resources binding moved into vk_rasterizer
Some checks failed
Build and Release / reuse (push) Has been cancelled
Build and Release / clang-format (push) Has been cancelled
Build and Release / get-info (push) Has been cancelled
Build and Release / windows-sdl (push) Has been cancelled
Build and Release / windows-qt (push) Has been cancelled
Build and Release / macos-sdl (push) Has been cancelled
Build and Release / macos-qt (push) Has been cancelled
Build and Release / linux-sdl (push) Has been cancelled
Build and Release / linux-qt (push) Has been cancelled
Build and Release / pre-release (push) Has been cancelled

This commit is contained in:
psucien 2024-11-15 19:48:12 +01:00
parent 43a5876ee4
commit abca0ab3e6
12 changed files with 427 additions and 478 deletions

View File

@ -328,7 +328,7 @@ void* Linker::AllocateTlsForThread(bool is_primary) {
void* addr_out{reinterpret_cast<void*>(KernelAllocBase)}; void* addr_out{reinterpret_cast<void*>(KernelAllocBase)};
if (is_primary) { if (is_primary) {
const size_t tls_aligned = Common::AlignUp(total_tls_size, 16_KB); const size_t tls_aligned = Common::AlignUp(total_tls_size, 16_KB);
const int ret = ::Libraries::Kernel::sceKernelMapNamedFlexibleMemory( const int ret = Libraries::Kernel::sceKernelMapNamedFlexibleMemory(
&addr_out, tls_aligned, 3, 0, "SceKernelPrimaryTcbTls"); &addr_out, tls_aligned, 3, 0, "SceKernelPrimaryTcbTls");
ASSERT_MSG(ret == 0, "Unable to allocate TLS+TCB for the primary thread"); ASSERT_MSG(ret == 0, "Unable to allocate TLS+TCB for the primary thread");
} else { } else {

View File

@ -20,7 +20,7 @@ enum class Stage : u32 {
Local, Local,
Compute, Compute,
}; };
constexpr u32 MaxStageTypes = 6; constexpr u32 MaxStageTypes = 7;
[[nodiscard]] constexpr Stage StageFromIndex(size_t index) noexcept { [[nodiscard]] constexpr Stage StageFromIndex(size_t index) noexcept {
return static_cast<Stage>(index); return static_cast<Stage>(index);

View File

@ -15,8 +15,10 @@ ComputePipeline::ComputePipeline(const Instance& instance_, Scheduler& scheduler
DescriptorHeap& desc_heap_, vk::PipelineCache pipeline_cache, DescriptorHeap& desc_heap_, vk::PipelineCache pipeline_cache,
u64 compute_key_, const Shader::Info& info_, u64 compute_key_, const Shader::Info& info_,
vk::ShaderModule module) vk::ShaderModule module)
: Pipeline{instance_, scheduler_, desc_heap_, pipeline_cache}, compute_key{compute_key_}, : Pipeline{instance_, scheduler_, desc_heap_, pipeline_cache, true}, compute_key{compute_key_} {
info{&info_} { auto& info = stages[int(Shader::Stage::Compute)];
info = &info_;
const vk::PipelineShaderStageCreateInfo shader_ci = { const vk::PipelineShaderStageCreateInfo shader_ci = {
.stage = vk::ShaderStageFlagBits::eCompute, .stage = vk::ShaderStageFlagBits::eCompute,
.module = module, .module = module,
@ -118,90 +120,4 @@ ComputePipeline::ComputePipeline(const Instance& instance_, Scheduler& scheduler
ComputePipeline::~ComputePipeline() = default; ComputePipeline::~ComputePipeline() = default;
bool ComputePipeline::BindResources(VideoCore::BufferCache& buffer_cache,
VideoCore::TextureCache& texture_cache) const {
// Bind resource buffers and textures.
boost::container::small_vector<vk::WriteDescriptorSet, 16> set_writes;
BufferBarriers buffer_barriers;
Shader::PushData push_data{};
Shader::Backend::Bindings binding{};
info->PushUd(binding, push_data);
buffer_infos.clear();
buffer_views.clear();
image_infos.clear();
// Most of the time when a metadata is updated with a shader it gets cleared. It means
// we can skip the whole dispatch and update the tracked state instead. Also, it is not
// intended to be consumed and in such rare cases (e.g. HTile introspection, CRAA) we
// will need its full emulation anyways. For cases of metadata read a warning will be logged.
const auto IsMetaUpdate = [&](const auto& desc) {
const VAddr address = desc.GetSharp(*info).base_address;
if (desc.is_written) {
if (texture_cache.TouchMeta(address, true)) {
LOG_TRACE(Render_Vulkan, "Metadata update skipped");
return true;
}
} else {
if (texture_cache.IsMeta(address)) {
LOG_WARNING(Render_Vulkan, "Unexpected metadata read by a CS shader (buffer)");
}
}
return false;
};
for (const auto& desc : info->buffers) {
if (desc.is_gds_buffer) {
continue;
}
if (IsMetaUpdate(desc)) {
return false;
}
}
for (const auto& desc : info->texture_buffers) {
if (IsMetaUpdate(desc)) {
return false;
}
}
BindBuffers(buffer_cache, texture_cache, *info, binding, push_data, set_writes,
buffer_barriers);
BindTextures(texture_cache, *info, binding, set_writes);
if (set_writes.empty()) {
return false;
}
const auto cmdbuf = scheduler.CommandBuffer();
if (!buffer_barriers.empty()) {
const auto dependencies = vk::DependencyInfo{
.dependencyFlags = vk::DependencyFlagBits::eByRegion,
.bufferMemoryBarrierCount = u32(buffer_barriers.size()),
.pBufferMemoryBarriers = buffer_barriers.data(),
};
scheduler.EndRendering();
cmdbuf.pipelineBarrier2(dependencies);
}
cmdbuf.pushConstants(*pipeline_layout, vk::ShaderStageFlagBits::eCompute, 0u, sizeof(push_data),
&push_data);
// Bind descriptor set.
if (uses_push_descriptors) {
cmdbuf.pushDescriptorSetKHR(vk::PipelineBindPoint::eCompute, *pipeline_layout, 0,
set_writes);
return true;
}
const auto desc_set = desc_heap.Commit(*desc_layout);
for (auto& set_write : set_writes) {
set_write.dstSet = desc_set;
}
instance.GetDevice().updateDescriptorSets(set_writes, {});
cmdbuf.bindDescriptorSets(vk::PipelineBindPoint::eCompute, *pipeline_layout, 0, desc_set, {});
return true;
}
} // namespace Vulkan } // namespace Vulkan

View File

@ -24,13 +24,8 @@ public:
vk::ShaderModule module); vk::ShaderModule module);
~ComputePipeline(); ~ComputePipeline();
bool BindResources(VideoCore::BufferCache& buffer_cache,
VideoCore::TextureCache& texture_cache) const;
private: private:
u64 compute_key; u64 compute_key;
const Shader::Info* info;
bool uses_push_descriptors{};
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -16,10 +16,6 @@
namespace Vulkan { namespace Vulkan {
static constexpr auto gp_stage_flags = vk::ShaderStageFlagBits::eVertex |
vk::ShaderStageFlagBits::eGeometry |
vk::ShaderStageFlagBits::eFragment;
GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& scheduler_, GraphicsPipeline::GraphicsPipeline(const Instance& instance_, Scheduler& scheduler_,
DescriptorHeap& desc_heap_, const GraphicsPipelineKey& key_, DescriptorHeap& desc_heap_, const GraphicsPipelineKey& key_,
vk::PipelineCache pipeline_cache, vk::PipelineCache pipeline_cache,
@ -389,67 +385,4 @@ void GraphicsPipeline::BuildDescSetLayout() {
desc_layout = std::move(layout); desc_layout = std::move(layout);
} }
void GraphicsPipeline::BindResources(const Liverpool::Regs& regs,
VideoCore::BufferCache& buffer_cache,
VideoCore::TextureCache& texture_cache) const {
// Bind resource buffers and textures.
boost::container::small_vector<vk::WriteDescriptorSet, 16> set_writes;
BufferBarriers buffer_barriers;
Shader::PushData push_data{};
Shader::Backend::Bindings binding{};
buffer_infos.clear();
buffer_views.clear();
image_infos.clear();
for (const auto* stage : stages) {
if (!stage) {
continue;
}
if (stage->uses_step_rates) {
push_data.step0 = regs.vgt_instance_step_rate_0;
push_data.step1 = regs.vgt_instance_step_rate_1;
}
stage->PushUd(binding, push_data);
BindBuffers(buffer_cache, texture_cache, *stage, binding, push_data, set_writes,
buffer_barriers);
BindTextures(texture_cache, *stage, binding, set_writes);
}
const auto cmdbuf = scheduler.CommandBuffer();
SCOPE_EXIT {
cmdbuf.pushConstants(*pipeline_layout, gp_stage_flags, 0U, sizeof(push_data), &push_data);
cmdbuf.bindPipeline(vk::PipelineBindPoint::eGraphics, Handle());
};
if (set_writes.empty()) {
return;
}
if (!buffer_barriers.empty()) {
const auto dependencies = vk::DependencyInfo{
.dependencyFlags = vk::DependencyFlagBits::eByRegion,
.bufferMemoryBarrierCount = u32(buffer_barriers.size()),
.pBufferMemoryBarriers = buffer_barriers.data(),
};
scheduler.EndRendering();
cmdbuf.pipelineBarrier2(dependencies);
}
// Bind descriptor set.
if (uses_push_descriptors) {
cmdbuf.pushDescriptorSetKHR(vk::PipelineBindPoint::eGraphics, *pipeline_layout, 0,
set_writes);
return;
}
const auto desc_set = desc_heap.Commit(*desc_layout);
for (auto& set_write : set_writes) {
set_write.dstSet = desc_set;
}
instance.GetDevice().updateDescriptorSets(set_writes, {});
cmdbuf.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, *pipeline_layout, 0, desc_set, {});
}
} // namespace Vulkan } // namespace Vulkan

View File

@ -2,6 +2,7 @@
// SPDX-License-Identifier: GPL-2.0-or-later // SPDX-License-Identifier: GPL-2.0-or-later
#include <xxhash.h> #include <xxhash.h>
#include "common/types.h" #include "common/types.h"
#include "video_core/renderer_vulkan/liverpool_to_vk.h" #include "video_core/renderer_vulkan/liverpool_to_vk.h"
#include "video_core/renderer_vulkan/vk_common.h" #include "video_core/renderer_vulkan/vk_common.h"
@ -14,8 +15,8 @@ class TextureCache;
namespace Vulkan { namespace Vulkan {
static constexpr u32 MaxVertexBufferCount = 32;
static constexpr u32 MaxShaderStages = 5; static constexpr u32 MaxShaderStages = 5;
static constexpr u32 MaxVertexBufferCount = 32;
class Instance; class Instance;
class Scheduler; class Scheduler;
@ -61,13 +62,6 @@ public:
std::span<const vk::ShaderModule> modules); std::span<const vk::ShaderModule> modules);
~GraphicsPipeline(); ~GraphicsPipeline();
void BindResources(const Liverpool::Regs& regs, VideoCore::BufferCache& buffer_cache,
VideoCore::TextureCache& texture_cache) const;
const Shader::Info& GetStage(Shader::Stage stage) const noexcept {
return *stages[u32(stage)];
}
bool IsEmbeddedVs() const noexcept { bool IsEmbeddedVs() const noexcept {
static constexpr size_t EmbeddedVsHash = 0x9b2da5cf47f8c29f; static constexpr size_t EmbeddedVsHash = 0x9b2da5cf47f8c29f;
return key.stage_hashes[u32(Shader::Stage::Vertex)] == EmbeddedVsHash; return key.stage_hashes[u32(Shader::Stage::Vertex)] == EmbeddedVsHash;
@ -99,9 +93,7 @@ private:
void BuildDescSetLayout(); void BuildDescSetLayout();
private: private:
std::array<const Shader::Info*, MaxShaderStages> stages{};
GraphicsPipelineKey key; GraphicsPipelineKey key;
bool uses_push_descriptors{};
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -38,8 +38,6 @@ struct Program {
}; };
class PipelineCache { class PipelineCache {
static constexpr size_t MaxShaderStages = 5;
public: public:
explicit PipelineCache(const Instance& instance, Scheduler& scheduler, explicit PipelineCache(const Instance& instance, Scheduler& scheduler,
AmdGpu::Liverpool* liverpool); AmdGpu::Liverpool* liverpool);

View File

@ -12,270 +12,47 @@
namespace Vulkan { namespace Vulkan {
boost::container::static_vector<vk::DescriptorImageInfo, 32> Pipeline::image_infos;
boost::container::static_vector<vk::BufferView, 8> Pipeline::buffer_views;
boost::container::static_vector<vk::DescriptorBufferInfo, 32> Pipeline::buffer_infos;
boost::container::static_vector<VideoCore::ImageId, 32> Pipeline::bound_images;
Pipeline::Pipeline(const Instance& instance_, Scheduler& scheduler_, DescriptorHeap& desc_heap_, Pipeline::Pipeline(const Instance& instance_, Scheduler& scheduler_, DescriptorHeap& desc_heap_,
vk::PipelineCache pipeline_cache) vk::PipelineCache pipeline_cache, bool is_compute_ /*= false*/)
: instance{instance_}, scheduler{scheduler_}, desc_heap{desc_heap_} {} : instance{instance_}, scheduler{scheduler_}, desc_heap{desc_heap_}, is_compute{is_compute_} {}
Pipeline::~Pipeline() = default; Pipeline::~Pipeline() = default;
void Pipeline::BindBuffers(VideoCore::BufferCache& buffer_cache, void Pipeline::BindResources(DescriptorWrites& set_writes, const BufferBarriers& buffer_barriers,
VideoCore::TextureCache& texture_cache, const Shader::Info& stage, const Shader::PushData& push_data) const {
Shader::Backend::Bindings& binding, Shader::PushData& push_data, const auto cmdbuf = scheduler.CommandBuffer();
DescriptorWrites& set_writes, BufferBarriers& buffer_barriers) const { const auto bind_point =
using BufferBindingInfo = std::pair<VideoCore::BufferId, AmdGpu::Buffer>; IsCompute() ? vk::PipelineBindPoint::eCompute : vk::PipelineBindPoint::eGraphics;
static boost::container::static_vector<BufferBindingInfo, 32> buffer_bindings;
buffer_bindings.clear(); if (!buffer_barriers.empty()) {
const auto dependencies = vk::DependencyInfo{
for (const auto& desc : stage.buffers) { .dependencyFlags = vk::DependencyFlagBits::eByRegion,
const auto vsharp = desc.GetSharp(stage); .bufferMemoryBarrierCount = u32(buffer_barriers.size()),
if (!desc.is_gds_buffer && vsharp.base_address != 0 && vsharp.GetSize() > 0) { .pBufferMemoryBarriers = buffer_barriers.data(),
const auto buffer_id = buffer_cache.FindBuffer(vsharp.base_address, vsharp.GetSize()); };
buffer_bindings.emplace_back(buffer_id, vsharp); scheduler.EndRendering();
} else { cmdbuf.pipelineBarrier2(dependencies);
buffer_bindings.emplace_back(VideoCore::BufferId{}, vsharp);
}
} }
using TexBufferBindingInfo = std::pair<VideoCore::BufferId, AmdGpu::Buffer>; const auto stage_flags = IsCompute() ? vk::ShaderStageFlagBits::eCompute : gp_stage_flags;
static boost::container::static_vector<TexBufferBindingInfo, 32> texbuffer_bindings; cmdbuf.pushConstants(*pipeline_layout, stage_flags, 0u, sizeof(push_data), &push_data);
texbuffer_bindings.clear(); // Bind descriptor set.
if (set_writes.empty()) {
for (const auto& desc : stage.texture_buffers) { return;
const auto vsharp = desc.GetSharp(stage);
if (vsharp.base_address != 0 && vsharp.GetSize() > 0 &&
vsharp.GetDataFmt() != AmdGpu::DataFormat::FormatInvalid) {
const auto buffer_id = buffer_cache.FindBuffer(vsharp.base_address, vsharp.GetSize());
texbuffer_bindings.emplace_back(buffer_id, vsharp);
} else {
texbuffer_bindings.emplace_back(VideoCore::BufferId{}, vsharp);
}
} }
// Bind the flattened user data buffer as a UBO so it's accessible to the shader if (uses_push_descriptors) {
if (stage.has_readconst) { cmdbuf.pushDescriptorSetKHR(bind_point, *pipeline_layout, 0, set_writes);
const auto [vk_buffer, offset] = buffer_cache.ObtainHostUBO(stage.flattened_ud_buf); return;
buffer_infos.emplace_back(vk_buffer->Handle(), offset,
stage.flattened_ud_buf.size() * sizeof(u32));
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eUniformBuffer,
.pBufferInfo = &buffer_infos.back(),
});
++binding.buffer;
} }
// Second pass to re-bind buffers that were updated after binding const auto desc_set = desc_heap.Commit(*desc_layout);
for (u32 i = 0; i < buffer_bindings.size(); i++) { for (auto& set_write : set_writes) {
const auto& [buffer_id, vsharp] = buffer_bindings[i]; set_write.dstSet = desc_set;
const auto& desc = stage.buffers[i];
const bool is_storage = desc.IsStorage(vsharp);
if (!buffer_id) {
if (desc.is_gds_buffer) {
const auto* gds_buf = buffer_cache.GetGdsBuffer();
buffer_infos.emplace_back(gds_buf->Handle(), 0, gds_buf->SizeBytes());
} else if (instance.IsNullDescriptorSupported()) {
buffer_infos.emplace_back(VK_NULL_HANDLE, 0, VK_WHOLE_SIZE);
} else {
auto& null_buffer = buffer_cache.GetBuffer(VideoCore::NULL_BUFFER_ID);
buffer_infos.emplace_back(null_buffer.Handle(), 0, VK_WHOLE_SIZE);
}
} else {
const auto [vk_buffer, offset] = buffer_cache.ObtainBuffer(
vsharp.base_address, vsharp.GetSize(), desc.is_written, false, buffer_id);
const u32 alignment =
is_storage ? instance.StorageMinAlignment() : instance.UniformMinAlignment();
const u32 offset_aligned = Common::AlignDown(offset, alignment);
const u32 adjust = offset - offset_aligned;
ASSERT(adjust % 4 == 0);
push_data.AddOffset(binding.buffer, adjust);
buffer_infos.emplace_back(vk_buffer->Handle(), offset_aligned,
vsharp.GetSize() + adjust);
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = is_storage ? vk::DescriptorType::eStorageBuffer
: vk::DescriptorType::eUniformBuffer,
.pBufferInfo = &buffer_infos.back(),
});
++binding.buffer;
}
const auto null_buffer_view =
instance.IsNullDescriptorSupported() ? VK_NULL_HANDLE : buffer_cache.NullBufferView();
for (u32 i = 0; i < texbuffer_bindings.size(); i++) {
const auto& [buffer_id, vsharp] = texbuffer_bindings[i];
const auto& desc = stage.texture_buffers[i];
vk::BufferView& buffer_view = buffer_views.emplace_back(null_buffer_view);
if (buffer_id) {
const u32 alignment = instance.TexelBufferMinAlignment();
const auto [vk_buffer, offset] = buffer_cache.ObtainBuffer(
vsharp.base_address, vsharp.GetSize(), desc.is_written, true, buffer_id);
const u32 fmt_stride = AmdGpu::NumBits(vsharp.GetDataFmt()) >> 3;
ASSERT_MSG(fmt_stride == vsharp.GetStride(),
"Texel buffer stride must match format stride");
const u32 offset_aligned = Common::AlignDown(offset, alignment);
const u32 adjust = offset - offset_aligned;
ASSERT(adjust % fmt_stride == 0);
push_data.AddOffset(binding.buffer, adjust / fmt_stride);
buffer_view =
vk_buffer->View(offset_aligned, vsharp.GetSize() + adjust, desc.is_written,
vsharp.GetDataFmt(), vsharp.GetNumberFmt());
if (auto barrier =
vk_buffer->GetBarrier(desc.is_written ? vk::AccessFlagBits2::eShaderWrite
: vk::AccessFlagBits2::eShaderRead,
vk::PipelineStageFlagBits2::eComputeShader)) {
buffer_barriers.emplace_back(*barrier);
}
if (desc.is_written) {
texture_cache.InvalidateMemoryFromGPU(vsharp.base_address, vsharp.GetSize());
}
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = desc.is_written ? vk::DescriptorType::eStorageTexelBuffer
: vk::DescriptorType::eUniformTexelBuffer,
.pTexelBufferView = &buffer_view,
});
++binding.buffer;
}
}
void Pipeline::BindTextures(VideoCore::TextureCache& texture_cache, const Shader::Info& stage,
Shader::Backend::Bindings& binding,
DescriptorWrites& set_writes) const {
using ImageBindingInfo = std::pair<VideoCore::ImageId, VideoCore::TextureCache::TextureDesc>;
static boost::container::static_vector<ImageBindingInfo, 32> image_bindings;
image_bindings.clear();
for (const auto& image_desc : stage.images) {
const auto tsharp = image_desc.GetSharp(stage);
if (texture_cache.IsMeta(tsharp.Address())) {
LOG_WARNING(Render_Vulkan, "Unexpected metadata read by a shader (texture)");
}
if (tsharp.GetDataFmt() == AmdGpu::DataFormat::FormatInvalid) {
image_bindings.emplace_back(std::piecewise_construct, std::tuple{}, std::tuple{});
continue;
}
auto& [image_id, desc] = image_bindings.emplace_back(std::piecewise_construct, std::tuple{},
std::tuple{tsharp, image_desc});
image_id = texture_cache.FindImage(desc);
auto& image = texture_cache.GetImage(image_id);
ASSERT(False(image.flags & VideoCore::ImageFlagBits::Virtual));
if (image.binding.is_bound) {
// The image is already bound. In case if it is about to be used as storage we need
// to force general layout on it.
image.binding.force_general |= image_desc.is_storage;
}
if (image.binding.is_target) {
// The image is already bound as target. Since we read and output to it need to force
// general layout too.
image.binding.force_general = 1u;
}
image.binding.is_bound = 1u;
}
// Second pass to re-bind images that were updated after binding
for (auto& [image_id, desc] : image_bindings) {
bool is_storage = desc.type == VideoCore::TextureCache::BindingType::Storage;
if (!image_id) {
if (instance.IsNullDescriptorSupported()) {
image_infos.emplace_back(VK_NULL_HANDLE, VK_NULL_HANDLE, vk::ImageLayout::eGeneral);
} else {
auto& null_image = texture_cache.GetImageView(VideoCore::NULL_IMAGE_VIEW_ID);
image_infos.emplace_back(VK_NULL_HANDLE, *null_image.image_view,
vk::ImageLayout::eGeneral);
}
} else {
if (auto& old_image = texture_cache.GetImage(image_id);
old_image.binding.needs_rebind) {
old_image.binding.Reset(); // clean up previous image binding state
image_id = texture_cache.FindImage(desc);
}
bound_images.emplace_back(image_id);
auto& image = texture_cache.GetImage(image_id);
auto& image_view = texture_cache.FindTexture(image_id, desc.view_info);
if (image.binding.force_general || image.binding.is_target) {
image.Transit(vk::ImageLayout::eGeneral,
vk::AccessFlagBits2::eShaderRead |
(image.info.IsDepthStencil()
? vk::AccessFlagBits2::eDepthStencilAttachmentWrite
: vk::AccessFlagBits2::eColorAttachmentWrite),
{});
} else {
if (is_storage) {
image.Transit(vk::ImageLayout::eGeneral,
vk::AccessFlagBits2::eShaderRead |
vk::AccessFlagBits2::eShaderWrite,
desc.view_info.range);
} else {
const auto new_layout = image.info.IsDepthStencil()
? vk::ImageLayout::eDepthStencilReadOnlyOptimal
: vk::ImageLayout::eShaderReadOnlyOptimal;
image.Transit(new_layout, vk::AccessFlagBits2::eShaderRead,
desc.view_info.range);
}
}
image.usage.storage |= is_storage;
image.usage.texture |= !is_storage;
image_infos.emplace_back(VK_NULL_HANDLE, *image_view.image_view,
image.last_state.layout);
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType =
is_storage ? vk::DescriptorType::eStorageImage : vk::DescriptorType::eSampledImage,
.pImageInfo = &image_infos.back(),
});
}
for (const auto& sampler : stage.samplers) {
auto ssharp = sampler.GetSharp(stage);
if (sampler.disable_aniso) {
const auto& tsharp = stage.images[sampler.associated_image].GetSharp(stage);
if (tsharp.base_level == 0 && tsharp.last_level == 0) {
ssharp.max_aniso.Assign(AmdGpu::AnisoRatio::One);
}
}
const auto vk_sampler = texture_cache.GetSampler(ssharp);
image_infos.emplace_back(vk_sampler, VK_NULL_HANDLE, vk::ImageLayout::eGeneral);
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eSampler,
.pImageInfo = &image_infos.back(),
});
} }
instance.GetDevice().updateDescriptorSets(set_writes, {});
cmdbuf.bindDescriptorSets(bind_point, *pipeline_layout, 0, desc_set, {});
} }
} // namespace Vulkan } // namespace Vulkan

View File

@ -14,6 +14,10 @@ class BufferCache;
namespace Vulkan { namespace Vulkan {
static constexpr auto gp_stage_flags = vk::ShaderStageFlagBits::eVertex |
vk::ShaderStageFlagBits::eGeometry |
vk::ShaderStageFlagBits::eFragment;
class Instance; class Instance;
class Scheduler; class Scheduler;
class DescriptorHeap; class DescriptorHeap;
@ -21,7 +25,7 @@ class DescriptorHeap;
class Pipeline { class Pipeline {
public: public:
Pipeline(const Instance& instance, Scheduler& scheduler, DescriptorHeap& desc_heap, Pipeline(const Instance& instance, Scheduler& scheduler, DescriptorHeap& desc_heap,
vk::PipelineCache pipeline_cache); vk::PipelineCache pipeline_cache, bool is_compute = false);
virtual ~Pipeline(); virtual ~Pipeline();
vk::Pipeline Handle() const noexcept { vk::Pipeline Handle() const noexcept {
@ -32,22 +36,27 @@ public:
return *pipeline_layout; return *pipeline_layout;
} }
auto GetStages() const {
if (is_compute) {
return std::span{stages.cend() - 1, stages.cend()};
} else {
return std::span{stages.cbegin(), stages.cend() - 1};
}
}
const Shader::Info& GetStage(Shader::Stage stage) const noexcept {
return *stages[u32(stage)];
}
bool IsCompute() const {
return is_compute;
}
using DescriptorWrites = boost::container::small_vector<vk::WriteDescriptorSet, 16>; using DescriptorWrites = boost::container::small_vector<vk::WriteDescriptorSet, 16>;
using BufferBarriers = boost::container::small_vector<vk::BufferMemoryBarrier2, 16>; using BufferBarriers = boost::container::small_vector<vk::BufferMemoryBarrier2, 16>;
void BindBuffers(VideoCore::BufferCache& buffer_cache, VideoCore::TextureCache& texture_cache, void BindResources(DescriptorWrites& set_writes, const BufferBarriers& buffer_barriers,
const Shader::Info& stage, Shader::Backend::Bindings& binding, const Shader::PushData& push_data) const;
Shader::PushData& push_data, DescriptorWrites& set_writes,
BufferBarriers& buffer_barriers) const;
void BindTextures(VideoCore::TextureCache& texture_cache, const Shader::Info& stage,
Shader::Backend::Bindings& binding, DescriptorWrites& set_writes) const;
void ResetBindings(VideoCore::TextureCache& texture_cache) const {
for (auto& image_id : bound_images) {
texture_cache.GetImage(image_id).binding.Reset();
}
bound_images.clear();
}
protected: protected:
const Instance& instance; const Instance& instance;
@ -56,10 +65,9 @@ protected:
vk::UniquePipeline pipeline; vk::UniquePipeline pipeline;
vk::UniquePipelineLayout pipeline_layout; vk::UniquePipelineLayout pipeline_layout;
vk::UniqueDescriptorSetLayout desc_layout; vk::UniqueDescriptorSetLayout desc_layout;
static boost::container::static_vector<vk::DescriptorImageInfo, 32> image_infos; std::array<const Shader::Info*, Shader::MaxStageTypes> stages{};
static boost::container::static_vector<vk::BufferView, 8> buffer_views; bool uses_push_descriptors{};
static boost::container::static_vector<vk::DescriptorBufferInfo, 32> buffer_infos; const bool is_compute;
static boost::container::static_vector<VideoCore::ImageId, 32> bound_images;
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -116,7 +116,7 @@ RenderState Rasterizer::PrepareRenderState(u32 mrt_mask) {
auto& [image_id, desc] = cb_descs.emplace_back(std::piecewise_construct, std::tuple{}, auto& [image_id, desc] = cb_descs.emplace_back(std::piecewise_construct, std::tuple{},
std::tuple{col_buf, hint}); std::tuple{col_buf, hint});
const auto& image_view = texture_cache.FindRenderTarget(desc); const auto& image_view = texture_cache.FindRenderTarget(desc);
image_id = image_view.image_id; image_id = bound_images.emplace_back(image_view.image_id);
auto& image = texture_cache.GetImage(image_id); auto& image = texture_cache.GetImage(image_id);
image.binding.is_target = 1u; image.binding.is_target = 1u;
@ -149,7 +149,7 @@ RenderState Rasterizer::PrepareRenderState(u32 mrt_mask) {
std::tuple{regs.depth_buffer, regs.depth_view, regs.depth_control, std::tuple{regs.depth_buffer, regs.depth_view, regs.depth_control,
htile_address, hint}); htile_address, hint});
const auto& image_view = texture_cache.FindDepthTarget(desc); const auto& image_view = texture_cache.FindDepthTarget(desc);
image_id = image_view.image_id; image_id = bound_images.emplace_back(image_view.image_id);
auto& image = texture_cache.GetImage(image_id); auto& image = texture_cache.GetImage(image_id);
image.binding.is_target = 1u; image.binding.is_target = 1u;
@ -181,7 +181,6 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
return; return;
} }
const auto cmdbuf = scheduler.CommandBuffer();
const auto& regs = liverpool->regs; const auto& regs = liverpool->regs;
const GraphicsPipeline* pipeline = pipeline_cache.GetGraphicsPipeline(); const GraphicsPipeline* pipeline = pipeline_cache.GetGraphicsPipeline();
if (!pipeline) { if (!pipeline) {
@ -190,10 +189,8 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
auto state = PrepareRenderState(pipeline->GetMrtMask()); auto state = PrepareRenderState(pipeline->GetMrtMask());
try { if (!BindResources(pipeline)) {
pipeline->BindResources(regs, buffer_cache, texture_cache); return;
} catch (...) {
UNREACHABLE();
} }
const auto& vs_info = pipeline->GetStage(Shader::Stage::Vertex); const auto& vs_info = pipeline->GetStage(Shader::Stage::Vertex);
@ -205,6 +202,9 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
const auto [vertex_offset, instance_offset] = vs_info.GetDrawOffsets(); const auto [vertex_offset, instance_offset] = vs_info.GetDrawOffsets();
const auto cmdbuf = scheduler.CommandBuffer();
cmdbuf.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline->Handle());
if (is_indexed) { if (is_indexed) {
cmdbuf.drawIndexed(num_indices, regs.num_instances.NumInstances(), 0, s32(vertex_offset), cmdbuf.drawIndexed(num_indices, regs.num_instances.NumInstances(), 0, s32(vertex_offset),
instance_offset); instance_offset);
@ -215,7 +215,7 @@ void Rasterizer::Draw(bool is_indexed, u32 index_offset) {
instance_offset); instance_offset);
} }
pipeline->ResetBindings(texture_cache); ResetBindings();
} }
void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u32 size, void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u32 size,
@ -237,10 +237,8 @@ void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u3
ASSERT_MSG(regs.primitive_type != AmdGpu::PrimitiveType::RectList, ASSERT_MSG(regs.primitive_type != AmdGpu::PrimitiveType::RectList,
"Unsupported primitive type for indirect draw"); "Unsupported primitive type for indirect draw");
try { if (!BindResources(pipeline)) {
pipeline->BindResources(regs, buffer_cache, texture_cache); return;
} catch (...) {
UNREACHABLE();
} }
const auto& vs_info = pipeline->GetStage(Shader::Stage::Vertex); const auto& vs_info = pipeline->GetStage(Shader::Stage::Vertex);
@ -262,6 +260,8 @@ void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u3
// instance offsets will be automatically applied by Vulkan from indirect args buffer. // instance offsets will be automatically applied by Vulkan from indirect args buffer.
const auto cmdbuf = scheduler.CommandBuffer(); const auto cmdbuf = scheduler.CommandBuffer();
cmdbuf.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline->Handle());
if (is_indexed) { if (is_indexed) {
static_assert(sizeof(VkDrawIndexedIndirectCommand) == static_assert(sizeof(VkDrawIndexedIndirectCommand) ==
AmdGpu::Liverpool::DrawIndexedIndirectArgsSize); AmdGpu::Liverpool::DrawIndexedIndirectArgsSize);
@ -286,7 +286,7 @@ void Rasterizer::DrawIndirect(bool is_indexed, VAddr arg_address, u32 offset, u3
} }
} }
pipeline->ResetBindings(texture_cache); ResetBindings();
} }
void Rasterizer::DispatchDirect() { void Rasterizer::DispatchDirect() {
@ -299,20 +299,15 @@ void Rasterizer::DispatchDirect() {
return; return;
} }
try { if (!BindResources(pipeline)) {
const auto has_resources = pipeline->BindResources(buffer_cache, texture_cache);
if (!has_resources) {
return; return;
} }
} catch (...) {
UNREACHABLE();
}
scheduler.EndRendering(); scheduler.EndRendering();
cmdbuf.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->Handle()); cmdbuf.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->Handle());
cmdbuf.dispatch(cs_program.dim_x, cs_program.dim_y, cs_program.dim_z); cmdbuf.dispatch(cs_program.dim_x, cs_program.dim_y, cs_program.dim_z);
pipeline->ResetBindings(texture_cache); ResetBindings();
} }
void Rasterizer::DispatchIndirect(VAddr address, u32 offset, u32 size) { void Rasterizer::DispatchIndirect(VAddr address, u32 offset, u32 size) {
@ -325,21 +320,16 @@ void Rasterizer::DispatchIndirect(VAddr address, u32 offset, u32 size) {
return; return;
} }
try { if (!BindResources(pipeline)) {
const auto has_resources = pipeline->BindResources(buffer_cache, texture_cache);
if (!has_resources) {
return; return;
} }
} catch (...) {
UNREACHABLE();
}
scheduler.EndRendering(); scheduler.EndRendering();
cmdbuf.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->Handle()); cmdbuf.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->Handle());
const auto [buffer, base] = buffer_cache.ObtainBuffer(address + offset, size, false); const auto [buffer, base] = buffer_cache.ObtainBuffer(address + offset, size, false);
cmdbuf.dispatchIndirect(buffer->Handle(), base); cmdbuf.dispatchIndirect(buffer->Handle(), base);
pipeline->ResetBindings(texture_cache); ResetBindings();
} }
u64 Rasterizer::Flush() { u64 Rasterizer::Flush() {
@ -353,13 +343,328 @@ void Rasterizer::Finish() {
scheduler.Finish(); scheduler.Finish();
} }
bool Rasterizer::BindResources(const Pipeline* pipeline) {
buffer_infos.clear();
buffer_views.clear();
image_infos.clear();
const auto& regs = liverpool->regs;
if (pipeline->IsCompute()) {
const auto& info = pipeline->GetStage(Shader::Stage::Compute);
// Most of the time when a metadata is updated with a shader it gets cleared. It means
// we can skip the whole dispatch and update the tracked state instead. Also, it is not
// intended to be consumed and in such rare cases (e.g. HTile introspection, CRAA) we
// will need its full emulation anyways. For cases of metadata read a warning will be
// logged.
const auto IsMetaUpdate = [&](const auto& desc) {
const VAddr address = desc.GetSharp(info).base_address;
if (desc.is_written) {
if (texture_cache.TouchMeta(address, true)) {
LOG_TRACE(Render_Vulkan, "Metadata update skipped");
return true;
}
} else {
if (texture_cache.IsMeta(address)) {
LOG_WARNING(Render_Vulkan, "Unexpected metadata read by a CS shader (buffer)");
}
}
return false;
};
for (const auto& desc : info.buffers) {
if (desc.is_gds_buffer) {
continue;
}
if (IsMetaUpdate(desc)) {
return false;
}
}
for (const auto& desc : info.texture_buffers) {
if (IsMetaUpdate(desc)) {
return false;
}
}
}
set_writes.clear();
buffer_barriers.clear();
// Bind resource buffers and textures.
Shader::PushData push_data{};
Shader::Backend::Bindings binding{};
for (const auto* stage : pipeline->GetStages()) {
if (!stage) {
continue;
}
if (stage->uses_step_rates) {
push_data.step0 = regs.vgt_instance_step_rate_0;
push_data.step1 = regs.vgt_instance_step_rate_1;
}
stage->PushUd(binding, push_data);
BindBuffers(*stage, binding, push_data, set_writes, buffer_barriers);
BindTextures(*stage, binding, set_writes);
}
pipeline->BindResources(set_writes, buffer_barriers, push_data);
return true;
}
void Rasterizer::BindBuffers(const Shader::Info& stage, Shader::Backend::Bindings& binding,
Shader::PushData& push_data, Pipeline::DescriptorWrites& set_writes,
Pipeline::BufferBarriers& buffer_barriers) {
buffer_bindings.clear();
for (const auto& desc : stage.buffers) {
const auto vsharp = desc.GetSharp(stage);
if (!desc.is_gds_buffer && vsharp.base_address != 0 && vsharp.GetSize() > 0) {
const auto buffer_id = buffer_cache.FindBuffer(vsharp.base_address, vsharp.GetSize());
buffer_bindings.emplace_back(buffer_id, vsharp);
} else {
buffer_bindings.emplace_back(VideoCore::BufferId{}, vsharp);
}
}
texbuffer_bindings.clear();
for (const auto& desc : stage.texture_buffers) {
const auto vsharp = desc.GetSharp(stage);
if (vsharp.base_address != 0 && vsharp.GetSize() > 0 &&
vsharp.GetDataFmt() != AmdGpu::DataFormat::FormatInvalid) {
const auto buffer_id = buffer_cache.FindBuffer(vsharp.base_address, vsharp.GetSize());
texbuffer_bindings.emplace_back(buffer_id, vsharp);
} else {
texbuffer_bindings.emplace_back(VideoCore::BufferId{}, vsharp);
}
}
// Bind the flattened user data buffer as a UBO so it's accessible to the shader
if (stage.has_readconst) {
const auto [vk_buffer, offset] = buffer_cache.ObtainHostUBO(stage.flattened_ud_buf);
buffer_infos.emplace_back(vk_buffer->Handle(), offset,
stage.flattened_ud_buf.size() * sizeof(u32));
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eUniformBuffer,
.pBufferInfo = &buffer_infos.back(),
});
++binding.buffer;
}
// Second pass to re-bind buffers that were updated after binding
for (u32 i = 0; i < buffer_bindings.size(); i++) {
const auto& [buffer_id, vsharp] = buffer_bindings[i];
const auto& desc = stage.buffers[i];
const bool is_storage = desc.IsStorage(vsharp);
if (!buffer_id) {
if (desc.is_gds_buffer) {
const auto* gds_buf = buffer_cache.GetGdsBuffer();
buffer_infos.emplace_back(gds_buf->Handle(), 0, gds_buf->SizeBytes());
} else if (instance.IsNullDescriptorSupported()) {
buffer_infos.emplace_back(VK_NULL_HANDLE, 0, VK_WHOLE_SIZE);
} else {
auto& null_buffer = buffer_cache.GetBuffer(VideoCore::NULL_BUFFER_ID);
buffer_infos.emplace_back(null_buffer.Handle(), 0, VK_WHOLE_SIZE);
}
} else {
const auto [vk_buffer, offset] = buffer_cache.ObtainBuffer(
vsharp.base_address, vsharp.GetSize(), desc.is_written, false, buffer_id);
const u32 alignment =
is_storage ? instance.StorageMinAlignment() : instance.UniformMinAlignment();
const u32 offset_aligned = Common::AlignDown(offset, alignment);
const u32 adjust = offset - offset_aligned;
ASSERT(adjust % 4 == 0);
push_data.AddOffset(binding.buffer, adjust);
buffer_infos.emplace_back(vk_buffer->Handle(), offset_aligned,
vsharp.GetSize() + adjust);
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = is_storage ? vk::DescriptorType::eStorageBuffer
: vk::DescriptorType::eUniformBuffer,
.pBufferInfo = &buffer_infos.back(),
});
++binding.buffer;
}
const auto null_buffer_view =
instance.IsNullDescriptorSupported() ? VK_NULL_HANDLE : buffer_cache.NullBufferView();
for (u32 i = 0; i < texbuffer_bindings.size(); i++) {
const auto& [buffer_id, vsharp] = texbuffer_bindings[i];
const auto& desc = stage.texture_buffers[i];
vk::BufferView& buffer_view = buffer_views.emplace_back(null_buffer_view);
if (buffer_id) {
const u32 alignment = instance.TexelBufferMinAlignment();
const auto [vk_buffer, offset] = buffer_cache.ObtainBuffer(
vsharp.base_address, vsharp.GetSize(), desc.is_written, true, buffer_id);
const u32 fmt_stride = AmdGpu::NumBits(vsharp.GetDataFmt()) >> 3;
ASSERT_MSG(fmt_stride == vsharp.GetStride(),
"Texel buffer stride must match format stride");
const u32 offset_aligned = Common::AlignDown(offset, alignment);
const u32 adjust = offset - offset_aligned;
ASSERT(adjust % fmt_stride == 0);
push_data.AddOffset(binding.buffer, adjust / fmt_stride);
buffer_view =
vk_buffer->View(offset_aligned, vsharp.GetSize() + adjust, desc.is_written,
vsharp.GetDataFmt(), vsharp.GetNumberFmt());
if (auto barrier =
vk_buffer->GetBarrier(desc.is_written ? vk::AccessFlagBits2::eShaderWrite
: vk::AccessFlagBits2::eShaderRead,
vk::PipelineStageFlagBits2::eComputeShader)) {
buffer_barriers.emplace_back(*barrier);
}
if (desc.is_written) {
texture_cache.InvalidateMemoryFromGPU(vsharp.base_address, vsharp.GetSize());
}
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = desc.is_written ? vk::DescriptorType::eStorageTexelBuffer
: vk::DescriptorType::eUniformTexelBuffer,
.pTexelBufferView = &buffer_view,
});
++binding.buffer;
}
}
void Rasterizer::BindTextures(const Shader::Info& stage, Shader::Backend::Bindings& binding,
Pipeline::DescriptorWrites& set_writes) {
image_bindings.clear();
for (const auto& image_desc : stage.images) {
const auto tsharp = image_desc.GetSharp(stage);
if (texture_cache.IsMeta(tsharp.Address())) {
LOG_WARNING(Render_Vulkan, "Unexpected metadata read by a shader (texture)");
}
if (tsharp.GetDataFmt() == AmdGpu::DataFormat::FormatInvalid) {
image_bindings.emplace_back(std::piecewise_construct, std::tuple{}, std::tuple{});
continue;
}
auto& [image_id, desc] = image_bindings.emplace_back(std::piecewise_construct, std::tuple{},
std::tuple{tsharp, image_desc});
image_id = texture_cache.FindImage(desc);
auto& image = texture_cache.GetImage(image_id);
ASSERT(False(image.flags & VideoCore::ImageFlagBits::Virtual));
if (image.binding.is_bound) {
// The image is already bound. In case if it is about to be used as storage we need
// to force general layout on it.
image.binding.force_general |= image_desc.is_storage;
}
if (image.binding.is_target) {
// The image is already bound as target. Since we read and output to it need to force
// general layout too.
image.binding.force_general = 1u;
}
image.binding.is_bound = 1u;
}
// Second pass to re-bind images that were updated after binding
for (auto& [image_id, desc] : image_bindings) {
bool is_storage = desc.type == VideoCore::TextureCache::BindingType::Storage;
if (!image_id) {
if (instance.IsNullDescriptorSupported()) {
image_infos.emplace_back(VK_NULL_HANDLE, VK_NULL_HANDLE, vk::ImageLayout::eGeneral);
} else {
auto& null_image = texture_cache.GetImageView(VideoCore::NULL_IMAGE_VIEW_ID);
image_infos.emplace_back(VK_NULL_HANDLE, *null_image.image_view,
vk::ImageLayout::eGeneral);
}
} else {
if (auto& old_image = texture_cache.GetImage(image_id);
old_image.binding.needs_rebind) {
old_image.binding.Reset(); // clean up previous image binding state
image_id = texture_cache.FindImage(desc);
}
bound_images.emplace_back(image_id);
auto& image = texture_cache.GetImage(image_id);
auto& image_view = texture_cache.FindTexture(image_id, desc.view_info);
if (image.binding.force_general || image.binding.is_target) {
image.Transit(vk::ImageLayout::eGeneral,
vk::AccessFlagBits2::eShaderRead |
(image.info.IsDepthStencil()
? vk::AccessFlagBits2::eDepthStencilAttachmentWrite
: vk::AccessFlagBits2::eColorAttachmentWrite),
{});
} else {
if (is_storage) {
image.Transit(vk::ImageLayout::eGeneral,
vk::AccessFlagBits2::eShaderRead |
vk::AccessFlagBits2::eShaderWrite,
desc.view_info.range);
} else {
const auto new_layout = image.info.IsDepthStencil()
? vk::ImageLayout::eDepthStencilReadOnlyOptimal
: vk::ImageLayout::eShaderReadOnlyOptimal;
image.Transit(new_layout, vk::AccessFlagBits2::eShaderRead,
desc.view_info.range);
}
}
image.usage.storage |= is_storage;
image.usage.texture |= !is_storage;
image_infos.emplace_back(VK_NULL_HANDLE, *image_view.image_view,
image.last_state.layout);
}
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType =
is_storage ? vk::DescriptorType::eStorageImage : vk::DescriptorType::eSampledImage,
.pImageInfo = &image_infos.back(),
});
}
for (const auto& sampler : stage.samplers) {
auto ssharp = sampler.GetSharp(stage);
if (sampler.disable_aniso) {
const auto& tsharp = stage.images[sampler.associated_image].GetSharp(stage);
if (tsharp.base_level == 0 && tsharp.last_level == 0) {
ssharp.max_aniso.Assign(AmdGpu::AnisoRatio::One);
}
}
const auto vk_sampler = texture_cache.GetSampler(ssharp);
image_infos.emplace_back(vk_sampler, VK_NULL_HANDLE, vk::ImageLayout::eGeneral);
set_writes.push_back({
.dstSet = VK_NULL_HANDLE,
.dstBinding = binding.unified++,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eSampler,
.pImageInfo = &image_infos.back(),
});
}
}
void Rasterizer::BeginRendering(const GraphicsPipeline& pipeline, RenderState& state) { void Rasterizer::BeginRendering(const GraphicsPipeline& pipeline, RenderState& state) {
int cb_index = 0; int cb_index = 0;
for (auto& [image_id, desc] : cb_descs) { for (auto& [image_id, desc] : cb_descs) {
if (auto& old_img = texture_cache.GetImage(image_id); old_img.binding.needs_rebind) { if (auto& old_img = texture_cache.GetImage(image_id); old_img.binding.needs_rebind) {
auto& view = texture_cache.FindRenderTarget(desc); auto& view = texture_cache.FindRenderTarget(desc);
ASSERT(view.image_id != image_id); ASSERT(view.image_id != image_id);
image_id = view.image_id; image_id = bound_images.emplace_back(view.image_id);
auto& image = texture_cache.GetImage(view.image_id); auto& image = texture_cache.GetImage(view.image_id);
state.color_attachments[cb_index].imageView = *view.image_view; state.color_attachments[cb_index].imageView = *view.image_view;
state.color_attachments[cb_index].imageLayout = image.last_state.layout; state.color_attachments[cb_index].imageLayout = image.last_state.layout;
@ -370,7 +675,6 @@ void Rasterizer::BeginRendering(const GraphicsPipeline& pipeline, RenderState& s
state.height = std::min<u32>(state.height, std::max(image.info.size.height >> mip, 1u)); state.height = std::min<u32>(state.height, std::max(image.info.size.height >> mip, 1u));
ASSERT(old_img.info.size.width == state.width); ASSERT(old_img.info.size.width == state.width);
ASSERT(old_img.info.size.height == state.height); ASSERT(old_img.info.size.height == state.height);
old_img.binding.Reset();
} }
auto& image = texture_cache.GetImage(image_id); auto& image = texture_cache.GetImage(image_id);
if (image.binding.force_general) { if (image.binding.force_general) {
@ -386,7 +690,6 @@ void Rasterizer::BeginRendering(const GraphicsPipeline& pipeline, RenderState& s
} }
image.usage.render_target = 1u; image.usage.render_target = 1u;
state.color_attachments[cb_index].imageLayout = image.last_state.layout; state.color_attachments[cb_index].imageLayout = image.last_state.layout;
image.binding.Reset();
++cb_index; ++cb_index;
} }
@ -419,7 +722,6 @@ void Rasterizer::BeginRendering(const GraphicsPipeline& pipeline, RenderState& s
state.depth_attachment.imageLayout = image.last_state.layout; state.depth_attachment.imageLayout = image.last_state.layout;
image.usage.depth_target = true; image.usage.depth_target = true;
image.usage.stencil = has_stencil; image.usage.stencil = has_stencil;
image.binding.Reset();
} }
scheduler.BeginRendering(state); scheduler.BeginRendering(state);

View File

@ -65,6 +65,21 @@ private:
bool FilterDraw(); bool FilterDraw();
void BindBuffers(const Shader::Info& stage, Shader::Backend::Bindings& binding,
Shader::PushData& push_data, Pipeline::DescriptorWrites& set_writes,
Pipeline::BufferBarriers& buffer_barriers);
void BindTextures(const Shader::Info& stage, Shader::Backend::Bindings& binding,
Pipeline::DescriptorWrites& set_writes);
bool BindResources(const Pipeline* pipeline);
void ResetBindings() {
for (auto& image_id : bound_images) {
texture_cache.GetImage(image_id).binding.Reset();
}
bound_images.clear();
}
private: private:
const Instance& instance; const Instance& instance;
Scheduler& scheduler; Scheduler& scheduler;
@ -79,6 +94,20 @@ private:
std::pair<VideoCore::ImageId, VideoCore::TextureCache::RenderTargetDesc>, 8> std::pair<VideoCore::ImageId, VideoCore::TextureCache::RenderTargetDesc>, 8>
cb_descs; cb_descs;
std::optional<std::pair<VideoCore::ImageId, VideoCore::TextureCache::DepthTargetDesc>> db_desc; std::optional<std::pair<VideoCore::ImageId, VideoCore::TextureCache::DepthTargetDesc>> db_desc;
boost::container::static_vector<vk::DescriptorImageInfo, 32> image_infos;
boost::container::static_vector<vk::BufferView, 8> buffer_views;
boost::container::static_vector<vk::DescriptorBufferInfo, 32> buffer_infos;
boost::container::static_vector<VideoCore::ImageId, 64> bound_images;
Pipeline::DescriptorWrites set_writes;
Pipeline::BufferBarriers buffer_barriers;
using BufferBindingInfo = std::pair<VideoCore::BufferId, AmdGpu::Buffer>;
boost::container::static_vector<BufferBindingInfo, 32> buffer_bindings;
using TexBufferBindingInfo = std::pair<VideoCore::BufferId, AmdGpu::Buffer>;
boost::container::static_vector<TexBufferBindingInfo, 32> texbuffer_bindings;
using ImageBindingInfo = std::pair<VideoCore::ImageId, VideoCore::TextureCache::TextureDesc>;
boost::container::static_vector<ImageBindingInfo, 32> image_bindings;
}; };
} // namespace Vulkan } // namespace Vulkan

View File

@ -71,8 +71,7 @@ public:
struct RenderTargetDesc : public BaseDesc { struct RenderTargetDesc : public BaseDesc {
RenderTargetDesc(const AmdGpu::Liverpool::ColorBuffer& buffer, RenderTargetDesc(const AmdGpu::Liverpool::ColorBuffer& buffer,
const AmdGpu::Liverpool::CbDbExtent& hint = {}) const AmdGpu::Liverpool::CbDbExtent& hint = {})
: BaseDesc{BindingType::RenderTarget, ImageInfo{buffer, hint}, : BaseDesc{BindingType::RenderTarget, ImageInfo{buffer, hint}, ImageViewInfo{buffer}} {}
ImageViewInfo{buffer, false}} {}
}; };
struct DepthTargetDesc : public BaseDesc { struct DepthTargetDesc : public BaseDesc {