type = remove_const_t; // T may overload operator& e.g. std::vector::reference in libc++. #ifdef __cpp_if_constexpr if constexpr (std::is_same::value) custom.value = const_cast(&val); #endif if (!is_constant_evaluated()) custom.value = const_cast(&reinterpret_cast(val)); // Get the formatter type through the context to allow different contexts // have different extension points, e.g. `formatter` for `format` and // `printf_formatter` for `printf`. custom.format = format_custom_arg< value_type, typename Context::template formatter_type>; } value(unformattable); value(unformattable_char); value(unformattable_pointer); private: // Formats an argument of a custom type, such as a user-defined class. template static void format_custom_arg(void* arg, typename Context::parse_context_type& parse_ctx, Context& ctx) { auto f = Formatter(); parse_ctx.advance_to(f.parse(parse_ctx)); using qualified_type = conditional_t(), const T, T>; // Calling format through a mutable reference is deprecated. ctx.advance_to(f.format(*static_cast(arg), ctx)); } }; // To minimize the number of types we need to deal with, long is translated // either to int or to long long depending on its size. enum { long_short = sizeof(long) == sizeof(int) }; using long_type = conditional_t; using ulong_type = conditional_t; template struct format_as_result { template ::value || std::is_class::value)> static auto map(U*) -> remove_cvref_t()))>; static auto map(...) -> void; using type = decltype(map(static_cast(nullptr))); }; template using format_as_t = typename format_as_result::type; template struct has_format_as : bool_constant, void>::value> {}; // Maps formatting arguments to core types. // arg_mapper reports errors by returning unformattable instead of using // static_assert because it's used in the is_formattable trait. template struct arg_mapper { using char_type = typename Context::char_type; FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val) -> unsigned long long { return val; } FMT_CONSTEXPR FMT_INLINE auto map(int128_opt val) -> int128_opt { return val; } FMT_CONSTEXPR FMT_INLINE auto map(uint128_opt val) -> uint128_opt { return val; } FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; } template ::value || std::is_same::value)> FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type { return val; } template ::value || #ifdef __cpp_char8_t std::is_same::value || #endif std::is_same::value || std::is_same::value) && !std::is_same::value, int> = 0> FMT_CONSTEXPR FMT_INLINE auto map(T) -> unformattable_char { return {}; } FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; } FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double { return val; } FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* { return val; } template ::value && !std::is_pointer::value && std::is_same>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> basic_string_view { return to_string_view(val); } template ::value && !std::is_pointer::value && !std::is_same>::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T&) -> unformattable_char { return {}; } FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* { return val; } FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* { return val; } // Use SFINAE instead of a const T* parameter to avoid a conflict with the // array overload. template < typename T, FMT_ENABLE_IF( std::is_pointer::value || std::is_member_pointer::value || std::is_function::type>::value || (std::is_array::value && !std::is_convertible::value))> FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer { return {}; } template ::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] { return values; } // Only map owning types because mapping views can be unsafe. template , FMT_ENABLE_IF(std::is_arithmetic::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& val) -> decltype(FMT_DECLTYPE_THIS map(U())) { return map(format_as(val)); } template > struct formattable : bool_constant() || (has_formatter::value && !std::is_const::value)> {}; template ::value)> FMT_CONSTEXPR FMT_INLINE auto do_map(T& val) -> T& { return val; } template ::value)> FMT_CONSTEXPR FMT_INLINE auto do_map(T&) -> unformattable { return {}; } template , FMT_ENABLE_IF((std::is_class::value || std::is_enum::value || std::is_union::value) && !is_string::value && !is_char::value && !is_named_arg::value && !std::is_arithmetic>::value)> FMT_CONSTEXPR FMT_INLINE auto map(T& val) -> decltype(FMT_DECLTYPE_THIS do_map(val)) { return do_map(val); } template ::value)> FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg) -> decltype(FMT_DECLTYPE_THIS map(named_arg.value)) { return map(named_arg.value); } auto map(...) -> unformattable { return {}; } }; // A type constant after applying arg_mapper. template using mapped_type_constant = type_constant().map(std::declval())), typename Context::char_type>; enum { packed_arg_bits = 4 }; // Maximum number of arguments with packed types. enum { max_packed_args = 62 / packed_arg_bits }; enum : unsigned long long { is_unpacked_bit = 1ULL << 63 }; enum : unsigned long long { has_named_args_bit = 1ULL << 62 }; template auto copy_str(InputIt begin, InputIt end, appender out) -> appender { get_container(out).append(begin, end); return out; } template auto copy_str(InputIt begin, InputIt end, std::back_insert_iterator out) -> std::back_insert_iterator { get_container(out).append(begin, end); return out; } template FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt { return detail::copy_str(rng.begin(), rng.end(), out); } #if FMT_GCC_VERSION && FMT_GCC_VERSION < 500 // A workaround for gcc 4.8 to make void_t work in a SFINAE context. template struct void_t_impl { using type = void; }; template using void_t = typename void_t_impl::type; #else template using void_t = void; #endif template struct is_output_iterator : std::false_type {}; template struct is_output_iterator< It, T, void_t::iterator_category, decltype(*std::declval() = std::declval())>> : std::true_type {}; template struct is_back_insert_iterator : std::false_type {}; template struct is_back_insert_iterator> : std::true_type {}; // A type-erased reference to an std::locale to avoid a heavy include. class locale_ref { private: const void* locale_; // A type-erased pointer to std::locale. public: constexpr FMT_INLINE locale_ref() : locale_(nullptr) {} template explicit locale_ref(const Locale& loc); explicit operator bool() const noexcept { return locale_ != nullptr; } template auto get() const -> Locale; }; template constexpr auto encode_types() -> unsigned long long { return 0; } template constexpr auto encode_types() -> unsigned long long { return static_cast(mapped_type_constant::value) | (encode_types() << packed_arg_bits); } #if defined(__cpp_if_constexpr) // This type is intentionally undefined, only used for errors template struct type_is_unformattable_for; #endif template FMT_CONSTEXPR FMT_INLINE auto make_arg(T& val) -> value { using arg_type = remove_cvref_t().map(val))>; constexpr bool formattable_char = !std::is_same::value; static_assert(formattable_char, "Mixing character types is disallowed."); // Formatting of arbitrary pointers is disallowed. If you want to format a // pointer cast it to `void*` or `const void*`. In particular, this forbids // formatting of `[const] volatile char*` printed as bool by iostreams. constexpr bool formattable_pointer = !std::is_same::value; static_assert(formattable_pointer, "Formatting of non-void pointers is disallowed."); constexpr bool formattable = !std::is_same::value; #if defined(__cpp_if_constexpr) if constexpr (!formattable) { type_is_unformattable_for _; } #endif static_assert( formattable, "Cannot format an argument. To make type T formattable provide a " "formatter specialization: https://fmt.dev/latest/api.html#udt"); return {arg_mapper().map(val)}; } template FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg { auto arg = basic_format_arg(); arg.type_ = mapped_type_constant::value; arg.value_ = make_arg(val); return arg; } template FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg { return make_arg(val); } } // namespace detail FMT_BEGIN_EXPORT // A formatting argument. Context is a template parameter for the compiled API // where output can be unbuffered. template class basic_format_arg { private: detail::value value_; detail::type type_; template friend FMT_CONSTEXPR auto detail::make_arg(T& value) -> basic_format_arg; friend class basic_format_args; friend class dynamic_format_arg_store; using char_type = typename Context::char_type; template friend struct detail::arg_data; basic_format_arg(const detail::named_arg_info* args, size_t size) : value_(args, size) {} public: class handle { public: explicit handle(detail::custom_value custom) : custom_(custom) {} void format(typename Context::parse_context_type& parse_ctx, Context& ctx) const { custom_.format(custom_.value, parse_ctx, ctx); } private: detail::custom_value custom_; }; constexpr basic_format_arg() : type_(detail::type::none_type) {} constexpr explicit operator bool() const noexcept { return type_ != detail::type::none_type; } auto type() const -> detail::type { return type_; } auto is_integral() const -> bool { return detail::is_integral_type(type_); } auto is_arithmetic() const -> bool { return detail::is_arithmetic_type(type_); } /** \rst Visits an argument dispatching to the appropriate visit method based on the argument type. For example, if the argument type is ``double`` then ``vis(value)`` will be called with the value of type ``double``. \endrst */ template FMT_CONSTEXPR auto visit(Visitor&& vis) -> decltype(vis(0)) { switch (type_) { case detail::type::none_type: break; case detail::type::int_type: return vis(value_.int_value); case detail::type::uint_type: return vis(value_.uint_value); case detail::type::long_long_type: return vis(value_.long_long_value); case detail::type::ulong_long_type: return vis(value_.ulong_long_value); case detail::type::int128_type: return vis(detail::convert_for_visit(value_.int128_value)); case detail::type::uint128_type: return vis(detail::convert_for_visit(value_.uint128_value)); case detail::type::bool_type: return vis(value_.bool_value); case detail::type::char_type: return vis(value_.char_value); case detail::type::float_type: return vis(value_.float_value); case detail::type::double_type: return vis(value_.double_value); case detail::type::long_double_type: return vis(value_.long_double_value); case detail::type::cstring_type: return vis(value_.string.data); case detail::type::string_type: using sv = basic_string_view; return vis(sv(value_.string.data, value_.string.size)); case detail::type::pointer_type: return vis(value_.pointer); case detail::type::custom_type: return vis(typename basic_format_arg::handle(value_.custom)); } return vis(monostate()); } FMT_INLINE auto format_custom(const char_type* parse_begin, typename Context::parse_context_type& parse_ctx, Context& ctx) -> bool { if (type_ != detail::type::custom_type) return false; parse_ctx.advance_to(parse_begin); value_.custom.format(value_.custom.value, parse_ctx, ctx); return true; } }; template FMT_DEPRECATED FMT_CONSTEXPR FMT_INLINE auto visit_format_arg( Visitor&& vis, const basic_format_arg& arg) -> decltype(vis(0)) { return arg.visit(std::forward(vis)); } // Formatting context. template class basic_format_context { private: OutputIt out_; basic_format_args args_; detail::locale_ref loc_; public: using iterator = OutputIt; using format_arg = basic_format_arg; using format_args = basic_format_args; using parse_context_type = basic_format_parse_context; template using formatter_type = formatter; /** The character type for the output. */ using char_type = Char; basic_format_context(basic_format_context&&) = default; basic_format_context(const basic_format_context&) = delete; void operator=(const basic_format_context&) = delete; /** Constructs a ``basic_format_context`` object. References to the arguments are stored in the object so make sure they have appropriate lifetimes. */ constexpr basic_format_context(OutputIt out, format_args ctx_args, detail::locale_ref loc = {}) : out_(out), args_(ctx_args), loc_(loc) {} constexpr auto arg(int id) const -> format_arg { return args_.get(id); } FMT_CONSTEXPR auto arg(basic_string_view name) -> format_arg { return args_.get(name); } FMT_CONSTEXPR auto arg_id(basic_string_view name) -> int { return args_.get_id(name); } auto args() const -> const format_args& { return args_; } // This function is intentionally not constexpr to give a compile-time error. void on_error(const char* message) { throw_format_error(message); } // Returns an iterator to the beginning of the output range. FMT_CONSTEXPR auto out() -> iterator { return out_; } // Advances the begin iterator to ``it``. void advance_to(iterator it) { if (!detail::is_back_insert_iterator()) out_ = it; } FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; } }; template using buffer_context = basic_format_context, Char>; using format_context = buffer_context; template using is_formattable = bool_constant>() .map(std::declval()))>::value>; /** \rst An array of references to arguments. It can be implicitly converted into `~fmt::basic_format_args` for passing into type-erased formatting functions such as `~fmt::vformat`. \endrst */ template class format_arg_store #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround a GCC template argument substitution bug. : public basic_format_args #endif { private: static const size_t num_args = sizeof...(Args); static constexpr size_t num_named_args = detail::count_named_args(); static const bool is_packed = num_args <= detail::max_packed_args; using value_type = conditional_t, basic_format_arg>; detail::arg_data data_; friend class basic_format_args; static constexpr unsigned long long desc = (is_packed ? detail::encode_types() : detail::is_unpacked_bit | num_args) | (num_named_args != 0 ? static_cast(detail::has_named_args_bit) : 0); public: template FMT_CONSTEXPR FMT_INLINE format_arg_store(T&... args) : #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 basic_format_args(*this), #endif data_{detail::make_arg(args)...} { if (detail::const_check(num_named_args != 0)) detail::init_named_args(data_.named_args(), 0, 0, args...); } }; /** \rst Constructs a `~fmt::format_arg_store` object that contains references to arguments and can be implicitly converted to `~fmt::format_args`. `Context` can be omitted in which case it defaults to `~fmt::format_context`. See `~fmt::arg` for lifetime considerations. \endrst */ // Arguments are taken by lvalue references to avoid some lifetime issues. template constexpr auto make_format_args(T&... args) -> format_arg_store...> { return {args...}; } /** \rst Returns a named argument to be used in a formatting function. It should only be used in a call to a formatting function or `dynamic_format_arg_store::push_back`. **Example**:: fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23)); \endrst */ template inline auto arg(const Char* name, const T& arg) -> detail::named_arg { static_assert(!detail::is_named_arg(), "nested named arguments"); return {name, arg}; } FMT_END_EXPORT /** \rst A view of a collection of formatting arguments. To avoid lifetime issues it should only be used as a parameter type in type-erased functions such as ``vformat``:: void vlog(string_view format_str, format_args args); // OK format_args args = make_format_args(); // Error: dangling reference \endrst */ template class basic_format_args { public: using size_type = int; using format_arg = basic_format_arg; private: // A descriptor that contains information about formatting arguments. // If the number of arguments is less or equal to max_packed_args then // argument types are passed in the descriptor. This reduces binary code size // per formatting function call. unsigned long long desc_; union { // If is_packed() returns true then argument values are stored in values_; // otherwise they are stored in args_. This is done to improve cache // locality and reduce compiled code size since storing larger objects // may require more code (at least on x86-64) even if the same amount of // data is actually copied to stack. It saves ~10% on the bloat test. const detail::value* values_; const format_arg* args_; }; constexpr auto is_packed() const -> bool { return (desc_ & detail::is_unpacked_bit) == 0; } auto has_named_args() const -> bool { return (desc_ & detail::has_named_args_bit) != 0; } FMT_CONSTEXPR auto type(int index) const -> detail::type { int shift = index * detail::packed_arg_bits; unsigned int mask = (1 << detail::packed_arg_bits) - 1; return static_cast((desc_ >> shift) & mask); } constexpr FMT_INLINE basic_format_args(unsigned long long desc, const detail::value* values) : desc_(desc), values_(values) {} constexpr basic_format_args(unsigned long long desc, const format_arg* args) : desc_(desc), args_(args) {} public: constexpr basic_format_args() : desc_(0), args_(nullptr) {} /** \rst Constructs a `basic_format_args` object from `~fmt::format_arg_store`. \endrst */ template constexpr FMT_INLINE basic_format_args( const format_arg_store& store) : basic_format_args(format_arg_store::desc, store.data_.args()) {} /** \rst Constructs a `basic_format_args` object from `~fmt::dynamic_format_arg_store`. \endrst */ constexpr FMT_INLINE basic_format_args( const dynamic_format_arg_store& store) : basic_format_args(store.get_types(), store.data()) {} /** \rst Constructs a `basic_format_args` object from a dynamic set of arguments. \endrst */ constexpr basic_format_args(const format_arg* args, int count) : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count), args) {} /** Returns the argument with the specified id. */ FMT_CONSTEXPR auto get(int id) const -> format_arg { format_arg arg; if (!is_packed()) { if (id < max_size()) arg = args_[id]; return arg; } if (id >= detail::max_packed_args) return arg; arg.type_ = type(id); if (arg.type_ == detail::type::none_type) return arg; arg.value_ = values_[id]; return arg; } template auto get(basic_string_view name) const -> format_arg { int id = get_id(name); return id >= 0 ? get(id) : format_arg(); } template auto get_id(basic_string_view name) const -> int { if (!has_named_args()) return -1; const auto& named_args = (is_packed() ? values_[-1] : args_[-1].value_).named_args; for (size_t i = 0; i < named_args.size; ++i) { if (named_args.data[i].name == name) return named_args.data[i].id; } return -1; } auto max_size() const -> int { unsigned long long max_packed = detail::max_packed_args; return static_cast(is_packed() ? max_packed : desc_ & ~detail::is_unpacked_bit); } }; /** An alias to ``basic_format_args``. */ // A separate type would result in shorter symbols but break ABI compatibility // between clang and gcc on ARM (#1919). FMT_EXPORT using format_args = basic_format_args; // We cannot use enum classes as bit fields because of a gcc bug, so we put them // in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414). // Additionally, if an underlying type is specified, older gcc incorrectly warns // that the type is too small. Both bugs are fixed in gcc 9.3. #if FMT_GCC_VERSION && FMT_GCC_VERSION < 903 # define FMT_ENUM_UNDERLYING_TYPE(type) #else # define FMT_ENUM_UNDERLYING_TYPE(type) : type #endif namespace align { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center, numeric}; } using align_t = align::type; namespace sign { enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space}; } using sign_t = sign::type; namespace detail { // Workaround an array initialization issue in gcc 4.8. template struct fill_t { private: enum { max_size = 4 }; Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)}; unsigned char size_ = 1; public: FMT_CONSTEXPR void operator=(basic_string_view s) { auto size = s.size(); FMT_ASSERT(size <= max_size, "invalid fill"); for (size_t i = 0; i < size; ++i) data_[i] = s[i]; size_ = static_cast(size); } constexpr auto size() const -> size_t { return size_; } constexpr auto data() const -> const Char* { return data_; } FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; } FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& { return data_[index]; } }; } // namespace detail enum class presentation_type : unsigned char { none, dec, // 'd' oct, // 'o' hex_lower, // 'x' hex_upper, // 'X' bin_lower, // 'b' bin_upper, // 'B' hexfloat_lower, // 'a' hexfloat_upper, // 'A' exp_lower, // 'e' exp_upper, // 'E' fixed_lower, // 'f' fixed_upper, // 'F' general_lower, // 'g' general_upper, // 'G' chr, // 'c' string, // 's' pointer, // 'p' debug // '?' }; // Format specifiers for built-in and string types. template struct format_specs { int width; int precision; presentation_type type; align_t align : 4; sign_t sign : 3; bool alt : 1; // Alternate form ('#'). bool localized : 1; detail::fill_t fill; constexpr format_specs() : width(0), precision(-1), type(presentation_type::none), align(align::none), sign(sign::none), alt(false), localized(false) {} }; namespace detail { enum class arg_id_kind { none, index, name }; // An argument reference. template struct arg_ref { FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {} FMT_CONSTEXPR explicit arg_ref(int index) : kind(arg_id_kind::index), val(index) {} FMT_CONSTEXPR explicit arg_ref(basic_string_view name) : kind(arg_id_kind::name), val(name) {} FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& { kind = arg_id_kind::index; val.index = idx; return *this; } arg_id_kind kind; union value { FMT_CONSTEXPR value(int idx = 0) : index(idx) {} FMT_CONSTEXPR value(basic_string_view n) : name(n) {} int index; basic_string_view name; } val; }; // Format specifiers with width and precision resolved at formatting rather // than parsing time to allow reusing the same parsed specifiers with // different sets of arguments (precompilation of format strings). template struct dynamic_format_specs : format_specs { arg_ref width_ref; arg_ref precision_ref; }; // Converts a character to ASCII. Returns '\0' on conversion failure. template ::value || std::is_enum::value)> constexpr auto to_ascii(Char c) -> char { return c <= 0xff ? static_cast(c) : '\0'; } // Returns the number of code units in a code point or 1 on error. template FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int { if (const_check(sizeof(Char) != 1)) return 1; auto c = static_cast(*begin); return static_cast((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1; } // Return the result via the out param to workaround gcc bug 77539. template FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool { for (out = first; out != last; ++out) { if (*out == value) return true; } return false; } template <> inline auto find(const char* first, const char* last, char value, const char*& out) -> bool { out = static_cast( std::memchr(first, value, to_unsigned(last - first))); return out != nullptr; } // Parses the range [begin, end) as an unsigned integer. This function assumes // that the range is non-empty and the first character is a digit. template FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end, int error_value) noexcept -> int { FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', ""); unsigned value = 0, prev = 0; auto p = begin; do { prev = value; value = value * 10 + unsigned(*p - '0'); ++p; } while (p != end && '0' <= *p && *p <= '9'); auto num_digits = p - begin; begin = p; if (num_digits <= std::numeric_limits::digits10) return static_cast(value); // Check for overflow. const unsigned max = to_unsigned((std::numeric_limits::max)()); return num_digits == std::numeric_limits::digits10 + 1 && prev * 10ull + unsigned(p[-1] - '0') <= max ? static_cast(value) : error_value; } FMT_CONSTEXPR inline auto parse_align(char c) -> align_t { switch (c) { case '<': return align::left; case '>': return align::right; case '^': return align::center; } return align::none; } template constexpr auto is_name_start(Char c) -> bool { return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_'; } template FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { Char c = *begin; if (c >= '0' && c <= '9') { int index = 0; constexpr int max = (std::numeric_limits::max)(); if (c != '0') index = parse_nonnegative_int(begin, end, max); else ++begin; if (begin == end || (*begin != '}' && *begin != ':')) throw_format_error("invalid format string"); else handler.on_index(index); return begin; } if (!is_name_start(c)) { throw_format_error("invalid format string"); return begin; } auto it = begin; do { ++it; } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9'))); handler.on_name({begin, to_unsigned(it - begin)}); return it; } template FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end, Handler&& handler) -> const Char* { FMT_ASSERT(begin != end, ""); Char c = *begin; if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler); handler.on_auto(); return begin; } template struct dynamic_spec_id_handler { basic_format_parse_context& ctx; arg_ref& ref; FMT_CONSTEXPR void on_auto() { int id = ctx.next_arg_id(); ref = arg_ref(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_index(int id) { ref = arg_ref(id); ctx.check_arg_id(id); ctx.check_dynamic_spec(id); } FMT_CONSTEXPR void on_name(basic_string_view id) { ref = arg_ref(id); ctx.check_arg_id(id); } }; // Parses [integer | "{" [arg_id] "}"]. template FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end, int& value, arg_ref& ref, basic_format_parse_context& ctx) -> const Char* { FMT_ASSERT(begin != end, ""); if ('0' <= *begin && *begin <= '9') { int val = parse_nonnegative_int(begin, end, -1); if (val != -1) value = val; else throw_format_error("number is too big"); } else if (*begin == '{') { ++begin; auto handler = dynamic_spec_id_handler{ctx, ref}; if (begin != end) begin = parse_arg_id(begin, end, handler); if (begin != end && *begin == '}') return ++begin; throw_format_error("invalid format string"); } return begin; } template FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end, int& value, arg_ref& ref, basic_format_parse_context& ctx) -> const Char* { ++begin; if (begin == end || *begin == '}') { throw_format_error("invalid precision"); return begin; } return parse_dynamic_spec(begin, end, value, ref, ctx); } enum class state { start, align, sign, hash, zero, width, precision, locale }; // Parses standard format specifiers. template FMT_CONSTEXPR FMT_INLINE auto parse_format_specs( const Char* begin, const Char* end, dynamic_format_specs& specs, basic_format_parse_context& ctx, type arg_type) -> const Char* { auto c = '\0'; if (end - begin > 1) { auto next = to_ascii(begin[1]); c = parse_align(next) == align::none ? to_ascii(*begin) : '\0'; } else { if (begin == end) return begin; c = to_ascii(*begin); } struct { state current_state = state::start; FMT_CONSTEXPR void operator()(state s, bool valid = true) { if (current_state >= s || !valid) throw_format_error("invalid format specifier"); current_state = s; } } enter_state; using pres = presentation_type; constexpr auto integral_set = sint_set | uint_set | bool_set | char_set; struct { const Char*& begin; dynamic_format_specs& specs; type arg_type; FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* { if (!in(arg_type, set)) { if (arg_type == type::none_type) return begin; throw_format_error("invalid format specifier"); } specs.type = pres_type; return begin + 1; } } parse_presentation_type{begin, specs, arg_type}; for (;;) { switch (c) { case '<': case '>': case '^': enter_state(state::align); specs.align = parse_align(c); ++begin; break; case '+': case '-': case ' ': if (arg_type == type::none_type) return begin; enter_state(state::sign, in(arg_type, sint_set | float_set)); switch (c) { case '+': specs.sign = sign::plus; break; case '-': specs.sign = sign::minus; break; case ' ': specs.sign = sign::space; break; } ++begin; break; case '#': if (arg_type == type::none_type) return begin; enter_state(state::hash, is_arithmetic_type(arg_type)); specs.alt = true; ++begin; break; case '0': enter_state(state::zero); if (!is_arithmetic_type(arg_type)) { if (arg_type == type::none_type) return begin; throw_format_error("format specifier requires numeric argument"); } if (specs.align == align::none) { // Ignore 0 if align is specified for compatibility with std::format. specs.align = align::numeric; specs.fill[0] = Char('0'); } ++begin; break; case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': case '{': enter_state(state::width); begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx); break; case '.': if (arg_type == type::none_type) return begin; enter_state(state::precision, in(arg_type, float_set | string_set | cstring_set)); begin = parse_precision(begin, end, specs.precision, specs.precision_ref, ctx); break; case 'L': if (arg_type == type::none_type) return begin; enter_state(state::locale, is_arithmetic_type(arg_type)); specs.localized = true; ++begin; break; case 'd': return parse_presentation_type(pres::dec, integral_set); case 'o': return parse_presentation_type(pres::oct, integral_set); case 'x': return parse_presentation_type(pres::hex_lower, integral_set); case 'X': return parse_presentation_type(pres::hex_upper, integral_set); case 'b': return parse_presentation_type(pres::bin_lower, integral_set); case 'B': return parse_presentation_type(pres::bin_upper, integral_set); case 'a': return parse_presentation_type(pres::hexfloat_lower, float_set); case 'A': return parse_presentation_type(pres::hexfloat_upper, float_set); case 'e': return parse_presentation_type(pres::exp_lower, float_set); case 'E': return parse_presentation_type(pres::exp_upper, float_set); case 'f': return parse_presentation_type(pres::fixed_lower, float_set); case 'F': return parse_presentation_type(pres::fixed_upper, float_set); case 'g': return parse_presentation_type(pres::general_lower, float_set); case 'G': return parse_presentation_type(pres::general_upper, float_set); case 'c': if (arg_type == type::bool_type) throw_format_error("invalid format specifier"); return parse_presentation_type(pres::chr, integral_set); case 's': return parse_presentation_type(pres::string, bool_set | string_set | cstring_set); case 'p': return parse_presentation_type(pres::pointer, pointer_set | cstring_set); case '?': return parse_presentation_type(pres::debug, char_set | string_set | cstring_set); case '}': return begin; default: { if (*begin == '}') return begin; // Parse fill and alignment. auto fill_end = begin + code_point_length(begin); if (end - fill_end <= 0) { throw_format_error("invalid format specifier"); return begin; } if (*begin == '{') { throw_format_error("invalid fill character '{'"); return begin; } auto align = parse_align(to_ascii(*fill_end)); enter_state(state::align, align != align::none); specs.fill = {begin, to_unsigned(fill_end - begin)}; specs.align = align; begin = fill_end + 1; } } if (begin == end) return begin; c = to_ascii(*begin); } } template FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end, Handler&& handler) -> const Char* { struct id_adapter { Handler& handler; int arg_id; FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); } FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); } FMT_CONSTEXPR void on_name(basic_string_view id) { arg_id = handler.on_arg_id(id); } }; ++begin; if (begin == end) return handler.on_error("invalid format string"), end; if (*begin == '}') { handler.on_replacement_field(handler.on_arg_id(), begin); } else if (*begin == '{') { handler.on_text(begin, begin + 1); } else { auto adapter = id_adapter{handler, 0}; begin = parse_arg_id(begin, end, adapter); Char c = begin != end ? *begin : Char(); if (c == '}') { handler.on_replacement_field(adapter.arg_id, begin); } else if (c == ':') { begin = handler.on_format_specs(adapter.arg_id, begin + 1, end); if (begin == end || *begin != '}') return handler.on_error("unknown format specifier"), end; } else { return handler.on_error("missing '}' in format string"), end; } } return begin + 1; } template FMT_CONSTEXPR FMT_INLINE void parse_format_string( basic_string_view format_str, Handler&& handler) { auto begin = format_str.data(); auto end = begin + format_str.size(); if (end - begin < 32) { // Use a simple loop instead of memchr for small strings. const Char* p = begin; while (p != end) { auto c = *p++; if (c == '{') { handler.on_text(begin, p - 1); begin = p = parse_replacement_field(p - 1, end, handler); } else if (c == '}') { if (p == end || *p != '}') return handler.on_error("unmatched '}' in format string"); handler.on_text(begin, p); begin = ++p; } } handler.on_text(begin, end); return; } struct writer { FMT_CONSTEXPR void operator()(const Char* from, const Char* to) { if (from == to) return; for (;;) { const Char* p = nullptr; if (!find(from, to, Char('}'), p)) return handler_.on_text(from, to); ++p; if (p == to || *p != '}') return handler_.on_error("unmatched '}' in format string"); handler_.on_text(from, p); from = p + 1; } } Handler& handler_; } write = {handler}; while (begin != end) { // Doing two passes with memchr (one for '{' and another for '}') is up to // 2.5x faster than the naive one-pass implementation on big format strings. const Char* p = begin; if (*begin != '{' && !find(begin + 1, end, Char('{'), p)) return write(begin, end); write(begin, p); begin = parse_replacement_field(p, end, handler); } } template ::value> struct strip_named_arg { using type = T; }; template struct strip_named_arg { using type = remove_cvref_t; }; template FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx) -> decltype(ctx.begin()) { using char_type = typename ParseContext::char_type; using context = buffer_context; using mapped_type = conditional_t< mapped_type_constant::value != type::custom_type, decltype(arg_mapper().map(std::declval())), typename strip_named_arg::type>; #if defined(__cpp_if_constexpr) if constexpr (std::is_default_constructible< formatter>::value) { return formatter().parse(ctx); } else { type_is_unformattable_for _; return ctx.begin(); } #else return formatter().parse(ctx); #endif } // Checks char specs and returns true iff the presentation type is char-like. template FMT_CONSTEXPR auto check_char_specs(const format_specs& specs) -> bool { if (specs.type != presentation_type::none && specs.type != presentation_type::chr && specs.type != presentation_type::debug) { return false; } if (specs.align == align::numeric || specs.sign != sign::none || specs.alt) throw_format_error("invalid format specifier for char"); return true; } #if FMT_USE_NONTYPE_TEMPLATE_ARGS template constexpr auto get_arg_index_by_name(basic_string_view name) -> int { if constexpr (is_statically_named_arg()) { if (name == T::name) return N; } if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name(name); (void)name; // Workaround an MSVC bug about "unused" parameter. return -1; } #endif template FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view name) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS if constexpr (sizeof...(Args) > 0) return get_arg_index_by_name<0, Args...>(name); #endif (void)name; return -1; } template class format_string_checker { private: using parse_context_type = compile_parse_context; static constexpr int num_args = sizeof...(Args); // Format specifier parsing function. // In the future basic_format_parse_context will replace compile_parse_context // here and will use is_constant_evaluated and downcasting to access the data // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1. using parse_func = const Char* (*)(parse_context_type&); type types_[num_args > 0 ? static_cast(num_args) : 1]; parse_context_type context_; parse_func parse_funcs_[num_args > 0 ? static_cast(num_args) : 1]; public: explicit FMT_CONSTEXPR format_string_checker(basic_string_view fmt) : types_{mapped_type_constant>::value...}, context_(fmt, num_args, types_), parse_funcs_{&parse_format_specs...} {} FMT_CONSTEXPR void on_text(const Char*, const Char*) {} FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); } FMT_CONSTEXPR auto on_arg_id(int id) -> int { return context_.check_arg_id(id), id; } FMT_CONSTEXPR auto on_arg_id(basic_string_view id) -> int { #if FMT_USE_NONTYPE_TEMPLATE_ARGS auto index = get_arg_index_by_name(id); if (index < 0) on_error("named argument is not found"); return index; #else (void)id; on_error("compile-time checks for named arguments require C++20 support"); return 0; #endif } FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) { on_format_specs(id, begin, begin); // Call parse() on empty specs. } FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*) -> const Char* { context_.advance_to(begin); // id >= 0 check is a workaround for gcc 10 bug (#2065). return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin; } FMT_CONSTEXPR void on_error(const char* message) { throw_format_error(message); } }; // Reports a compile-time error if S is not a valid format string. template ::value)> FMT_INLINE void check_format_string(const S&) { #ifdef FMT_ENFORCE_COMPILE_STRING static_assert(is_compile_string::value, "FMT_ENFORCE_COMPILE_STRING requires all format strings to use " "FMT_STRING."); #endif } template ::value)> void check_format_string(S format_str) { using char_t = typename S::char_type; FMT_CONSTEXPR auto s = basic_string_view(format_str); using checker = format_string_checker...>; FMT_CONSTEXPR bool error = (parse_format_string(s, checker(s)), true); ignore_unused(error); } template struct vformat_args { using type = basic_format_args< basic_format_context>, Char>>; }; template <> struct vformat_args { using type = format_args; }; // Use vformat_args and avoid type_identity to keep symbols short. template void vformat_to(buffer& buf, basic_string_view fmt, typename vformat_args::type args, locale_ref loc = {}); FMT_API void vprint_mojibake(std::FILE*, string_view, format_args); #ifndef _WIN32 inline void vprint_mojibake(std::FILE*, string_view, format_args) {} #endif } // namespace detail FMT_BEGIN_EXPORT // A formatter specialization for natively supported types. template struct formatter::value != detail::type::custom_type>> { private: detail::dynamic_format_specs specs_; public: template FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* { auto type = detail::type_constant::value; auto end = detail::parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, type); if (type == detail::type::char_type) detail::check_char_specs(specs_); return end; } template ::value, FMT_ENABLE_IF(U == detail::type::string_type || U == detail::type::cstring_type || U == detail::type::char_type)> FMT_CONSTEXPR void set_debug_format(bool set = true) { specs_.type = set ? presentation_type::debug : presentation_type::none; } template FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const -> decltype(ctx.out()); }; template struct runtime_format_string { basic_string_view str; }; /** A compile-time format string. */ template class basic_format_string { private: basic_string_view str_; public: template >::value)> FMT_CONSTEVAL FMT_INLINE basic_format_string(const S& s) : str_(s) { static_assert( detail::count< (std::is_base_of>::value && std::is_reference::value)...>() == 0, "passing views as lvalues is disallowed"); #ifdef FMT_HAS_CONSTEVAL if constexpr (detail::count_named_args() == detail::count_statically_named_args()) { using checker = detail::format_string_checker...>; detail::parse_format_string(str_, checker(s)); } #else detail::check_format_string(s); #endif } basic_format_string(runtime_format_string fmt) : str_(fmt.str) {} FMT_INLINE operator basic_string_view() const { return str_; } FMT_INLINE auto get() const -> basic_string_view { return str_; } }; #if FMT_GCC_VERSION && FMT_GCC_VERSION < 409 // Workaround broken conversion on older gcc. template using format_string = string_view; inline auto runtime(string_view s) -> string_view { return s; } #else template using format_string = basic_format_string...>; /** \rst Creates a runtime format string. **Example**:: // Check format string at runtime instead of compile-time. fmt::print(fmt::runtime("{:d}"), "I am not a number"); \endrst */ inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; } #endif FMT_API auto vformat(string_view fmt, format_args args) -> std::string; /** \rst Formats ``args`` according to specifications in ``fmt`` and returns the result as a string. **Example**:: #include std::string message = fmt::format("The answer is {}.", 42); \endrst */ template FMT_NODISCARD FMT_INLINE auto format(format_string fmt, T&&... args) -> std::string { return vformat(fmt, fmt::make_format_args(args...)); } /** Formats a string and writes the output to ``out``. */ template ::value)> auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt { auto&& buf = detail::get_buffer(out); detail::vformat_to(buf, fmt, args, {}); return detail::get_iterator(buf, out); } /** \rst Formats ``args`` according to specifications in ``fmt``, writes the result to the output iterator ``out`` and returns the iterator past the end of the output range. `format_to` does not append a terminating null character. **Example**:: auto out = std::vector(); fmt::format_to(std::back_inserter(out), "{}", 42); \endrst */ template ::value)> FMT_INLINE auto format_to(OutputIt out, format_string fmt, T&&... args) -> OutputIt { return vformat_to(out, fmt, fmt::make_format_args(args...)); } template struct format_to_n_result { /** Iterator past the end of the output range. */ OutputIt out; /** Total (not truncated) output size. */ size_t size; }; template ::value)> auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args) -> format_to_n_result { using traits = detail::fixed_buffer_traits; auto buf = detail::iterator_buffer(out, n); detail::vformat_to(buf, fmt, args, {}); return {buf.out(), buf.count()}; } /** \rst Formats ``args`` according to specifications in ``fmt``, writes up to ``n`` characters of the result to the output iterator ``out`` and returns the total (not truncated) output size and the iterator past the end of the output range. `format_to_n` does not append a terminating null character. \endrst */ template ::value)> FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string fmt, T&&... args) -> format_to_n_result { return vformat_to_n(out, n, fmt, fmt::make_format_args(args...)); } /** Returns the number of chars in the output of ``format(fmt, args...)``. */ template FMT_NODISCARD FMT_INLINE auto formatted_size(format_string fmt, T&&... args) -> size_t { auto buf = detail::counting_buffer<>(); detail::vformat_to(buf, fmt, fmt::make_format_args(args...), {}); return buf.count(); } FMT_API void vprint(string_view fmt, format_args args); FMT_API void vprint(std::FILE* f, string_view fmt, format_args args); /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to ``stdout``. **Example**:: fmt::print("Elapsed time: {0:.2f} seconds", 1.23); \endrst */ template FMT_INLINE void print(format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(fmt, vargs) : detail::vprint_mojibake(stdout, fmt, vargs); } /** \rst Formats ``args`` according to specifications in ``fmt`` and writes the output to the file ``f``. **Example**:: fmt::print(stderr, "Don't {}!", "panic"); \endrst */ template FMT_INLINE void print(std::FILE* f, format_string fmt, T&&... args) { const auto& vargs = fmt::make_format_args(args...); return detail::is_utf8() ? vprint(f, fmt, vargs) : detail::vprint_mojibake(f, fmt, vargs); } /** Formats ``args`` according to specifications in ``fmt`` and writes the output to the file ``f`` followed by a newline. */ template FMT_INLINE void println(std::FILE* f, format_string fmt, T&&... args) { return fmt::print(f, "{}\n", fmt::format(fmt, std::forward(args)...)); } /** Formats ``args`` according to specifications in ``fmt`` and writes the output to ``stdout`` followed by a newline. */ template FMT_INLINE void println(format_string fmt, T&&... args) { return fmt::println(stdout, fmt, std::forward(args)...); } FMT_END_EXPORT FMT_GCC_PRAGMA("GCC pop_options") FMT_END_NAMESPACE #ifdef FMT_HEADER_ONLY # include "format.h" #endif #endif // FMT_CORE_H_