ext-fmt/include/fmt/base.h
2024-09-10 20:52:35 -07:00

2987 lines
101 KiB
C++

// Formatting library for C++ - the base API for char/UTF-8
//
// Copyright (c) 2012 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#ifndef FMT_BASE_H_
#define FMT_BASE_H_
#if defined(FMT_IMPORT_STD) && !defined(FMT_MODULE)
# define FMT_MODULE
#endif
#ifndef FMT_MODULE
# include <limits.h> // CHAR_BIT
# include <stdio.h> // FILE
# include <string.h> // memcmp
// <cstddef> is also included transitively from <type_traits>.
# include <cstddef> // std::byte
# include <type_traits> // std::enable_if
#endif
// The fmt library version in the form major * 10000 + minor * 100 + patch.
#define FMT_VERSION 110002
// Detect compiler versions.
#if defined(__clang__) && !defined(__ibmxl__)
# define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
#else
# define FMT_CLANG_VERSION 0
#endif
#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER)
# define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#else
# define FMT_GCC_VERSION 0
#endif
#if defined(__ICL)
# define FMT_ICC_VERSION __ICL
#elif defined(__INTEL_COMPILER)
# define FMT_ICC_VERSION __INTEL_COMPILER
#else
# define FMT_ICC_VERSION 0
#endif
#if defined(_MSC_VER)
# define FMT_MSC_VERSION _MSC_VER
#else
# define FMT_MSC_VERSION 0
#endif
// Detect standard library versions.
#ifdef _GLIBCXX_RELEASE
# define FMT_GLIBCXX_RELEASE _GLIBCXX_RELEASE
#else
# define FMT_GLIBCXX_RELEASE 0
#endif
#ifdef _LIBCPP_VERSION
# define FMT_LIBCPP_VERSION _LIBCPP_VERSION
#else
# define FMT_LIBCPP_VERSION 0
#endif
#ifdef _MSVC_LANG
# define FMT_CPLUSPLUS _MSVC_LANG
#else
# define FMT_CPLUSPLUS __cplusplus
#endif
// Detect __has_*.
#ifdef __has_feature
# define FMT_HAS_FEATURE(x) __has_feature(x)
#else
# define FMT_HAS_FEATURE(x) 0
#endif
#ifdef __has_include
# define FMT_HAS_INCLUDE(x) __has_include(x)
#else
# define FMT_HAS_INCLUDE(x) 0
#endif
#ifdef __has_builtin
# define FMT_HAS_BUILTIN(x) __has_builtin(x)
#else
# define FMT_HAS_BUILTIN(x) 0
#endif
#ifdef __has_cpp_attribute
# define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define FMT_HAS_CPP_ATTRIBUTE(x) 0
#endif
#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
(FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
(FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
// Detect C++14 relaxed constexpr.
#ifdef FMT_USE_CONSTEXPR
// Use the provided definition.
#elif FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L
// GCC only allows throw in constexpr since version 6:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67371.
# define FMT_USE_CONSTEXPR 1
#elif FMT_ICC_VERSION
# define FMT_USE_CONSTEXPR 0 // https://github.com/fmtlib/fmt/issues/1628
#elif FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912
# define FMT_USE_CONSTEXPR 1
#else
# define FMT_USE_CONSTEXPR 0
#endif
#if FMT_USE_CONSTEXPR
# define FMT_CONSTEXPR constexpr
#else
# define FMT_CONSTEXPR
#endif
// Detect consteval, C++20 constexpr extensions and std::is_constant_evaluated.
#if !defined(__cpp_lib_is_constant_evaluated)
# define FMT_USE_CONSTEVAL 0
#elif FMT_CPLUSPLUS < 201709L
# define FMT_USE_CONSTEVAL 0
#elif FMT_GLIBCXX_RELEASE && FMT_GLIBCXX_RELEASE < 10
# define FMT_USE_CONSTEVAL 0
#elif FMT_LIBCPP_VERSION && FMT_LIBCPP_VERSION < 10000
# define FMT_USE_CONSTEVAL 0
#elif defined(__apple_build_version__) && __apple_build_version__ < 14000029L
# define FMT_USE_CONSTEVAL 0 // consteval is broken in Apple clang < 14.
#elif FMT_MSC_VERSION && FMT_MSC_VERSION < 1929
# define FMT_USE_CONSTEVAL 0 // consteval is broken in MSVC VS2019 < 16.10.
#elif defined(__cpp_consteval)
# define FMT_USE_CONSTEVAL 1
#elif FMT_GCC_VERSION >= 1002 || FMT_CLANG_VERSION >= 1101
# define FMT_USE_CONSTEVAL 1
#else
# define FMT_USE_CONSTEVAL 0
#endif
#if FMT_USE_CONSTEVAL
# define FMT_CONSTEVAL consteval
# define FMT_CONSTEXPR20 constexpr
#else
# define FMT_CONSTEVAL
# define FMT_CONSTEXPR20
#endif
// Check if exceptions are disabled.
#ifdef FMT_EXCEPTIONS
// Use the provided definition.
#elif defined(__GNUC__) && !defined(__EXCEPTIONS)
# define FMT_EXCEPTIONS 0
#elif FMT_MSC_VERSION && !_HAS_EXCEPTIONS
# define FMT_EXCEPTIONS 0
#else
# define FMT_EXCEPTIONS 1
#endif
#if FMT_EXCEPTIONS
# define FMT_TRY try
# define FMT_CATCH(x) catch (x)
#else
# define FMT_TRY if (true)
# define FMT_CATCH(x) if (false)
#endif
#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
# define FMT_FALLTHROUGH [[fallthrough]]
#elif defined(__clang__)
# define FMT_FALLTHROUGH [[clang::fallthrough]]
#elif FMT_GCC_VERSION >= 700 && \
(!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
# define FMT_FALLTHROUGH [[gnu::fallthrough]]
#else
# define FMT_FALLTHROUGH
#endif
// Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings.
#if FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && !defined(__NVCC__)
# define FMT_NORETURN [[noreturn]]
#else
# define FMT_NORETURN
#endif
#ifdef FMT_NODISCARD
// Use the provided definition.
#elif FMT_HAS_CPP17_ATTRIBUTE(nodiscard)
# define FMT_NODISCARD [[nodiscard]]
#else
# define FMT_NODISCARD
#endif
#ifdef FMT_DEPRECATED
// Use the provided definition.
#elif FMT_HAS_CPP14_ATTRIBUTE(deprecated)
# define FMT_DEPRECATED [[deprecated]]
#else
# define FMT_DEPRECATED /* deprecated */
#endif
#ifdef FMT_ALWAYS_INLINE
// Use the provided definition.
#elif FMT_GCC_VERSION || FMT_CLANG_VERSION
# define FMT_ALWAYS_INLINE inline __attribute__((always_inline))
#else
# define FMT_ALWAYS_INLINE inline
#endif
// A version of FMT_INLINE to prevent code bloat in debug mode.
#ifdef NDEBUG
# define FMT_INLINE FMT_ALWAYS_INLINE
#else
# define FMT_INLINE inline
#endif
#if FMT_GCC_VERSION || FMT_CLANG_VERSION
# define FMT_VISIBILITY(value) __attribute__((visibility(value)))
#else
# define FMT_VISIBILITY(value)
#endif
#ifdef FMT_GCC_PRAGMA
// Use the provided definition.
#elif FMT_GCC_VERSION >= 504 && !defined(__NVCOMPILER)
// Workaround a _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884
// and an nvhpc warning: https://github.com/fmtlib/fmt/pull/2582.
# define FMT_GCC_PRAGMA_IMPL(x) _Pragma(#x)
# define FMT_GCC_PRAGMA(x) FMT_GCC_PRAGMA_IMPL(GCC x)
#else
# define FMT_GCC_PRAGMA(x)
#endif
#ifdef FMT_CLANG_PRAGMA
// Use the provided definition.
#elif FMT_CLANG_VERSION
# define FMT_CLANG_PRAGMA_IMPL(x) _Pragma(#x)
# define FMT_CLANG_PRAGMA(x) FMT_CLANG_PRAGMA_IMPL(clang x)
#else
# define FMT_CLANG_PRAGMA(x)
#endif
#if FMT_MSC_VERSION
# define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
# define FMT_UNCHECKED_ITERATOR(It) \
using _Unchecked_type = It // Mark iterator as checked.
#else
# define FMT_MSC_WARNING(...)
# define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It
#endif
#ifndef FMT_BEGIN_NAMESPACE
# define FMT_BEGIN_NAMESPACE \
namespace fmt { \
inline namespace v11 {
# define FMT_END_NAMESPACE \
} \
}
#endif
#ifndef FMT_EXPORT
# define FMT_EXPORT
# define FMT_BEGIN_EXPORT
# define FMT_END_EXPORT
#endif
#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
# if defined(FMT_LIB_EXPORT)
# define FMT_API __declspec(dllexport)
# elif defined(FMT_SHARED)
# define FMT_API __declspec(dllimport)
# endif
#elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
# define FMT_API FMT_VISIBILITY("default")
#endif
#ifndef FMT_API
# define FMT_API
#endif
#ifndef FMT_OPTIMIZE_SIZE
# define FMT_OPTIMIZE_SIZE 0
#endif
// FMT_BUILTIN_TYPE=0 may result in smaller library size at the cost of higher
// per-call binary size by passing built-in types through the extension API.
#ifndef FMT_BUILTIN_TYPES
# define FMT_BUILTIN_TYPES 1
#endif
#define FMT_APPLY_VARIADIC(expr) \
using ignore = int[]; \
(void)ignore { 0, (expr, 0)... }
// Enable minimal optimizations for more compact code in debug mode.
FMT_GCC_PRAGMA(push_options)
#if !defined(__OPTIMIZE__) && !defined(__CUDACC__)
FMT_GCC_PRAGMA(optimize("Og"))
#endif
FMT_CLANG_PRAGMA(diagnostic push)
FMT_BEGIN_NAMESPACE
// Implementations of enable_if_t and other metafunctions for older systems.
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <bool B, typename T, typename F>
using conditional_t = typename std::conditional<B, T, F>::type;
template <bool B> using bool_constant = std::integral_constant<bool, B>;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
template <typename T>
using make_unsigned_t = typename std::make_unsigned<T>::type;
template <typename T>
using underlying_t = typename std::underlying_type<T>::type;
template <typename T> using decay_t = typename std::decay<T>::type;
#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
// A workaround for gcc 4.9 to make void_t work in a SFINAE context.
template <typename...> struct void_t_impl {
using type = void;
};
template <typename... T> using void_t = typename void_t_impl<T...>::type;
#else
template <typename...> using void_t = void;
#endif
struct monostate {
constexpr monostate() {}
};
// An enable_if helper to be used in template parameters which results in much
// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
// to workaround a bug in MSVC 2019 (see #1140 and #1186).
#ifdef FMT_DOC
# define FMT_ENABLE_IF(...)
#else
# define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
#endif
namespace detail {
// Suppresses "unused variable" warnings with the method described in
// https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/.
// (void)var does not work on many Intel compilers.
template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {}
constexpr auto is_constant_evaluated(bool default_value = false) noexcept
-> bool {
// Workaround for incompatibility between clang 14 and libstdc++ consteval-based
// std::is_constant_evaluated: https://github.com/fmtlib/fmt/issues/3247.
#if FMT_CPLUSPLUS >= 202002L && FMT_GLIBCXX_RELEASE >= 12 && \
(FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500)
ignore_unused(default_value);
return __builtin_is_constant_evaluated();
#elif defined(__cpp_lib_is_constant_evaluated)
ignore_unused(default_value);
return std::is_constant_evaluated();
#else
return default_value;
#endif
}
// Suppresses "conditional expression is constant" warnings.
template <typename T> constexpr auto const_check(T value) -> T { return value; }
FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
const char* message);
#if defined(FMT_ASSERT)
// Use the provided definition.
#elif defined(NDEBUG)
// FMT_ASSERT is not empty to avoid -Wempty-body.
# define FMT_ASSERT(condition, message) \
fmt::detail::ignore_unused((condition), (message))
#else
# define FMT_ASSERT(condition, message) \
((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
? (void)0 \
: fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
#endif
#ifdef FMT_USE_INT128
// Use the provided definition.
#elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \
!(FMT_CLANG_VERSION && FMT_MSC_VERSION)
# define FMT_USE_INT128 1
using int128_opt = __int128_t; // An optional native 128-bit integer.
using uint128_opt = __uint128_t;
inline auto map(int128_opt x) -> int128_opt { return x; }
inline auto map(uint128_opt x) -> uint128_opt { return x; }
#else
# define FMT_USE_INT128 0
#endif
#if !FMT_USE_INT128
enum class int128_opt {};
enum class uint128_opt {};
// Reduce template instantiations.
inline auto map(int128_opt) -> monostate { return {}; }
inline auto map(uint128_opt) -> monostate { return {}; }
#endif
#ifndef FMT_USE_BITINT
# define FMT_USE_BITINT (FMT_CLANG_VERSION >= 1400)
#endif
#if FMT_USE_BITINT
FMT_CLANG_PRAGMA(diagnostic ignored "-Wbit-int-extension")
template <int N> using bitint = _BitInt(N);
template <int N> using ubitint = unsigned _BitInt(N);
#else
template <int N> struct bitint {};
template <int N> struct ubitint {};
#endif // FMT_USE_BITINT
// Casts a nonnegative integer to unsigned.
template <typename Int>
FMT_CONSTEXPR auto to_unsigned(Int value) -> make_unsigned_t<Int> {
FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value");
return static_cast<make_unsigned_t<Int>>(value);
}
template <typename Char>
using unsigned_char = conditional_t<sizeof(Char) == 1, unsigned char, unsigned>;
// A heuristic to detect std::string and std::[experimental::]string_view.
// It is mainly used to avoid dependency on <[experimental/]string_view>.
template <typename T, typename Enable = void>
struct is_std_string_like : std::false_type {};
template <typename T>
struct is_std_string_like<T, void_t<decltype(std::declval<T>().find_first_of(
typename T::value_type(), 0))>>
: std::is_convertible<decltype(std::declval<T>().data()),
const typename T::value_type*> {};
// Returns true iff the literal encoding is UTF-8.
constexpr auto is_utf8_enabled() -> bool { return "\u00A7"[1] == '\xA7'; }
// It is a macro for better debug codegen without if constexpr.
#define FMT_USE_UTF8 (!FMT_MSC_VERSION || fmt::detail::is_utf8_enabled())
template <typename T> constexpr const char* narrow(const T*) { return nullptr; }
constexpr FMT_ALWAYS_INLINE const char* narrow(const char* s) { return s; }
#ifndef FMT_UNICODE
# define FMT_UNICODE 1
#endif
static_assert(!FMT_UNICODE || FMT_USE_UTF8,
"Unicode support requires compiling with /utf-8");
template <typename Char>
FMT_CONSTEXPR auto compare(const Char* s1, const Char* s2, std::size_t n)
-> int {
if (!is_constant_evaluated() && sizeof(Char) == 1) return memcmp(s1, s2, n);
for (; n != 0; ++s1, ++s2, --n) {
if (*s1 < *s2) return -1;
if (*s1 > *s2) return 1;
}
return 0;
}
namespace adl {
using namespace std;
template <typename Container>
auto invoke_back_inserter()
-> decltype(back_inserter(std::declval<Container&>()));
} // namespace adl
template <typename It, typename Enable = std::true_type>
struct is_back_insert_iterator : std::false_type {};
template <typename It>
struct is_back_insert_iterator<
It, bool_constant<std::is_same<
decltype(adl::invoke_back_inserter<typename It::container_type>()),
It>::value>> : std::true_type {};
// Extracts a reference to the container from *insert_iterator.
template <typename OutputIt>
inline FMT_CONSTEXPR20 auto get_container(OutputIt it) ->
typename OutputIt::container_type& {
struct accessor : OutputIt {
FMT_CONSTEXPR20 accessor(OutputIt base) : OutputIt(base) {}
using OutputIt::container;
};
return *accessor(it).container;
}
} // namespace detail
// Parsing-related public API and forward declarations.
FMT_BEGIN_EXPORT
/**
* An implementation of `std::basic_string_view` for pre-C++17. It provides a
* subset of the API. `fmt::basic_string_view` is used for format strings even
* if `std::basic_string_view` is available to prevent issues when a library is
* compiled with a different `-std` option than the client code (which is not
* recommended).
*/
template <typename Char> class basic_string_view {
private:
const Char* data_;
size_t size_;
public:
using value_type = Char;
using iterator = const Char*;
constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {}
/// Constructs a string reference object from a C string and a size.
constexpr basic_string_view(const Char* s, size_t count) noexcept
: data_(s), size_(count) {}
constexpr basic_string_view(std::nullptr_t) = delete;
/// Constructs a string reference object from a C string.
#if FMT_GCC_VERSION
FMT_ALWAYS_INLINE
#endif
FMT_CONSTEXPR20 basic_string_view(const Char* s) : data_(s) {
#if FMT_HAS_BUILTIN(__buitin_strlen) || FMT_GCC_VERSION || FMT_CLANG_VERSION
if (std::is_same<Char, char>::value) {
size_ = __builtin_strlen(detail::narrow(s));
return;
}
#endif
size_t len = 0;
while (*s++) ++len;
size_ = len;
}
/// Constructs a string reference from a `std::basic_string` or a
/// `std::basic_string_view` object.
template <typename S,
FMT_ENABLE_IF(detail::is_std_string_like<S>::value&& std::is_same<
typename S::value_type, Char>::value)>
FMT_CONSTEXPR basic_string_view(const S& s) noexcept
: data_(s.data()), size_(s.size()) {}
/// Returns a pointer to the string data.
constexpr auto data() const noexcept -> const Char* { return data_; }
/// Returns the string size.
constexpr auto size() const noexcept -> size_t { return size_; }
constexpr auto begin() const noexcept -> iterator { return data_; }
constexpr auto end() const noexcept -> iterator { return data_ + size_; }
constexpr auto operator[](size_t pos) const noexcept -> const Char& {
return data_[pos];
}
FMT_CONSTEXPR void remove_prefix(size_t n) noexcept {
data_ += n;
size_ -= n;
}
FMT_CONSTEXPR auto starts_with(basic_string_view<Char> sv) const noexcept
-> bool {
return size_ >= sv.size_ && detail::compare(data_, sv.data_, sv.size_) == 0;
}
FMT_CONSTEXPR auto starts_with(Char c) const noexcept -> bool {
return size_ >= 1 && *data_ == c;
}
FMT_CONSTEXPR auto starts_with(const Char* s) const -> bool {
return starts_with(basic_string_view<Char>(s));
}
// Lexicographically compare this string reference to other.
FMT_CONSTEXPR auto compare(basic_string_view other) const -> int {
size_t str_size = size_ < other.size_ ? size_ : other.size_;
int result = detail::compare(data_, other.data_, str_size);
if (result == 0)
result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
return result;
}
FMT_CONSTEXPR friend auto operator==(basic_string_view lhs,
basic_string_view rhs) -> bool {
return lhs.compare(rhs) == 0;
}
friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) != 0;
}
friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) < 0;
}
friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) <= 0;
}
friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) > 0;
}
friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
return lhs.compare(rhs) >= 0;
}
};
using string_view = basic_string_view<char>;
/// Specifies if `T` is a character type. Can be specialized by users.
template <typename T> struct is_char : std::false_type {};
template <> struct is_char<char> : std::true_type {};
template <typename T> class basic_appender;
using appender = basic_appender<char>;
// Checks whether T is a container with contiguous storage.
template <typename T> struct is_contiguous : std::false_type {};
class context;
template <typename OutputIt, typename Char> class generic_context;
template <typename Char> class parse_context;
// Longer aliases for C++20 compatibility.
template <typename Char> using basic_format_parse_context = parse_context<Char>;
using format_parse_context = parse_context<char>;
template <typename OutputIt, typename Char>
using basic_format_context =
conditional_t<std::is_same<OutputIt, appender>::value, context,
generic_context<OutputIt, Char>>;
using format_context = context;
template <typename Char>
using buffered_context =
conditional_t<std::is_same<Char, char>::value, context,
generic_context<basic_appender<Char>, Char>>;
template <typename Context> class basic_format_arg;
template <typename Context> class basic_format_args;
// A separate type would result in shorter symbols but break ABI compatibility
// between clang and gcc on ARM (#1919).
using format_args = basic_format_args<context>;
// A formatter for objects of type T.
template <typename T, typename Char = char, typename Enable = void>
struct formatter {
// A deleted default constructor indicates a disabled formatter.
formatter() = delete;
};
// This is defined in base.h instead of format.h to avoid injecting in std.
// It is a template to avoid undesirable implicit conversions to std::byte.
#ifdef __cpp_lib_byte
template <typename T, FMT_ENABLE_IF(std::is_same<T, std::byte>::value)>
inline auto format_as(T b) -> unsigned char {
return static_cast<unsigned char>(b);
}
#endif
/// Reports a format error at compile time or, via a `format_error` exception,
/// at runtime.
// This function is intentionally not constexpr to give a compile-time error.
FMT_NORETURN FMT_API void report_error(const char* message);
enum class presentation_type : unsigned char {
// Common specifiers:
none = 0,
debug = 1, // '?'
string = 2, // 's' (string, bool)
// Integral, bool and character specifiers:
dec = 3, // 'd'
hex, // 'x' or 'X'
oct, // 'o'
bin, // 'b' or 'B'
chr, // 'c'
// String and pointer specifiers:
pointer = 3, // 'p'
// Floating-point specifiers:
exp = 1, // 'e' or 'E' (1 since there is no FP debug presentation)
fixed, // 'f' or 'F'
general, // 'g' or 'G'
hexfloat // 'a' or 'A'
};
enum class align { none, left, right, center, numeric };
enum class sign { none, minus, plus, space };
enum class arg_id_kind { none, index, name };
// Basic format specifiers for built-in and string types.
class basic_specs {
private:
// Data is arranged as follows:
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |type |align| w | p | s |u|#|L| f | unused |
// +-----+-----+---+---+---+-+-+-+-----+---------------------------+
//
// w - dynamic width info
// p - dynamic precision info
// s - sign
// u - uppercase (e.g. 'X' for 'x')
// # - alternate form ('#')
// L - localized
// f - fill size
//
// Bitfields are not used because of compiler bugs such as gcc bug 61414.
enum : unsigned {
type_mask = 0x00007,
align_mask = 0x00038,
width_mask = 0x000C0,
precision_mask = 0x00300,
sign_mask = 0x00C00,
uppercase_mask = 0x01000,
alternate_mask = 0x02000,
localized_mask = 0x04000,
fill_size_mask = 0x38000,
align_shift = 3,
width_shift = 6,
precision_shift = 8,
sign_shift = 10,
fill_size_shift = 15,
max_fill_size = 4
};
unsigned long data_ = 1 << fill_size_shift;
// Character (code unit) type is erased to prevent template bloat.
char fill_data_[max_fill_size] = {' '};
FMT_CONSTEXPR void set_fill_size(size_t size) {
data_ = (data_ & ~fill_size_mask) | (size << fill_size_shift);
}
public:
constexpr auto type() const -> presentation_type {
return static_cast<presentation_type>(data_ & type_mask);
}
FMT_CONSTEXPR void set_type(presentation_type t) {
data_ = (data_ & ~type_mask) | static_cast<unsigned>(t);
}
constexpr auto align() const -> align {
return static_cast<fmt::align>((data_ & align_mask) >> align_shift);
}
FMT_CONSTEXPR void set_align(fmt::align a) {
data_ = (data_ & ~align_mask) | (static_cast<unsigned>(a) << align_shift);
}
constexpr auto dynamic_width() const -> arg_id_kind {
return static_cast<arg_id_kind>((data_ & width_mask) >> width_shift);
}
FMT_CONSTEXPR void set_dynamic_width(arg_id_kind w) {
data_ = (data_ & ~width_mask) | (static_cast<unsigned>(w) << width_shift);
}
FMT_CONSTEXPR auto dynamic_precision() const -> arg_id_kind {
return static_cast<arg_id_kind>((data_ & precision_mask) >>
precision_shift);
}
FMT_CONSTEXPR void set_dynamic_precision(arg_id_kind p) {
data_ = (data_ & ~precision_mask) |
(static_cast<unsigned>(p) << precision_shift);
}
constexpr bool dynamic() const {
return (data_ & (width_mask | precision_mask)) != 0;
}
constexpr auto sign() const -> sign {
return static_cast<fmt::sign>((data_ & sign_mask) >> sign_shift);
}
FMT_CONSTEXPR void set_sign(fmt::sign s) {
data_ = (data_ & ~sign_mask) | (static_cast<unsigned>(s) << sign_shift);
}
constexpr auto upper() const -> bool { return (data_ & uppercase_mask) != 0; }
FMT_CONSTEXPR void set_upper() { data_ |= uppercase_mask; }
constexpr auto alt() const -> bool { return (data_ & alternate_mask) != 0; }
FMT_CONSTEXPR void set_alt() { data_ |= alternate_mask; }
FMT_CONSTEXPR void clear_alt() { data_ &= ~alternate_mask; }
constexpr auto localized() const -> bool {
return (data_ & localized_mask) != 0;
}
FMT_CONSTEXPR void set_localized() { data_ |= localized_mask; }
constexpr auto fill_size() const -> size_t {
return (data_ & fill_size_mask) >> fill_size_shift;
}
template <typename Char, FMT_ENABLE_IF(std::is_same<Char, char>::value)>
constexpr auto fill() const -> const Char* {
return fill_data_;
}
template <typename Char, FMT_ENABLE_IF(!std::is_same<Char, char>::value)>
constexpr auto fill() const -> const Char* {
return nullptr;
}
template <typename Char> constexpr auto fill_unit() const -> Char {
using uchar = unsigned char;
return static_cast<Char>(static_cast<uchar>(fill_data_[0]) |
(static_cast<uchar>(fill_data_[1]) << 8));
}
FMT_CONSTEXPR void set_fill(char c) {
fill_data_[0] = c;
set_fill_size(1);
}
template <typename Char>
FMT_CONSTEXPR void set_fill(basic_string_view<Char> s) {
auto size = s.size();
set_fill_size(size);
if (size == 1) {
unsigned uchar = static_cast<detail::unsigned_char<Char>>(s[0]);
fill_data_[0] = static_cast<char>(uchar);
fill_data_[1] = static_cast<char>(uchar >> 8);
return;
}
FMT_ASSERT(size <= max_fill_size, "invalid fill");
for (size_t i = 0; i < size; ++i)
fill_data_[i & 3] = static_cast<char>(s[i]);
}
};
// Format specifiers for built-in and string types.
struct format_specs : basic_specs {
int width;
int precision;
constexpr format_specs() : width(0), precision(-1) {}
};
/**
* Parsing context consisting of a format string range being parsed and an
* argument counter for automatic indexing.
*/
template <typename Char = char> class parse_context {
private:
basic_string_view<Char> format_str_;
int next_arg_id_;
enum { use_constexpr_cast = !FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200 };
FMT_CONSTEXPR void do_check_arg_id(int arg_id);
public:
using char_type = Char;
using iterator = const Char*;
explicit constexpr parse_context(basic_string_view<Char> format_str,
int next_arg_id = 0)
: format_str_(format_str), next_arg_id_(next_arg_id) {}
/// Returns an iterator to the beginning of the format string range being
/// parsed.
constexpr auto begin() const noexcept -> iterator {
return format_str_.begin();
}
/// Returns an iterator past the end of the format string range being parsed.
constexpr auto end() const noexcept -> iterator { return format_str_.end(); }
/// Advances the begin iterator to `it`.
FMT_CONSTEXPR void advance_to(iterator it) {
format_str_.remove_prefix(detail::to_unsigned(it - begin()));
}
/// Reports an error if using the manual argument indexing; otherwise returns
/// the next argument index and switches to the automatic indexing.
FMT_CONSTEXPR auto next_arg_id() -> int {
if (next_arg_id_ < 0) {
report_error("cannot switch from manual to automatic argument indexing");
return 0;
}
int id = next_arg_id_++;
do_check_arg_id(id);
return id;
}
/// Reports an error if using the automatic argument indexing; otherwise
/// switches to the manual indexing.
FMT_CONSTEXPR void check_arg_id(int id) {
if (next_arg_id_ > 0) {
report_error("cannot switch from automatic to manual argument indexing");
return;
}
next_arg_id_ = -1;
do_check_arg_id(id);
}
FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {
next_arg_id_ = -1;
}
FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
};
FMT_END_EXPORT
namespace detail {
// Constructs fmt::basic_string_view<Char> from types implicitly convertible
// to it, deducing Char. Explicitly convertible types such as the ones returned
// from FMT_STRING are intentionally excluded.
template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
constexpr auto to_string_view(const Char* s) -> basic_string_view<Char> {
return s;
}
template <typename T, FMT_ENABLE_IF(is_std_string_like<T>::value)>
constexpr auto to_string_view(const T& s)
-> basic_string_view<typename T::value_type> {
return s;
}
template <typename Char>
constexpr auto to_string_view(basic_string_view<Char> s)
-> basic_string_view<Char> {
return s;
}
template <typename T, typename Enable = void>
struct has_to_string_view : std::false_type {};
// detail:: is intentional since to_string_view is not an extension point.
template <typename T>
struct has_to_string_view<
T, void_t<decltype(detail::to_string_view(std::declval<T>()))>>
: std::true_type {};
/// String's character (code unit) type. detail:: is intentional to prevent ADL.
template <typename S,
typename V = decltype(detail::to_string_view(std::declval<S>()))>
using char_t = typename V::value_type;
enum class type {
none_type,
// Integer types should go first,
int_type,
uint_type,
long_long_type,
ulong_long_type,
int128_type,
uint128_type,
bool_type,
char_type,
last_integer_type = char_type,
// followed by floating-point types.
float_type,
double_type,
long_double_type,
last_numeric_type = long_double_type,
cstring_type,
string_type,
pointer_type,
custom_type
};
// Maps core type T to the corresponding type enum constant.
template <typename T, typename Char>
struct type_constant : std::integral_constant<type, type::custom_type> {};
#define FMT_TYPE_CONSTANT(Type, constant) \
template <typename Char> \
struct type_constant<Type, Char> \
: std::integral_constant<type, type::constant> {}
FMT_TYPE_CONSTANT(int, int_type);
FMT_TYPE_CONSTANT(unsigned, uint_type);
FMT_TYPE_CONSTANT(long long, long_long_type);
FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
FMT_TYPE_CONSTANT(int128_opt, int128_type);
FMT_TYPE_CONSTANT(uint128_opt, uint128_type);
FMT_TYPE_CONSTANT(bool, bool_type);
FMT_TYPE_CONSTANT(Char, char_type);
FMT_TYPE_CONSTANT(float, float_type);
FMT_TYPE_CONSTANT(double, double_type);
FMT_TYPE_CONSTANT(long double, long_double_type);
FMT_TYPE_CONSTANT(const Char*, cstring_type);
FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
FMT_TYPE_CONSTANT(const void*, pointer_type);
constexpr auto is_integral_type(type t) -> bool {
return t > type::none_type && t <= type::last_integer_type;
}
constexpr auto is_arithmetic_type(type t) -> bool {
return t > type::none_type && t <= type::last_numeric_type;
}
constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); }
constexpr auto in(type t, int set) -> bool {
return ((set >> static_cast<int>(t)) & 1) != 0;
}
// Bitsets of types.
enum {
sint_set =
set(type::int_type) | set(type::long_long_type) | set(type::int128_type),
uint_set = set(type::uint_type) | set(type::ulong_long_type) |
set(type::uint128_type),
bool_set = set(type::bool_type),
char_set = set(type::char_type),
float_set = set(type::float_type) | set(type::double_type) |
set(type::long_double_type),
string_set = set(type::string_type),
cstring_set = set(type::cstring_type),
pointer_set = set(type::pointer_type)
};
struct view {};
template <typename Char, typename T> struct named_arg;
template <typename T> struct is_named_arg : std::false_type {};
template <typename T> struct is_static_named_arg : std::false_type {};
template <typename Char, typename T>
struct is_named_arg<named_arg<Char, T>> : std::true_type {};
template <typename Char, typename T> struct named_arg : view {
const Char* name;
const T& value;
named_arg(const Char* n, const T& v) : name(n), value(v) {}
static_assert(!is_named_arg<T>::value, "nested named arguments");
};
template <typename Char, typename T>
auto unwrap_named_arg(const named_arg<Char, T>& arg) -> const T& {
return arg.value;
}
template <typename T,
FMT_ENABLE_IF(!is_named_arg<remove_reference_t<T>>::value)>
auto unwrap_named_arg(T&& value) -> T&& {
return value;
}
template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; }
template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t {
return (B1 ? 1 : 0) + count<B2, Tail...>();
}
template <typename... Args> constexpr auto count_named_args() -> size_t {
return count<is_named_arg<Args>::value...>();
}
template <typename... Args> constexpr auto count_static_named_args() -> size_t {
return count<is_static_named_arg<Args>::value...>();
}
template <typename Char> struct named_arg_info {
const Char* name;
int id;
};
template <typename Char, typename T, FMT_ENABLE_IF(!is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>*, int& arg_index, int&, const T&) {
++arg_index;
}
template <typename Char, typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
void init_named_arg(named_arg_info<Char>* named_args, int& arg_index,
int& named_arg_index, const T& arg) {
named_args[named_arg_index++] = {arg.name, arg_index++};
}
template <typename T, typename Char,
FMT_ENABLE_IF(!is_static_named_arg<T>::value)>
FMT_CONSTEXPR void init_static_named_arg(named_arg_info<Char>*, int& arg_index,
int&) {
++arg_index;
}
template <typename T, typename Char,
FMT_ENABLE_IF(is_static_named_arg<T>::value)>
FMT_CONSTEXPR void init_static_named_arg(named_arg_info<Char>* named_args,
int& arg_index, int& named_arg_index) {
named_args[named_arg_index++] = {T::name, arg_index++};
}
// To minimize the number of types we need to deal with, long is translated
// either to int or to long long depending on its size.
enum { long_short = sizeof(long) == sizeof(int) };
using long_type = conditional_t<long_short, int, long long>;
using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
template <typename T> struct format_as_result {
template <typename U,
FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)>
static auto map(U*) -> remove_cvref_t<decltype(format_as(std::declval<U>()))>;
static auto map(...) -> void;
using type = decltype(map(static_cast<T*>(nullptr)));
};
template <typename T> using format_as_t = typename format_as_result<T>::type;
template <typename Char, typename T>
constexpr auto has_const_formatter_impl(T*)
-> decltype(formatter<T, Char>().format(
std::declval<const T&>(),
std::declval<buffered_context<Char>&>()),
true) {
return true;
}
template <typename Char> constexpr auto has_const_formatter_impl(...) -> bool {
return false;
}
template <typename T, typename Char>
constexpr auto has_const_formatter() -> bool {
return has_const_formatter_impl<Char>(static_cast<T*>(nullptr));
}
struct unformattable {};
struct unformattable_char : unformattable {};
struct unformattable_pointer : unformattable {};
#define FMT_MAP_API static FMT_CONSTEXPR FMT_ALWAYS_INLINE
// Maps formatting arguments to reduce the set of types we need to work with.
// Returns unformattable* on errors to be SFINAE-friendly.
template <typename Char> struct arg_mapper {
FMT_MAP_API auto map(signed char x) -> int { return x; }
FMT_MAP_API auto map(unsigned char x) -> unsigned { return x; }
FMT_MAP_API auto map(short x) -> int { return x; }
FMT_MAP_API auto map(unsigned short x) -> unsigned { return x; }
FMT_MAP_API auto map(int x) -> int { return x; }
FMT_MAP_API auto map(unsigned x) -> unsigned { return x; }
FMT_MAP_API auto map(long x) -> long_type { return x; }
FMT_MAP_API auto map(unsigned long x) -> ulong_type { return x; }
FMT_MAP_API auto map(long long x) -> long long { return x; }
FMT_MAP_API auto map(unsigned long long x) -> unsigned long long { return x; }
FMT_MAP_API auto map(int128_opt x) -> int128_opt { return x; }
FMT_MAP_API auto map(uint128_opt x) -> uint128_opt { return x; }
FMT_MAP_API auto map(bool x) -> bool { return x; }
template <typename T, FMT_ENABLE_IF(std::is_same<T, char>::value ||
std::is_same<T, Char>::value)>
FMT_MAP_API auto map(T x) -> Char {
return x;
}
template <typename T, enable_if_t<(std::is_same<T, wchar_t>::value ||
#ifdef __cpp_char8_t
std::is_same<T, char8_t>::value ||
#endif
std::is_same<T, char16_t>::value ||
std::is_same<T, char32_t>::value) &&
!std::is_same<T, Char>::value,
int> = 0>
FMT_MAP_API auto map(T) -> unformattable_char {
return {};
}
FMT_MAP_API auto map(float x) -> float { return x; }
FMT_MAP_API auto map(double x) -> double { return x; }
FMT_MAP_API auto map(long double x) -> long double { return x; }
template <int N, FMT_ENABLE_IF(N <= 64)>
FMT_MAP_API auto map(bitint<N> x) -> long long {
return x;
}
template <int N, FMT_ENABLE_IF(N <= 64)>
FMT_MAP_API auto map(ubitint<N> x) -> unsigned long long {
return x;
}
template <int N, FMT_ENABLE_IF(N > 64)>
FMT_MAP_API auto map(bitint<N>) -> unformattable {
return {};
}
template <int N, FMT_ENABLE_IF(N > 64)>
FMT_MAP_API auto map(ubitint<N>) -> unformattable {
return {};
}
FMT_MAP_API auto map(Char* x) -> const Char* { return x; }
FMT_MAP_API auto map(const Char* x) -> const Char* { return x; }
template <typename T, typename C = char_t<T>,
FMT_ENABLE_IF(std::is_same<C, Char>::value &&
!std::is_pointer<T>::value)>
FMT_MAP_API auto map(const T& x) -> basic_string_view<C> {
return to_string_view(x);
}
template <typename T, typename C = char_t<T>,
FMT_ENABLE_IF(!std::is_same<C, Char>::value &&
!std::is_pointer<T>::value)>
FMT_MAP_API auto map(const T&) -> unformattable_char {
return {};
}
FMT_MAP_API auto map(void* x) -> const void* { return x; }
FMT_MAP_API auto map(const void* x) -> const void* { return x; }
FMT_MAP_API auto map(volatile void* x) -> const void* {
return const_cast<const void*>(x);
}
FMT_MAP_API auto map(const volatile void* x) -> const void* {
return const_cast<const void*>(x);
}
FMT_MAP_API auto map(std::nullptr_t x) -> const void* { return x; }
// Use SFINAE instead of a const T* parameter to avoid a conflict with the
// array overload.
template <
typename T,
FMT_ENABLE_IF(
std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
std::is_function<typename std::remove_pointer<T>::type>::value ||
(std::is_array<T>::value &&
!std::is_convertible<T, const Char*>::value))>
FMT_MAP_API auto map(const T&) -> unformattable_pointer {
return {};
}
template <typename T, std::size_t N,
FMT_ENABLE_IF(!std::is_same<T, wchar_t>::value)>
FMT_MAP_API auto map(const T (&x)[N]) -> const T (&)[N] {
return x;
}
// Only map owning types because mapping views can be unsafe.
template <typename T, typename U = format_as_t<T>,
FMT_ENABLE_IF(std::is_arithmetic<U>::value)>
FMT_MAP_API auto map(const T& x) -> decltype(map(U())) {
return map(format_as(x));
}
template <typename T, typename U = remove_const_t<T>>
struct formattable
: bool_constant<has_const_formatter<U, Char>() ||
(std::is_constructible<formatter<U, Char>>::value &&
!std::is_const<T>::value)> {};
template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
FMT_MAP_API auto do_map(T& x) -> T& {
return x;
}
template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
FMT_MAP_API auto do_map(T&) -> unformattable {
return {};
}
// is_fundamental is used to allow formatters for extended FP types.
template <typename T, typename U = remove_const_t<T>,
FMT_ENABLE_IF(
(std::is_class<U>::value || std::is_enum<U>::value ||
std::is_union<U>::value || std::is_fundamental<U>::value) &&
!has_to_string_view<U>::value && !is_char<U>::value &&
!is_named_arg<U>::value && !std::is_integral<U>::value &&
!std::is_arithmetic<format_as_t<U>>::value)>
FMT_MAP_API auto map(T& x) -> decltype(do_map(x)) {
return do_map(x);
}
template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
FMT_MAP_API auto map(const T& named_arg) -> decltype(map(named_arg.value)) {
return map(named_arg.value);
}
FMT_MAP_API auto map(...) -> unformattable { return {}; }
};
// detail:: is used to workaround a bug in MSVC 2017.
template <typename T, typename Char>
using mapped_t = decltype(detail::arg_mapper<Char>::map(std::declval<T&>()));
// A type constant after applying arg_mapper.
template <typename T, typename Char = char>
using mapped_type_constant = type_constant<mapped_t<T, Char>, Char>;
template <typename T, typename Context,
type TYPE =
mapped_type_constant<T, typename Context::char_type>::value>
using stored_type_constant = std::integral_constant<
type, Context::builtin_types || TYPE == type::int_type ? TYPE
: type::custom_type>;
// A parse context with extra data used only in compile-time checks.
template <typename Char>
class compile_parse_context : public parse_context<Char> {
private:
int num_args_;
const type* types_;
using base = parse_context<Char>;
public:
explicit FMT_CONSTEXPR compile_parse_context(
basic_string_view<Char> format_str, int num_args, const type* types,
int next_arg_id = 0)
: base(format_str, next_arg_id), num_args_(num_args), types_(types) {}
constexpr auto num_args() const -> int { return num_args_; }
constexpr auto arg_type(int id) const -> type { return types_[id]; }
FMT_CONSTEXPR auto next_arg_id() -> int {
int id = base::next_arg_id();
if (id >= num_args_) report_error("argument not found");
return id;
}
FMT_CONSTEXPR void check_arg_id(int id) {
base::check_arg_id(id);
if (id >= num_args_) report_error("argument not found");
}
using base::check_arg_id;
FMT_CONSTEXPR void check_dynamic_spec(int arg_id) {
detail::ignore_unused(arg_id);
if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id]))
report_error("width/precision is not integer");
}
};
// An argument reference.
template <typename Char> union arg_ref {
FMT_CONSTEXPR arg_ref(int idx = 0) : index(idx) {}
FMT_CONSTEXPR arg_ref(basic_string_view<Char> n) : name(n) {}
int index;
basic_string_view<Char> name;
};
// Format specifiers with width and precision resolved at formatting rather
// than parsing time to allow reusing the same parsed specifiers with
// different sets of arguments (precompilation of format strings).
template <typename Char = char> struct dynamic_format_specs : format_specs {
arg_ref<Char> width_ref;
arg_ref<Char> precision_ref;
};
// Converts a character to ASCII. Returns '\0' on conversion failure.
template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
constexpr auto to_ascii(Char c) -> char {
return c <= 0xff ? static_cast<char>(c) : '\0';
}
// Returns the number of code units in a code point or 1 on error.
template <typename Char>
FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
if (const_check(sizeof(Char) != 1)) return 1;
auto c = static_cast<unsigned char>(*begin);
return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 3) + 1;
}
// Parses the range [begin, end) as an unsigned integer. This function assumes
// that the range is non-empty and the first character is a digit.
template <typename Char>
FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
int error_value) noexcept -> int {
FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
unsigned value = 0, prev = 0;
auto p = begin;
do {
prev = value;
value = value * 10 + unsigned(*p - '0');
++p;
} while (p != end && '0' <= *p && *p <= '9');
auto num_digits = p - begin;
begin = p;
int digits10 = static_cast<int>(sizeof(int) * CHAR_BIT * 3 / 10);
if (num_digits <= digits10) return static_cast<int>(value);
// Check for overflow.
unsigned max = INT_MAX;
return num_digits == digits10 + 1 &&
prev * 10ull + unsigned(p[-1] - '0') <= max
? static_cast<int>(value)
: error_value;
}
FMT_CONSTEXPR inline auto parse_align(char c) -> align {
switch (c) {
case '<': return align::left;
case '>': return align::right;
case '^': return align::center;
}
return align::none;
}
template <typename Char> constexpr auto is_name_start(Char c) -> bool {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_';
}
template <typename Char, typename Handler>
FMT_CONSTEXPR auto parse_arg_id(const Char* begin, const Char* end,
Handler&& handler) -> const Char* {
Char c = *begin;
if (c >= '0' && c <= '9') {
int index = 0;
if (c != '0')
index = parse_nonnegative_int(begin, end, INT_MAX);
else
++begin;
if (begin == end || (*begin != '}' && *begin != ':'))
report_error("invalid format string");
else
handler.on_index(index);
return begin;
}
if (FMT_OPTIMIZE_SIZE > 1 || !is_name_start(c)) {
report_error("invalid format string");
return begin;
}
auto it = begin;
do {
++it;
} while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9')));
handler.on_name({begin, to_unsigned(it - begin)});
return it;
}
template <typename Char> struct dynamic_spec_handler {
parse_context<Char>& ctx;
arg_ref<Char>& ref;
arg_id_kind& kind;
FMT_CONSTEXPR void on_index(int id) {
ref = id;
kind = arg_id_kind::index;
ctx.check_arg_id(id);
ctx.check_dynamic_spec(id);
}
FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
ref = id;
kind = arg_id_kind::name;
ctx.check_arg_id(id);
}
};
template <typename Char> struct parse_dynamic_spec_result {
const Char* end;
arg_id_kind kind;
};
// Parses integer | "{" [arg_id] "}".
template <typename Char>
FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end,
int& value, arg_ref<Char>& ref,
parse_context<Char>& ctx)
-> parse_dynamic_spec_result<Char> {
FMT_ASSERT(begin != end, "");
auto kind = arg_id_kind::none;
if ('0' <= *begin && *begin <= '9') {
int val = parse_nonnegative_int(begin, end, -1);
if (val == -1) report_error("number is too big");
value = val;
} else {
if (*begin == '{') {
++begin;
if (begin != end) {
Char c = *begin;
if (c == '}' || c == ':') {
int id = ctx.next_arg_id();
ref = id;
kind = arg_id_kind::index;
ctx.check_dynamic_spec(id);
} else {
begin = parse_arg_id(begin, end,
dynamic_spec_handler<Char>{ctx, ref, kind});
}
}
if (begin != end && *begin == '}') return {++begin, kind};
}
report_error("invalid format string");
}
return {begin, kind};
}
template <typename Char>
FMT_CONSTEXPR auto parse_width(const Char* begin, const Char* end,
format_specs& specs, arg_ref<Char>& width_ref,
parse_context<Char>& ctx) -> const Char* {
auto result = parse_dynamic_spec(begin, end, specs.width, width_ref, ctx);
specs.set_dynamic_width(result.kind);
return result.end;
}
template <typename Char>
FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
format_specs& specs,
arg_ref<Char>& precision_ref,
parse_context<Char>& ctx) -> const Char* {
++begin;
if (begin == end) {
report_error("invalid precision");
return begin;
}
auto result =
parse_dynamic_spec(begin, end, specs.precision, precision_ref, ctx);
specs.set_dynamic_precision(result.kind);
return result.end;
}
enum class state { start, align, sign, hash, zero, width, precision, locale };
// Parses standard format specifiers.
template <typename Char>
FMT_CONSTEXPR auto parse_format_specs(const Char* begin, const Char* end,
dynamic_format_specs<Char>& specs,
parse_context<Char>& ctx, type arg_type)
-> const Char* {
auto c = '\0';
if (end - begin > 1) {
auto next = to_ascii(begin[1]);
c = parse_align(next) == align::none ? to_ascii(*begin) : '\0';
} else {
if (begin == end) return begin;
c = to_ascii(*begin);
}
struct {
state current_state = state::start;
FMT_CONSTEXPR void operator()(state s, bool valid = true) {
if (current_state >= s || !valid)
report_error("invalid format specifier");
current_state = s;
}
} enter_state;
using pres = presentation_type;
constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
struct {
const Char*& begin;
format_specs& specs;
type arg_type;
FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* {
if (!in(arg_type, set)) report_error("invalid format specifier");
specs.set_type(pres_type);
return begin + 1;
}
} parse_presentation_type{begin, specs, arg_type};
for (;;) {
switch (c) {
case '<':
case '>':
case '^':
enter_state(state::align);
specs.set_align(parse_align(c));
++begin;
break;
case '+':
case ' ':
specs.set_sign(c == ' ' ? sign::space : sign::plus);
FMT_FALLTHROUGH;
case '-':
enter_state(state::sign, in(arg_type, sint_set | float_set));
++begin;
break;
case '#':
enter_state(state::hash, is_arithmetic_type(arg_type));
specs.set_alt();
++begin;
break;
case '0':
enter_state(state::zero);
if (!is_arithmetic_type(arg_type))
report_error("format specifier requires numeric argument");
if (specs.align() == align::none) {
// Ignore 0 if align is specified for compatibility with std::format.
specs.set_align(align::numeric);
specs.set_fill('0');
}
++begin;
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '{':
enter_state(state::width);
begin = parse_width(begin, end, specs, specs.width_ref, ctx);
break;
case '.':
enter_state(state::precision,
in(arg_type, float_set | string_set | cstring_set));
begin = parse_precision(begin, end, specs, specs.precision_ref, ctx);
break;
case 'L':
enter_state(state::locale, is_arithmetic_type(arg_type));
specs.set_localized();
++begin;
break;
case 'd': return parse_presentation_type(pres::dec, integral_set);
case 'X': specs.set_upper(); FMT_FALLTHROUGH;
case 'x': return parse_presentation_type(pres::hex, integral_set);
case 'o': return parse_presentation_type(pres::oct, integral_set);
case 'B': specs.set_upper(); FMT_FALLTHROUGH;
case 'b': return parse_presentation_type(pres::bin, integral_set);
case 'E': specs.set_upper(); FMT_FALLTHROUGH;
case 'e': return parse_presentation_type(pres::exp, float_set);
case 'F': specs.set_upper(); FMT_FALLTHROUGH;
case 'f': return parse_presentation_type(pres::fixed, float_set);
case 'G': specs.set_upper(); FMT_FALLTHROUGH;
case 'g': return parse_presentation_type(pres::general, float_set);
case 'A': specs.set_upper(); FMT_FALLTHROUGH;
case 'a': return parse_presentation_type(pres::hexfloat, float_set);
case 'c':
if (arg_type == type::bool_type) report_error("invalid format specifier");
return parse_presentation_type(pres::chr, integral_set);
case 's':
return parse_presentation_type(pres::string,
bool_set | string_set | cstring_set);
case 'p':
return parse_presentation_type(pres::pointer, pointer_set | cstring_set);
case '?':
return parse_presentation_type(pres::debug,
char_set | string_set | cstring_set);
case '}': return begin;
default: {
if (*begin == '}') return begin;
// Parse fill and alignment.
auto fill_end = begin + code_point_length(begin);
if (end - fill_end <= 0) {
report_error("invalid format specifier");
return begin;
}
if (*begin == '{') {
report_error("invalid fill character '{'");
return begin;
}
auto alignment = parse_align(to_ascii(*fill_end));
enter_state(state::align, alignment != align::none);
specs.set_fill(
basic_string_view<Char>(begin, to_unsigned(fill_end - begin)));
specs.set_align(alignment);
begin = fill_end + 1;
}
}
if (begin == end) return begin;
c = to_ascii(*begin);
}
}
template <typename Char, typename Handler>
FMT_CONSTEXPR FMT_INLINE auto parse_replacement_field(const Char* begin,
const Char* end,
Handler&& handler)
-> const Char* {
++begin;
if (begin == end) {
handler.on_error("invalid format string");
return end;
}
int arg_id = 0;
switch (*begin) {
case '}':
handler.on_replacement_field(handler.on_arg_id(), begin);
return begin + 1;
case '{': handler.on_text(begin, begin + 1); return begin + 1;
case ':': arg_id = handler.on_arg_id(); break;
default: {
struct id_adapter {
Handler& handler;
int arg_id;
FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); }
FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
arg_id = handler.on_arg_id(id);
}
} adapter = {handler, 0};
begin = parse_arg_id(begin, end, adapter);
arg_id = adapter.arg_id;
Char c = begin != end ? *begin : Char();
if (c == '}') {
handler.on_replacement_field(arg_id, begin);
return begin + 1;
}
if (c != ':') {
handler.on_error("missing '}' in format string");
return end;
}
break;
}
}
begin = handler.on_format_specs(arg_id, begin + 1, end);
if (begin == end || *begin != '}')
return handler.on_error("unknown format specifier"), end;
return begin + 1;
}
template <typename Char, typename Handler>
FMT_CONSTEXPR void parse_format_string(basic_string_view<Char> fmt,
Handler&& handler) {
auto begin = fmt.data(), end = begin + fmt.size();
auto p = begin;
while (p != end) {
auto c = *p++;
if (c == '{') {
handler.on_text(begin, p - 1);
begin = p = parse_replacement_field(p - 1, end, handler);
} else if (c == '}') {
if (p == end || *p != '}')
return handler.on_error("unmatched '}' in format string");
handler.on_text(begin, p);
begin = ++p;
}
}
handler.on_text(begin, end);
}
// Checks char specs and returns true iff the presentation type is char-like.
FMT_CONSTEXPR inline auto check_char_specs(const format_specs& specs) -> bool {
auto type = specs.type();
if (type != presentation_type::none && type != presentation_type::chr &&
type != presentation_type::debug) {
return false;
}
if (specs.align() == align::numeric || specs.sign() != sign::none ||
specs.alt()) {
report_error("invalid format specifier for char");
}
return true;
}
// A base class for compile-time strings.
struct compile_string {};
template <typename T, typename Char>
FMT_VISIBILITY("hidden") // Suppress an ld warning on macOS (#3769).
FMT_CONSTEXPR auto invoke_parse(parse_context<Char>& ctx) -> const Char* {
using mapped_type = remove_cvref_t<mapped_t<T, Char>>;
#if defined(__cpp_if_constexpr)
if constexpr (std::is_default_constructible<formatter<mapped_type, Char>>())
return formatter<mapped_type, Char>().parse(ctx);
return ctx.begin(); // Ignore the error - it is reported in the value ctor.
#else
return formatter<mapped_type, Char>().parse(ctx);
#endif
}
template <typename... T> struct arg_pack {};
template <typename Char, int NUM_ARGS, int NUM_NAMED_ARGS, bool DYNAMIC_NAMES>
class format_string_checker {
private:
type types_[NUM_ARGS > 0 ? NUM_ARGS : 1];
named_arg_info<Char> named_args_[NUM_NAMED_ARGS > 0 ? NUM_NAMED_ARGS : 1];
compile_parse_context<Char> context_;
using parse_func = auto (*)(parse_context<Char>&) -> const Char*;
parse_func parse_funcs_[NUM_ARGS > 0 ? NUM_ARGS : 1];
public:
template <typename... T>
explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt,
arg_pack<T...>)
: types_{mapped_type_constant<T, Char>::value...},
named_args_{},
context_(fmt, NUM_ARGS, types_),
parse_funcs_{&invoke_parse<T, Char>...} {
int arg_index = 0, named_arg_index = 0;
FMT_APPLY_VARIADIC(
init_static_named_arg<T>(named_args_, arg_index, named_arg_index));
ignore_unused(arg_index, named_arg_index);
}
FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
context_.check_arg_id(id);
return id;
}
FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
for (int i = 0; i < NUM_NAMED_ARGS; ++i) {
if (named_args_[i].name == id) return named_args_[i].id;
}
if (!DYNAMIC_NAMES) on_error("argument not found");
return -1;
}
FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
on_format_specs(id, begin, begin); // Call parse() on empty specs.
}
FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char* end)
-> const Char* {
context_.advance_to(begin);
if (id >= 0 && id < NUM_ARGS) return parse_funcs_[id](context_);
while (begin != end && *begin != '}') ++begin;
return begin;
}
FMT_NORETURN FMT_CONSTEXPR void on_error(const char* message) {
report_error(message);
}
};
/// A contiguous memory buffer with an optional growing ability. It is an
/// internal class and shouldn't be used directly, only via `memory_buffer`.
template <typename T> class buffer {
private:
T* ptr_;
size_t size_;
size_t capacity_;
using grow_fun = void (*)(buffer& buf, size_t capacity);
grow_fun grow_;
protected:
// Don't initialize ptr_ since it is not accessed to save a few cycles.
FMT_MSC_WARNING(suppress : 26495)
FMT_CONSTEXPR20 buffer(grow_fun grow, size_t sz) noexcept
: size_(sz), capacity_(sz), grow_(grow) {}
constexpr buffer(grow_fun grow, T* p = nullptr, size_t sz = 0,
size_t cap = 0) noexcept
: ptr_(p), size_(sz), capacity_(cap), grow_(grow) {}
FMT_CONSTEXPR20 ~buffer() = default;
buffer(buffer&&) = default;
/// Sets the buffer data and capacity.
FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept {
ptr_ = buf_data;
capacity_ = buf_capacity;
}
public:
using value_type = T;
using const_reference = const T&;
buffer(const buffer&) = delete;
void operator=(const buffer&) = delete;
auto begin() noexcept -> T* { return ptr_; }
auto end() noexcept -> T* { return ptr_ + size_; }
auto begin() const noexcept -> const T* { return ptr_; }
auto end() const noexcept -> const T* { return ptr_ + size_; }
/// Returns the size of this buffer.
constexpr auto size() const noexcept -> size_t { return size_; }
/// Returns the capacity of this buffer.
constexpr auto capacity() const noexcept -> size_t { return capacity_; }
/// Returns a pointer to the buffer data (not null-terminated).
FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }
/// Clears this buffer.
FMT_CONSTEXPR void clear() { size_ = 0; }
// Tries resizing the buffer to contain `count` elements. If T is a POD type
// the new elements may not be initialized.
FMT_CONSTEXPR void try_resize(size_t count) {
try_reserve(count);
size_ = count <= capacity_ ? count : capacity_;
}
// Tries increasing the buffer capacity to `new_capacity`. It can increase the
// capacity by a smaller amount than requested but guarantees there is space
// for at least one additional element either by increasing the capacity or by
// flushing the buffer if it is full.
FMT_CONSTEXPR void try_reserve(size_t new_capacity) {
if (new_capacity > capacity_) grow_(*this, new_capacity);
}
FMT_CONSTEXPR void push_back(const T& value) {
try_reserve(size_ + 1);
ptr_[size_++] = value;
}
/// Appends data to the end of the buffer.
template <typename U>
// Workaround for MSVC2019 to fix error C2893: Failed to specialize function
// template 'void fmt::v11::detail::buffer<T>::append(const U *,const U *)'.
#if !FMT_MSC_VERSION || FMT_MSC_VERSION >= 1940
FMT_CONSTEXPR20
#endif
void
append(const U* begin, const U* end) {
while (begin != end) {
auto count = to_unsigned(end - begin);
try_reserve(size_ + count);
auto free_cap = capacity_ - size_;
if (free_cap < count) count = free_cap;
// A loop is faster than memcpy on small sizes.
T* out = ptr_ + size_;
for (size_t i = 0; i < count; ++i) out[i] = begin[i];
size_ += count;
begin += count;
}
}
template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& {
return ptr_[index];
}
template <typename Idx>
FMT_CONSTEXPR auto operator[](Idx index) const -> const T& {
return ptr_[index];
}
};
struct buffer_traits {
explicit buffer_traits(size_t) {}
auto count() const -> size_t { return 0; }
auto limit(size_t size) -> size_t { return size; }
};
class fixed_buffer_traits {
private:
size_t count_ = 0;
size_t limit_;
public:
explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
auto count() const -> size_t { return count_; }
auto limit(size_t size) -> size_t {
size_t n = limit_ > count_ ? limit_ - count_ : 0;
count_ += size;
return size < n ? size : n;
}
};
// A buffer that writes to an output iterator when flushed.
template <typename OutputIt, typename T, typename Traits = buffer_traits>
class iterator_buffer : public Traits, public buffer<T> {
private:
OutputIt out_;
enum { buffer_size = 256 };
T data_[buffer_size];
static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
if (buf.size() == buffer_size) static_cast<iterator_buffer&>(buf).flush();
}
void flush() {
auto size = this->size();
this->clear();
const T* begin = data_;
const T* end = begin + this->limit(size);
while (begin != end) *out_++ = *begin++;
}
public:
explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
: Traits(n), buffer<T>(grow, data_, 0, buffer_size), out_(out) {}
iterator_buffer(iterator_buffer&& other) noexcept
: Traits(other),
buffer<T>(grow, data_, 0, buffer_size),
out_(other.out_) {}
~iterator_buffer() {
// Don't crash if flush fails during unwinding.
FMT_TRY { flush(); }
FMT_CATCH(...) {}
}
auto out() -> OutputIt {
flush();
return out_;
}
auto count() const -> size_t { return Traits::count() + this->size(); }
};
template <typename T>
class iterator_buffer<T*, T, fixed_buffer_traits> : public fixed_buffer_traits,
public buffer<T> {
private:
T* out_;
enum { buffer_size = 256 };
T data_[buffer_size];
static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
if (buf.size() == buf.capacity())
static_cast<iterator_buffer&>(buf).flush();
}
void flush() {
size_t n = this->limit(this->size());
if (this->data() == out_) {
out_ += n;
this->set(data_, buffer_size);
}
this->clear();
}
public:
explicit iterator_buffer(T* out, size_t n = buffer_size)
: fixed_buffer_traits(n), buffer<T>(grow, out, 0, n), out_(out) {}
iterator_buffer(iterator_buffer&& other) noexcept
: fixed_buffer_traits(other),
buffer<T>(static_cast<iterator_buffer&&>(other)),
out_(other.out_) {
if (this->data() != out_) {
this->set(data_, buffer_size);
this->clear();
}
}
~iterator_buffer() { flush(); }
auto out() -> T* {
flush();
return out_;
}
auto count() const -> size_t {
return fixed_buffer_traits::count() + this->size();
}
};
template <typename T> class iterator_buffer<T*, T> : public buffer<T> {
public:
explicit iterator_buffer(T* out, size_t = 0)
: buffer<T>([](buffer<T>&, size_t) {}, out, 0, ~size_t()) {}
auto out() -> T* { return &*this->end(); }
};
template <typename Container>
class container_buffer : public buffer<typename Container::value_type> {
private:
using value_type = typename Container::value_type;
static FMT_CONSTEXPR void grow(buffer<value_type>& buf, size_t capacity) {
auto& self = static_cast<container_buffer&>(buf);
self.container.resize(capacity);
self.set(&self.container[0], capacity);
}
public:
Container& container;
explicit container_buffer(Container& c)
: buffer<value_type>(grow, c.size()), container(c) {}
};
// A buffer that writes to a container with the contiguous storage.
template <typename OutputIt>
class iterator_buffer<
OutputIt,
enable_if_t<detail::is_back_insert_iterator<OutputIt>::value &&
is_contiguous<typename OutputIt::container_type>::value,
typename OutputIt::container_type::value_type>>
: public container_buffer<typename OutputIt::container_type> {
private:
using base = container_buffer<typename OutputIt::container_type>;
public:
explicit iterator_buffer(typename OutputIt::container_type& c) : base(c) {}
explicit iterator_buffer(OutputIt out, size_t = 0)
: base(get_container(out)) {}
auto out() -> OutputIt { return OutputIt(this->container); }
};
// A buffer that counts the number of code units written discarding the output.
template <typename T = char> class counting_buffer : public buffer<T> {
private:
enum { buffer_size = 256 };
T data_[buffer_size];
size_t count_ = 0;
static FMT_CONSTEXPR void grow(buffer<T>& buf, size_t) {
if (buf.size() != buffer_size) return;
static_cast<counting_buffer&>(buf).count_ += buf.size();
buf.clear();
}
public:
FMT_CONSTEXPR counting_buffer() : buffer<T>(grow, data_, 0, buffer_size) {}
constexpr auto count() const noexcept -> size_t {
return count_ + this->size();
}
};
template <typename T>
struct is_back_insert_iterator<basic_appender<T>> : std::true_type {};
// An optimized version of std::copy with the output value type (T).
template <typename T, typename InputIt, typename OutputIt,
FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
FMT_CONSTEXPR20 auto copy(InputIt begin, InputIt end, OutputIt out)
-> OutputIt {
get_container(out).append(begin, end);
return out;
}
template <typename T, typename InputIt, typename OutputIt,
FMT_ENABLE_IF(!is_back_insert_iterator<OutputIt>::value)>
FMT_CONSTEXPR auto copy(InputIt begin, InputIt end, OutputIt out) -> OutputIt {
while (begin != end) *out++ = static_cast<T>(*begin++);
return out;
}
template <typename T, typename V, typename OutputIt>
FMT_CONSTEXPR auto copy(basic_string_view<V> s, OutputIt out) -> OutputIt {
return copy<T>(s.begin(), s.end(), out);
}
template <typename It, typename Enable = std::true_type>
struct is_buffer_appender : std::false_type {};
template <typename It>
struct is_buffer_appender<
It, bool_constant<
is_back_insert_iterator<It>::value &&
std::is_base_of<buffer<typename It::container_type::value_type>,
typename It::container_type>::value>>
: std::true_type {};
// Maps an output iterator to a buffer.
template <typename T, typename OutputIt,
FMT_ENABLE_IF(!is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
return iterator_buffer<OutputIt, T>(out);
}
template <typename T, typename OutputIt,
FMT_ENABLE_IF(is_buffer_appender<OutputIt>::value)>
auto get_buffer(OutputIt out) -> buffer<T>& {
return get_container(out);
}
template <typename Buf, typename OutputIt>
auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) {
return buf.out();
}
template <typename T, typename OutputIt>
auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt {
return out;
}
// This type is intentionally undefined, only used for errors.
template <typename T, typename Char> struct type_is_unformattable_for;
template <typename Char> struct string_value {
const Char* data;
size_t size;
auto str() const -> basic_string_view<Char> { return {data, size}; }
};
template <typename Char> struct named_arg_value {
const named_arg_info<Char>* data;
size_t size;
};
template <typename Context> struct custom_value {
using char_type = typename Context::char_type;
void* value;
void (*format)(void* arg, parse_context<char_type>& parse_ctx, Context& ctx);
};
#if !FMT_BUILTIN_TYPES
# define FMT_BUILTIN , monostate
#else
# define FMT_BUILTIN
#endif
// A formatting argument value.
template <typename Context> class value {
public:
using char_type = typename Context::char_type;
union {
monostate no_value;
int int_value;
unsigned uint_value;
long long long_long_value;
unsigned long long ulong_long_value;
int128_opt int128_value;
uint128_opt uint128_value;
bool bool_value;
char_type char_value;
float float_value;
double double_value;
long double long_double_value;
const void* pointer;
string_value<char_type> string;
custom_value<Context> custom;
named_arg_value<char_type> named_args;
};
constexpr FMT_INLINE value() : no_value() {}
constexpr FMT_INLINE value(int x) : int_value(x) {}
constexpr FMT_INLINE value(unsigned x FMT_BUILTIN) : uint_value(x) {}
FMT_CONSTEXPR FMT_INLINE value(long x FMT_BUILTIN) : value(long_type(x)) {}
FMT_CONSTEXPR FMT_INLINE value(unsigned long x FMT_BUILTIN)
: value(ulong_type(x)) {}
constexpr FMT_INLINE value(long long x FMT_BUILTIN) : long_long_value(x) {}
constexpr FMT_INLINE value(unsigned long long x FMT_BUILTIN)
: ulong_long_value(x) {}
template <int N>
constexpr FMT_INLINE value(bitint<N> x FMT_BUILTIN) : long_long_value(x) {}
template <int N>
constexpr FMT_INLINE value(ubitint<N> x FMT_BUILTIN) : ulong_long_value(x) {}
FMT_INLINE value(int128_opt x FMT_BUILTIN) : int128_value(x) {}
FMT_INLINE value(uint128_opt x FMT_BUILTIN) : uint128_value(x) {}
constexpr FMT_INLINE value(float x FMT_BUILTIN) : float_value(x) {}
constexpr FMT_INLINE value(double x FMT_BUILTIN) : double_value(x) {}
FMT_INLINE value(long double x FMT_BUILTIN) : long_double_value(x) {}
constexpr FMT_INLINE value(bool x FMT_BUILTIN) : bool_value(x) {}
template <typename T, FMT_ENABLE_IF(is_char<T>::value)>
constexpr FMT_INLINE value(T x FMT_BUILTIN) : char_value(x) {
static_assert(std::is_same<T, char_type>::value,
"mixing character types is disallowed");
}
FMT_CONSTEXPR FMT_INLINE value(const char_type* x FMT_BUILTIN) {
string.data = x;
if (is_constant_evaluated()) string.size = 0;
}
FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> x FMT_BUILTIN) {
string.data = x.data();
string.size = x.size();
}
FMT_INLINE value(const void* x FMT_BUILTIN) : pointer(x) {}
// We can't use mapped_t because of a bug in MSVC 2017.
template <
typename T,
typename M = decltype(arg_mapper<char_type>::map(std::declval<T&>())),
FMT_ENABLE_IF(!std::is_same<T, M>::value &&
!std::is_integral<remove_cvref_t<T>>::value)>
FMT_CONSTEXPR20 FMT_INLINE value(T&& x) {
*this = arg_mapper<char_type>::map(x);
}
template <
typename T,
typename M = decltype(arg_mapper<char_type>::map(std::declval<T&>())),
FMT_ENABLE_IF(std::is_same<T, M>::value &&
!std::is_integral<remove_cvref_t<T>>::value)>
FMT_CONSTEXPR20 FMT_INLINE value(T&& x) {
// Use enum instead of constexpr because the latter may generate code.
enum { formattable_char = !std::is_same<T, unformattable_char>::value };
static_assert(formattable_char, "mixing character types is disallowed");
// Formatting of arbitrary pointers is disallowed. If you want to format a
// pointer cast it to `void*` or `const void*`. In particular, this forbids
// formatting of `[const] volatile char*` printed as bool by iostreams.
enum {
formattable_pointer = !std::is_same<T, unformattable_pointer>::value
};
static_assert(formattable_pointer,
"formatting of non-void pointers is disallowed");
using value_type = remove_cvref_t<T>;
enum { formattable = !std::is_same<T, unformattable>::value };
#if defined(__cpp_if_constexpr)
if constexpr (!formattable) type_is_unformattable_for<T, char_type> _;
// T may overload operator& e.g. std::vector<bool>::reference in libc++.
if constexpr (std::is_same<decltype(&x), remove_reference_t<T>*>::value)
custom.value = const_cast<value_type*>(&x);
#endif
static_assert(
formattable,
"cannot format an argument; to make type T formattable provide a "
"formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
if (!is_constant_evaluated())
custom.value =
const_cast<char*>(&reinterpret_cast<const volatile char&>(x));
// Get the formatter type through the context to allow different contexts
// have different extension points, e.g. `formatter<T>` for `format` and
// `printf_formatter<T>` for `printf`.
custom.format = format_custom<value_type, formatter<value_type, char_type>>;
}
FMT_ALWAYS_INLINE value(const named_arg_info<char_type>* args, size_t size)
: named_args{args, size} {}
private:
// Formats an argument of a custom type, such as a user-defined class.
template <typename T, typename Formatter>
static void format_custom(void* arg, parse_context<char_type>& parse_ctx,
Context& ctx) {
auto f = Formatter();
parse_ctx.advance_to(f.parse(parse_ctx));
using qualified_type =
conditional_t<has_const_formatter<T, char_type>(), const T, T>;
// format must be const for compatibility with std::format and compilation.
const auto& cf = f;
ctx.advance_to(cf.format(*static_cast<qualified_type*>(arg), ctx));
}
};
enum { packed_arg_bits = 4 };
// Maximum number of arguments with packed types.
enum { max_packed_args = 62 / packed_arg_bits };
enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
template <typename It, typename T, typename Enable = void>
struct is_output_iterator : std::false_type {};
template <> struct is_output_iterator<appender, char> : std::true_type {};
template <typename It, typename T>
struct is_output_iterator<
It, T,
void_t<decltype(*std::declval<decay_t<It>&>()++ = std::declval<T>())>>
: std::true_type {};
#ifdef FMT_USE_LOCALE
// Use the provided definition.
#elif defined(FMT_STATIC_THOUSANDS_SEPARATOR) || FMT_OPTIMIZE_SIZE > 1
# define FMT_USE_LOCALE 0
#else
# define FMT_USE_LOCALE 1
#endif
// A type-erased reference to an std::locale to avoid a heavy <locale> include.
struct locale_ref {
#if FMT_USE_LOCALE
private:
const void* locale_; // A type-erased pointer to std::locale.
public:
constexpr locale_ref() : locale_(nullptr) {}
template <typename Locale> explicit locale_ref(const Locale& loc);
explicit operator bool() const noexcept { return locale_ != nullptr; }
#endif
template <typename Locale> auto get() const -> Locale;
};
template <typename> constexpr auto encode_types() -> unsigned long long {
return 0;
}
template <typename Context, typename Arg, typename... Args>
constexpr auto encode_types() -> unsigned long long {
return static_cast<unsigned>(stored_type_constant<Arg, Context>::value) |
(encode_types<Context, Args...>() << packed_arg_bits);
}
template <typename Context, typename... T, size_t NUM_ARGS = sizeof...(T)>
constexpr unsigned long long make_descriptor() {
return NUM_ARGS <= max_packed_args ? encode_types<Context, T...>()
: is_unpacked_bit | NUM_ARGS;
}
template <typename Context, size_t NUM_ARGS>
using arg_t = conditional_t<NUM_ARGS <= max_packed_args, value<Context>,
basic_format_arg<Context>>;
template <typename Context, size_t NUM_ARGS, size_t NUM_NAMED_ARGS,
unsigned long long DESC>
struct named_arg_store {
// args_[0].named_args points to named_args to avoid bloating format_args.
// +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
arg_t<Context, NUM_ARGS> args[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
named_arg_info<typename Context::char_type> named_args[NUM_NAMED_ARGS];
template <typename... T>
FMT_CONSTEXPR FMT_ALWAYS_INLINE named_arg_store(T&... values)
: args{{named_args, NUM_NAMED_ARGS}, values...} {
int arg_index = 0, named_arg_index = 0;
FMT_APPLY_VARIADIC(
init_named_arg(named_args, arg_index, named_arg_index, values));
}
named_arg_store(named_arg_store&& rhs) {
args[0] = {named_args, NUM_NAMED_ARGS};
for (size_t i = 1; i < sizeof(args) / sizeof(*args); ++i)
args[i] = rhs.args[i];
for (size_t i = 0; i < NUM_NAMED_ARGS; ++i)
named_args[i] = rhs.named_args[i];
}
named_arg_store(const named_arg_store& rhs) = delete;
named_arg_store& operator=(const named_arg_store& rhs) = delete;
named_arg_store& operator=(named_arg_store&& rhs) = delete;
operator const arg_t<Context, NUM_ARGS>*() const { return args + 1; }
};
// An array of references to arguments. It can be implicitly converted to
// `basic_format_args` for passing into type-erased formatting functions
// such as `vformat`. It is a plain struct to reduce binary size in debug mode.
template <typename Context, size_t NUM_ARGS, size_t NUM_NAMED_ARGS,
unsigned long long DESC>
struct format_arg_store {
// +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
using type =
conditional_t<NUM_NAMED_ARGS == 0,
arg_t<Context, NUM_ARGS>[NUM_ARGS != 0 ? NUM_ARGS : +1],
named_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>>;
type args;
};
// TYPE can be different from type_constant<T>, e.g. for __float128.
template <typename T, typename Char, type TYPE> struct native_formatter {
private:
dynamic_format_specs<Char> specs_;
public:
using nonlocking = void;
FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
if (ctx.begin() == ctx.end() || *ctx.begin() == '}') return ctx.begin();
auto end = parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, TYPE);
if (const_check(TYPE == type::char_type)) check_char_specs(specs_);
return end;
}
template <type U = TYPE,
FMT_ENABLE_IF(U == type::string_type || U == type::cstring_type ||
U == type::char_type)>
FMT_CONSTEXPR void set_debug_format(bool set = true) {
specs_.set_type(set ? presentation_type::debug : presentation_type::none);
}
FMT_CLANG_PRAGMA(diagnostic ignored "-Wundefined-inline")
template <typename FormatContext>
FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
-> decltype(ctx.out());
};
template <typename T, typename Enable = void>
struct locking
: bool_constant<mapped_type_constant<T>::value == type::custom_type> {};
template <typename T>
struct locking<T, void_t<typename formatter<remove_cvref_t<T>>::nonlocking>>
: std::false_type {};
template <typename T = int> FMT_CONSTEXPR inline auto is_locking() -> bool {
return locking<T>::value;
}
template <typename T1, typename T2, typename... Tail>
FMT_CONSTEXPR inline auto is_locking() -> bool {
return locking<T1>::value || is_locking<T2, Tail...>();
}
FMT_API void vformat_to(buffer<char>& buf, string_view fmt, format_args args,
locale_ref loc = {});
#ifdef _WIN32
FMT_API void vprint_mojibake(FILE*, string_view, format_args, bool);
#else // format_args is passed by reference since it is defined later.
inline void vprint_mojibake(FILE*, string_view, const format_args&, bool) {}
#endif
} // namespace detail
// The main public API.
template <typename Char>
FMT_CONSTEXPR void parse_context<Char>::do_check_arg_id(int arg_id) {
// Argument id is only checked at compile time during parsing because
// formatting has its own validation.
if (detail::is_constant_evaluated() && use_constexpr_cast) {
auto ctx = static_cast<detail::compile_parse_context<Char>*>(this);
if (arg_id >= ctx->num_args()) report_error("argument not found");
}
}
template <typename Char>
FMT_CONSTEXPR void parse_context<Char>::check_dynamic_spec(int arg_id) {
using detail::compile_parse_context;
if (detail::is_constant_evaluated() && use_constexpr_cast)
static_cast<compile_parse_context<Char>*>(this)->check_dynamic_spec(arg_id);
}
FMT_BEGIN_EXPORT
// An output iterator that appends to a buffer. It is used instead of
// back_insert_iterator to reduce symbol sizes and avoid <iterator> dependency.
template <typename T> class basic_appender {
protected:
detail::buffer<T>* container;
public:
using iterator_category = int;
using value_type = T;
using difference_type = ptrdiff_t;
using pointer = T*;
using reference = T&;
using container_type = detail::buffer<T>;
FMT_UNCHECKED_ITERATOR(basic_appender);
FMT_CONSTEXPR basic_appender(detail::buffer<T>& buf) : container(&buf) {}
FMT_CONSTEXPR20 auto operator=(T c) -> basic_appender& {
container->push_back(c);
return *this;
}
FMT_CONSTEXPR20 auto operator*() -> basic_appender& { return *this; }
FMT_CONSTEXPR20 auto operator++() -> basic_appender& { return *this; }
FMT_CONSTEXPR20 auto operator++(int) -> basic_appender { return *this; }
};
// A formatting argument. Context is a template parameter for the compiled API
// where output can be unbuffered.
template <typename Context> class basic_format_arg {
private:
detail::value<Context> value_;
detail::type type_;
friend class basic_format_args<Context>;
using char_type = typename Context::char_type;
public:
class handle {
private:
detail::custom_value<Context> custom_;
public:
explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
void format(parse_context<char_type>& parse_ctx, Context& ctx) const {
custom_.format(custom_.value, parse_ctx, ctx);
}
};
constexpr basic_format_arg() : type_(detail::type::none_type) {}
basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
: value_(args, size) {}
template <typename T>
basic_format_arg(T&& val)
: value_(val), type_(detail::stored_type_constant<T, Context>::value) {}
constexpr explicit operator bool() const noexcept {
return type_ != detail::type::none_type;
}
auto type() const -> detail::type { return type_; }
/**
* Visits an argument dispatching to the appropriate visit method based on
* the argument type. For example, if the argument type is `double` then
* `vis(value)` will be called with the value of type `double`.
*/
template <typename Visitor>
FMT_CONSTEXPR FMT_INLINE auto visit(Visitor&& vis) const -> decltype(vis(0)) {
using detail::map;
switch (type_) {
case detail::type::none_type: break;
case detail::type::int_type: return vis(value_.int_value);
case detail::type::uint_type: return vis(value_.uint_value);
case detail::type::long_long_type: return vis(value_.long_long_value);
case detail::type::ulong_long_type: return vis(value_.ulong_long_value);
case detail::type::int128_type: return vis(map(value_.int128_value));
case detail::type::uint128_type: return vis(map(value_.uint128_value));
case detail::type::bool_type: return vis(value_.bool_value);
case detail::type::char_type: return vis(value_.char_value);
case detail::type::float_type: return vis(value_.float_value);
case detail::type::double_type: return vis(value_.double_value);
case detail::type::long_double_type: return vis(value_.long_double_value);
case detail::type::cstring_type: return vis(value_.string.data);
case detail::type::string_type: return vis(value_.string.str());
case detail::type::pointer_type: return vis(value_.pointer);
case detail::type::custom_type: return vis(handle(value_.custom));
}
return vis(monostate());
}
auto format_custom(const char_type* parse_begin,
parse_context<char_type>& parse_ctx, Context& ctx)
-> bool {
if (type_ != detail::type::custom_type) return false;
parse_ctx.advance_to(parse_begin);
value_.custom.format(value_.custom.value, parse_ctx, ctx);
return true;
}
};
/**
* A view of a collection of formatting arguments. To avoid lifetime issues it
* should only be used as a parameter type in type-erased functions such as
* `vformat`:
*
* void vlog(fmt::string_view fmt, fmt::format_args args); // OK
* fmt::format_args args = fmt::make_format_args(); // Dangling reference
*/
template <typename Context> class basic_format_args {
private:
// A descriptor that contains information about formatting arguments.
// If the number of arguments is less or equal to max_packed_args then
// argument types are passed in the descriptor. This reduces binary code size
// per formatting function call.
unsigned long long desc_;
union {
// If is_packed() returns true then argument values are stored in values_;
// otherwise they are stored in args_. This is done to improve cache
// locality and reduce compiled code size since storing larger objects
// may require more code (at least on x86-64) even if the same amount of
// data is actually copied to stack. It saves ~10% on the bloat test.
const detail::value<Context>* values_;
const basic_format_arg<Context>* args_;
};
constexpr auto is_packed() const -> bool {
return (desc_ & detail::is_unpacked_bit) == 0;
}
constexpr auto has_named_args() const -> bool {
return (desc_ & detail::has_named_args_bit) != 0;
}
FMT_CONSTEXPR auto type(int index) const -> detail::type {
int shift = index * detail::packed_arg_bits;
unsigned mask = (1 << detail::packed_arg_bits) - 1;
return static_cast<detail::type>((desc_ >> shift) & mask);
}
template <size_t NUM_ARGS, size_t NUM_NAMED_ARGS, unsigned long long DESC>
using store =
detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC>;
public:
using format_arg = basic_format_arg<Context>;
constexpr basic_format_args() : desc_(0), args_(nullptr) {}
/// Constructs a `basic_format_args` object from `format_arg_store`.
template <size_t NUM_ARGS, size_t NUM_NAMED_ARGS, unsigned long long DESC,
FMT_ENABLE_IF(NUM_ARGS <= detail::max_packed_args)>
constexpr FMT_ALWAYS_INLINE basic_format_args(
const store<NUM_ARGS, NUM_NAMED_ARGS, DESC>& s)
: desc_(DESC | (NUM_NAMED_ARGS != 0 ? +detail::has_named_args_bit : 0)),
values_(s.args) {}
template <size_t NUM_ARGS, size_t NUM_NAMED_ARGS, unsigned long long DESC,
FMT_ENABLE_IF(NUM_ARGS > detail::max_packed_args)>
constexpr basic_format_args(const store<NUM_ARGS, NUM_NAMED_ARGS, DESC>& s)
: desc_(DESC | (NUM_NAMED_ARGS != 0 ? +detail::has_named_args_bit : 0)),
args_(s.args) {}
/// Constructs a `basic_format_args` object from a dynamic list of arguments.
constexpr basic_format_args(const format_arg* args, int count,
bool has_named = false)
: desc_(detail::is_unpacked_bit | detail::to_unsigned(count) |
(has_named ? +detail::has_named_args_bit : 0)),
args_(args) {}
/// Returns the argument with the specified id.
FMT_CONSTEXPR auto get(int id) const -> format_arg {
auto arg = format_arg();
if (!is_packed()) {
if (id < max_size()) arg = args_[id];
return arg;
}
if (static_cast<unsigned>(id) >= detail::max_packed_args) return arg;
arg.type_ = type(id);
if (arg.type_ != detail::type::none_type) arg.value_ = values_[id];
return arg;
}
template <typename Char>
auto get(basic_string_view<Char> name) const -> format_arg {
int id = get_id(name);
return id >= 0 ? get(id) : format_arg();
}
template <typename Char>
FMT_CONSTEXPR auto get_id(basic_string_view<Char> name) const -> int {
if (!has_named_args()) return -1;
const auto& named_args =
(is_packed() ? values_[-1] : args_[-1].value_).named_args;
for (size_t i = 0; i < named_args.size; ++i) {
if (named_args.data[i].name == name) return named_args.data[i].id;
}
return -1;
}
auto max_size() const -> int {
unsigned long long max_packed = detail::max_packed_args;
return static_cast<int>(is_packed() ? max_packed
: desc_ & ~detail::is_unpacked_bit);
}
};
// A formatting context.
class context : private detail::locale_ref {
private:
appender out_;
format_args args_;
public:
/// The character type for the output.
using char_type = char;
using iterator = appender;
using format_arg = basic_format_arg<context>;
using parse_context_type FMT_DEPRECATED = parse_context<>;
template <typename T> using formatter_type FMT_DEPRECATED = formatter<T>;
enum { builtin_types = FMT_BUILTIN_TYPES };
/// Constructs a `context` object. References to the arguments are stored
/// in the object so make sure they have appropriate lifetimes.
FMT_CONSTEXPR context(iterator out, format_args a, detail::locale_ref l = {})
: locale_ref(l), out_(out), args_(a) {}
context(context&&) = default;
context(const context&) = delete;
void operator=(const context&) = delete;
FMT_CONSTEXPR auto arg(int id) const -> format_arg { return args_.get(id); }
auto arg(string_view name) -> format_arg { return args_.get(name); }
FMT_CONSTEXPR auto arg_id(string_view name) -> int {
return args_.get_id(name);
}
// Returns an iterator to the beginning of the output range.
FMT_CONSTEXPR auto out() -> iterator { return out_; }
// Advances the begin iterator to `it`.
void advance_to(iterator) {}
FMT_CONSTEXPR auto locale() -> detail::locale_ref { return *this; }
};
template <typename Char = char> struct runtime_format_string {
basic_string_view<Char> str;
};
/**
* Creates a runtime format string.
*
* **Example**:
*
* // Check format string at runtime instead of compile-time.
* fmt::print(fmt::runtime("{:d}"), "I am not a number");
*/
inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; }
/// A compile-time format string.
template <typename... T> struct fstring {
private:
static constexpr int num_static_named_args =
detail::count_static_named_args<T...>();
using checker = detail::format_string_checker<
char, static_cast<int>(sizeof...(T)), num_static_named_args,
num_static_named_args != detail::count_named_args<T...>()>;
using arg_pack = detail::arg_pack<T...>;
public:
string_view str;
using t = fstring;
// Reports a compile-time error if S is not a valid format string for T.
template <size_t N>
FMT_CONSTEVAL FMT_ALWAYS_INLINE fstring(const char (&s)[N]) : str(s, N - 1) {
using namespace detail;
static_assert(count<(std::is_base_of<view, remove_reference_t<T>>::value &&
std::is_reference<T>::value)...>() == 0,
"passing views as lvalues is disallowed");
if (FMT_USE_CONSTEVAL) parse_format_string<char>(s, checker(s, arg_pack()));
#ifdef FMT_ENFORCE_COMPILE_STRING
static_assert(
FMT_USE_CONSTEVAL && sizeof(s) != 0,
"FMT_ENFORCE_COMPILE_STRING requires format strings to use FMT_STRING");
#endif
}
template <typename S,
FMT_ENABLE_IF(std::is_convertible<const S&, string_view>::value)>
FMT_CONSTEVAL FMT_ALWAYS_INLINE fstring(const S& s) : str(s) {
if (FMT_USE_CONSTEVAL)
detail::parse_format_string<char>(s, checker(s, arg_pack()));
#ifdef FMT_ENFORCE_COMPILE_STRING
static_assert(
FMT_USE_CONSTEVAL && sizeof(s) != 0,
"FMT_ENFORCE_COMPILE_STRING requires format strings to use FMT_STRING");
#endif
}
template <typename S,
FMT_ENABLE_IF(std::is_base_of<detail::compile_string, S>::value&&
std::is_same<typename S::char_type, char>::value)>
FMT_ALWAYS_INLINE fstring(const S&) : str(S()) {
FMT_CONSTEXPR auto sv = string_view(S());
FMT_CONSTEXPR int ignore =
(parse_format_string(sv, checker(sv, arg_pack())), 0);
detail::ignore_unused(ignore);
}
fstring(runtime_format_string<> fmt) : str(fmt.str) {}
// Returning by reference generates better code in debug mode.
FMT_ALWAYS_INLINE operator const string_view&() const { return str; }
auto get() const -> string_view { return str; }
};
template <typename... T> using format_string = typename fstring<T...>::t;
template <typename T, typename Char = char>
using is_formattable = bool_constant<
!std::is_base_of<detail::unformattable,
detail::mapped_t<conditional_t<std::is_void<T>::value,
detail::unformattable, T>,
Char>>::value>;
#ifdef __cpp_concepts
template <typename T, typename Char = char>
concept formattable = is_formattable<remove_reference_t<T>, Char>::value;
#endif
template <typename T, typename Char>
using has_formatter FMT_DEPRECATED = std::is_constructible<formatter<T, Char>>;
// A formatter specialization for natively supported types.
template <typename T, typename Char>
struct formatter<T, Char,
enable_if_t<detail::type_constant<T, Char>::value !=
detail::type::custom_type>>
: detail::native_formatter<T, Char, detail::type_constant<T, Char>::value> {
};
/**
* Constructs an object that stores references to arguments and can be
* implicitly converted to `format_args`. `Context` can be omitted in which case
* it defaults to `context`. See `arg` for lifetime considerations.
*/
// Take arguments by lvalue references to avoid some lifetime issues, e.g.
// auto args = make_format_args(std::string());
template <typename Context = context, typename... T,
size_t NUM_ARGS = sizeof...(T),
size_t NUM_NAMED_ARGS = detail::count_named_args<T...>(),
unsigned long long DESC = detail::make_descriptor<Context, T...>()>
constexpr FMT_ALWAYS_INLINE auto make_format_args(T&... args)
-> detail::format_arg_store<Context, NUM_ARGS, NUM_NAMED_ARGS, DESC> {
// Suppress warnings for pathological types convertible to detail::value.
FMT_GCC_PRAGMA(diagnostic ignored "-Wconversion")
return {{args...}};
}
template <typename... T>
using vargs =
detail::format_arg_store<context, sizeof...(T),
detail::count_named_args<T...>(),
detail::make_descriptor<context, T...>()>;
/**
* Returns a named argument to be used in a formatting function.
* It should only be used in a call to a formatting function.
*
* **Example**:
*
* fmt::print("The answer is {answer}.", fmt::arg("answer", 42));
*/
template <typename Char, typename T>
inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
return {name, arg};
}
/// Formats a string and writes the output to `out`.
template <typename OutputIt,
FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
char>::value)>
auto vformat_to(OutputIt&& out, string_view fmt, format_args args)
-> remove_cvref_t<OutputIt> {
auto&& buf = detail::get_buffer<char>(out);
detail::vformat_to(buf, fmt, args, {});
return detail::get_iterator(buf, out);
}
/**
* Formats `args` according to specifications in `fmt`, writes the result to
* the output iterator `out` and returns the iterator past the end of the output
* range. `format_to` does not append a terminating null character.
*
* **Example**:
*
* auto out = std::vector<char>();
* fmt::format_to(std::back_inserter(out), "{}", 42);
*/
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<remove_cvref_t<OutputIt>,
char>::value)>
FMT_INLINE auto format_to(OutputIt&& out, format_string<T...> fmt, T&&... args)
-> remove_cvref_t<OutputIt> {
return vformat_to(out, fmt.str, vargs<T...>{{args...}});
}
template <typename OutputIt> struct format_to_n_result {
/// Iterator past the end of the output range.
OutputIt out;
/// Total (not truncated) output size.
size_t size;
};
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
-> format_to_n_result<OutputIt> {
using traits = detail::fixed_buffer_traits;
auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
detail::vformat_to(buf, fmt, args, {});
return {buf.out(), buf.count()};
}
/**
* Formats `args` according to specifications in `fmt`, writes up to `n`
* characters of the result to the output iterator `out` and returns the total
* (not truncated) output size and the iterator past the end of the output
* range. `format_to_n` does not append a terminating null character.
*/
template <typename OutputIt, typename... T,
FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
T&&... args) -> format_to_n_result<OutputIt> {
return vformat_to_n(out, n, fmt.str, vargs<T...>{{args...}});
}
struct format_to_result {
/// Pointer to just after the last successful write in the array.
char* out;
/// Specifies if the output was truncated.
bool truncated;
FMT_CONSTEXPR operator char*() const {
// Report truncation to prevent silent data loss.
if (truncated) report_error("output is truncated");
return out;
}
};
template <size_t N>
auto vformat_to(char (&out)[N], string_view fmt, format_args args)
-> format_to_result {
auto result = vformat_to_n(out, N, fmt, args);
return {result.out, result.size > N};
}
template <size_t N, typename... T>
FMT_INLINE auto format_to(char (&out)[N], format_string<T...> fmt, T&&... args)
-> format_to_result {
auto result = vformat_to_n(out, N, fmt.str, vargs<T...>{{args...}});
return {result.out, result.size > N};
}
/// Returns the number of chars in the output of `format(fmt, args...)`.
template <typename... T>
FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt,
T&&... args) -> size_t {
auto buf = detail::counting_buffer<>();
detail::vformat_to(buf, fmt.str, vargs<T...>{{args...}}, {});
return buf.count();
}
FMT_API void vprint(string_view fmt, format_args args);
FMT_API void vprint(FILE* f, string_view fmt, format_args args);
FMT_API void vprint_buffered(FILE* f, string_view fmt, format_args args);
FMT_API void vprintln(FILE* f, string_view fmt, format_args args);
/**
* Formats `args` according to specifications in `fmt` and writes the output
* to `stdout`.
*
* **Example**:
*
* fmt::print("The answer is {}.", 42);
*/
template <typename... T>
FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
fmt::vargs<T...> vargs = {{args...}};
if (!FMT_USE_UTF8)
return detail::vprint_mojibake(stdout, fmt.str, vargs, false);
return detail::is_locking<T...>() ? vprint_buffered(stdout, fmt.str, vargs)
: vprint(fmt.str, vargs);
}
/**
* Formats `args` according to specifications in `fmt` and writes the
* output to the file `f`.
*
* **Example**:
*
* fmt::print(stderr, "Don't {}!", "panic");
*/
template <typename... T>
FMT_INLINE void print(FILE* f, format_string<T...> fmt, T&&... args) {
fmt::vargs<T...> vargs = {{args...}};
if (!FMT_USE_UTF8) return detail::vprint_mojibake(f, fmt.str, vargs, false);
return detail::is_locking<T...>() ? vprint_buffered(f, fmt.str, vargs)
: vprint(f, fmt.str, vargs);
}
/// Formats `args` according to specifications in `fmt` and writes the output
/// to the file `f` followed by a newline.
template <typename... T>
FMT_INLINE void println(FILE* f, format_string<T...> fmt, T&&... args) {
fmt::vargs<T...> vargs = {{args...}};
return FMT_USE_UTF8 ? vprintln(f, fmt.str, vargs)
: detail::vprint_mojibake(f, fmt.str, vargs, true);
}
/// Formats `args` according to specifications in `fmt` and writes the output
/// to `stdout` followed by a newline.
template <typename... T>
FMT_INLINE void println(format_string<T...> fmt, T&&... args) {
return fmt::println(stdout, fmt, static_cast<T&&>(args)...);
}
FMT_END_EXPORT
FMT_CLANG_PRAGMA(diagnostic pop)
FMT_GCC_PRAGMA(pop_options)
FMT_END_NAMESPACE
#ifdef FMT_HEADER_ONLY
# include "format.h"
#endif
#endif // FMT_BASE_H_